污泥厌氧消化技术现状及应注意的问题
厌氧消化在我国污泥处理中的应用与未来趋势

厌氧消化在我国污泥处理中的应用与未来趋势厌氧消化在污泥处理中有着不可忽视的作用,这对污泥后续处置及处置成本息息相关。
前面已经介绍了污泥处理中厌氧消化的过程及常用的处理设备,今天鼎盛分析一下厌氧消化在我国发展的现状及未来趋势。
厌氧消化是目前国际上应用最广泛的污泥稳定化和资源化方法,欧美国家50%的污泥都是经过该技术处理的,但早前厌氧消化在我国污泥处理中的推广并不太顺利。
据不完全统计,北京、上海、天津等城市的大型污水处理厂中,有稳定运行厌氧消化环节污泥处理设备的只有20余家。
这与我国污泥处理泥质差、处理厂运行管理水平不够先进有关。
为了推动我国污泥处理技术,国内一直开展“厌氧消化适应中国污泥处理特点”的相关工作。
针对污泥泥质的改良,行业专家表示,可以通过添加有机垃圾进行调节;开发超声波、热水解等预处理技术来改善污泥泥质提高其可消化性;研发高温消化、两段消化及好氧消化等工艺提高消化效率和污泥泥饼的稳定程度。
而对我国多数可以担心的污泥处理实际操作中存在的问题,可以通过引进国外先进的管理技术,对设有厌氧消化设备的污泥处理厂实行运行期间操作指导和培训,培养一支精通污泥处理设备操作的队伍,来保证污泥厌氧消化的运用。
虽然目前国内厌氧消化在污泥处置中还未大规模推广,但鼎盛早已开始了厌氧消化的研究,并为客户量身打造污泥处置系统实地投入使用。
如2011年上海某污水处理厂的污泥处置工程,采用化学、重力浓缩的处理方案,提高了污泥的含固率,最终所得泥饼含水率在40%以下。
随着国家污泥处理处置技术政策不断深入,成熟的污泥处理技术路线也将成型,厌氧消化将成为污泥处理中必不可少的环节。
我国污泥处理处置行业虽然起步较晚,但污泥处理设备企业仍需具备勇往直前的探索精神,深入研究,敢于创新,推动我国污泥处理处置事业的进步。
郑州鼎盛:固定式污泥处理设备:污泥压滤机、污泥压干机、板框压滤机、带式压滤机、厢式压滤机、隔膜压滤机。
移动式污泥处理设备:移动式污泥压滤机、移动式污泥压干机、车载超级污泥压干系统。
污泥厌氧消化出水水质分析

污泥厌氧消化出水水质分析随着城市化进程的加速,各种废水处理技术也迎来了蓬勃发展。
其中,污泥厌氧消化技术是一种节能降耗的处理方式,逐渐被广泛应用于各大污水处理厂。
然而,污泥厌氧消化出水也存在着水质问题。
本文就对污泥厌氧消化出水的水质进行分析。
一、污泥厌氧消化出水的处理原理污泥厌氧消化技术是利用微生物在无氧环境下分解污泥,从而将有机物转化为甲烷等气体的一种处理方法。
在该技术下,有机物会分解为甲烷、二氧化碳等气体,同时也会产生水,即出水。
出水中含有大量的甲烷、氧化物等物质,如果不经过处理直接排放,会对环境造成较大影响。
二、污泥厌氧消化出水的水质特征1. pH值污泥厌氧消化出水的pH值一般在7.0左右,偏向中性,符合环保要求。
2. SSSS(悬浮物)是指水中能够在1小时内在常温下沉淀的可见或不可见的小颗粒并在上。
污泥厌氧消化出水中的SS含量较高,通常在100mg/L左右。
3. CODCOD(化学需氧量)是指在充氧条件下,各种有机物和无机物与氧以化学方式作用时所需氧气的总量。
污泥厌氧消化出水的COD值在100-200mg/L之间,属于较高的水质等级。
4. BOD5BOD5(五日生化需氧量)是指理想情况下,通过微生物在5天内将有机物分解为无机物所需的氧气量。
污泥厌氧消化出水中BOD5的含量较低,通常在20mg/L左右。
5. 监测项目根据国家标准《污水综合排放标准》(GB 8978-1996)规定,污泥厌氧消化出水需监测的项目包括COD、SS、BOD5、氨氮、总氮和总磷等指标,以及PH、电导率等理化性质。
三、污泥厌氧消化出水的处理方法针对污泥厌氧消化出水的水质特点,我们可采取以下的水处理方法:1. 深度处理采用深度处理技术对出水进行处理,包括AC、NF、RO、MBR等,是一种目前比较常见的处理方式。
这些处理技术可以有效地分离有害物质和水分子,提高出水的水质。
2. 混合处理混合处理是将污泥厌氧消化出水与其他污水混合,然后进行统一处理。
污泥厌氧消化技术的优化实践

污泥厌氧消化技术的优化实践污泥厌氧消化技术是一种生物处理方式,能够将污泥中的有机物分解为甲烷和二氧化碳,从而减少有机废物的数量和废水的处理成本。
在污泥处理过程中,提高厌氧消化效率和稳定性是优化实践的主要目标。
本文将介绍污泥厌氧消化技术的一些优化实践。
1. 厌氧消化条件的控制厌氧消化的条件是其稳定性和效率的关键。
在正常条件下,厌氧消化区的温度应该控制在35-37℃,对于中温消化反应则应该控制在55-60℃左右。
而pH值则应该控制在6.8-7.2之间,如果pH值过低,则应该补充一些碳酸氢盐类的物质,如果pH值过高,则应该添加一些酸性物质。
此外,氧气含量也应该被控制在最小程度。
2. 污泥种类和处理方式选择的影响污泥的种类和处理方式也会影响到厌氧消化的效率和稳定性。
处理污泥的前处理过程是按照污泥类型进行选择和确定的。
一般而言,在处理厨余和动物粪便污泥时,可采用自然污泥进行处理,而在处理工业污泥和医疗污泥时,应采用非自然污泥进行处理。
同时,也需要注意污泥处理后的后处理流程,包括干燥、质量检测和压制等操作。
3. 活性菌种筛选和添加良好的活性菌种选择和添加是优化实践的重要部分。
优质的活性菌种具有高效的厌氧消化效果,并且能够增加污泥的稳定性。
一些常用的活性菌株包括甲烷菌、水解菌、乳酸菌和酵母菌等。
此外,添加营养物质、制作精良的混合液和采用连续滤光处理反应液等,都是在活性菌种筛选和添加方面优化实践的关键策略。
4. 逆流式厌氧消化技术逆流式厌氧消化技术是一种高效的污泥处理方式,可以提高厌氧消化的稳定性和效率。
研究表明,逆流式厌氧消化技术可以减少氨氮、COD和磷的浓度,同时也可以获得更高的甲烷产量。
该技术的优点在于,能够有效地利用反应器中的废水和气体,从而提高处理效率和降低成本。
5. 电子束辐照处理技术应用近年来,在污泥处理领域中,电子束辐照技术得到了越来越广泛的应用。
该技术包括控制实验方法、辐照设备和小型实验等,可以提高污泥的催化效率和稳定性,从而减少有机废物和废水的处理成本。
污水处理中的污泥厌氧消化技术

CHAPTER
02
污泥厌氧消化原理
厌氧消化过程
酸化阶段
在厌氧消化过程中,复杂有机物在微生物的作用下被分解 为简单的有机物,如挥发性脂肪酸等,同时产生H2和 CO2。
产酸阶段
在产酸阶段,有机物继续被分解为更简单的化合物,如醇 类、醛类、酮类等,同时产生H2和CO2。
工艺流程
厌氧消化
污泥的预处理
为了提高厌氧消化效率,需要对 污泥进行预处理,如降低含水率 、调节pH值、添加有机酸等。
污泥在厌氧环境中,通过微生物 的作用,将有机物转化为沼气。
沼气的收集与利用
产生的沼气经过收集后,可用于 发电、供热或进行其他用途。
污泥的收集与输送
将污水处理过程中产生的污泥进 行收集,并通过管道或泵送至厌 氧消化设施。
厌氧消化反应机理
发酵反应
发酵反应是指有机物在微生物的作用下被分解为更简单的化合物 ,如醇类、醛类、酮类等。
酸化反应
酸化反应是指有机物在微生物的作用下被分解为更简单的化合物, 如挥发性脂肪酸等。
产甲烷反应
产甲烷反应是指简单有机物在产甲烷菌的作用下被转化为CH4和 CO2。
CHAPTER
03
污泥厌氧消化工艺
厌氧消化技术是一种有效的污泥 处理方式,能够将有机物转化为 沼气,实现能源回收。
技术重要性
减少污泥体积,降低 处置成本。
降低污泥中的有害物 质含量,减少对环境 的影响。
实现有机废弃物的资 源化利用,产生能源 。
技术发展概况
早期的厌氧消化技术发展较慢,近年 来随着环保要求的提高和技术的进步 ,该技术得到了快速发展。
污泥消化问题分析和解决方法

污泥消化问题分析和解决方法一、污泥消化名词解释污泥消化是利用微生物的代谢作用,使污泥中的有机物质稳定化。
当污泥中的挥发性固体 VSS 含量降到 40% 以下时,即可认为已达到稳定化。
污泥消化可以采用好氧处理工艺,也可以采用厌氧处理工艺。
二、污泥的好氧消化污泥的好氧消化是在不投加有机物的条件下,对污泥进行长时间的曝气,使污泥中的微生物处于内源呼吸阶段进行自身氧化。
好氧消化可以使污泥中的可生物降解部分(约占污泥总量的80%)被氧化去除,消化程度高、剩余污泥量少,处理后的污泥容易脱水。
好氧消化比厌氧消化所需时间要少得多,在常温下水力停留时间为10-12d,主要用于污泥产量少的场合。
一般鼓风量为4.2-16.8m³/(㎡·h)、污泥负荷为0.04-0.05kgBOD5/(kgMLSS·d),BOD5去除率约50%。
三、污泥好氧消化特点和种类1)好氧消化上清液BOD5、SS、CODcr和氨氮等浓度较低,消化污泥量少、无臭味、容易脱水,处置方便简单。
好样消化池构造简单、容易管理、没有甲烷爆炸的危险。
2)不能回收利用沼气能源,运行费用高,能耗大,消化后的污泥进行重力浓缩时。
因为好氧消化不采取加热措施,所以污泥有机物分解程度随温度波动大。
好氧消化有普通好氧消化和高温好氧消化两种。
普通好氧消化与活性污泥法相似,主要靠延时曝气来减少污泥的数量。
高温好氧消化利用微生物氧化有机物时所释放的热量对污泥进行加热,将污泥温度升高到40-70℃,达到在高温条件下对污泥进行消化的目的。
与普通好氧消化相比,高温好氧消化反应更快,停留时间更短,而且几乎可以杀死所有病原体,不需要进一步消毒处理。
高温好氧消化可以在大多数自然气候条件下,利用自身活动产生的热量达到高温条件,不需要外加热源,只要对消化池加盖保温即可。
四、厌氧消化内容和高浓度废水厌氧处理区别污泥的厌氧消化是利用厌氧微生物经过水解、酸化、产甲烷等过程,将污泥中的大部分固体有机物水解、液化后并最终分解掉的过程。
浅谈城市污水处理厂污泥处理技术现状

浅谈城市污水处理厂污泥处理技术现状浅谈城市污水处理厂污泥处理技术现状一、引言城市污水处理厂是处理城市废水的重要设施,随着城市化进程的加快,城市污水处理厂的污泥处理问题也日益凸显。
污泥处理是指将污水处理过程中产生的污泥进行加工和处理,以减少其体积和有害成分,并实现资源化利用。
本文将从污泥处理技术的现状、存在的问题以及未来发展方向三个方面进行探讨。
二、污泥处理技术的现状目前,常见的污泥处理技术包括厌氧消化、厌氧发酵、厌氧氨氧化、热水解等。
其中,厌氧消化是最常用的污泥处理技术,通过厌氧消化反应将污泥内部的有机物降解,产生可燃性气体和稳定的污泥。
厌氧发酵技术则是在厌氧条件下,通过微生物的作用将污泥中的有机物转化为沼气。
厌氧氨氧化技术是通过厌氧微生物的作用,将废水中的氨氮氧化为亚硝酸盐。
热水解技术则是将污泥在高温高压条件下,通过化学反应将有机物热解成油气和固体残渣。
三、存在的问题尽管现有的污泥处理技术已经取得了一定的成果,但仍存在以下问题:1. 处理效果不稳定。
当前的污泥处理技术在处理效果上存在一定的不稳定性,受到环境因素、水质变化等因素的影响较大。
2. 处理成本较高。
目前的污泥处理技术往往需要大量的能源和化学药剂,造成了较高的处理成本。
3. 资源化利用有限。
尽管一些污泥处理技术可以实现污泥的资源化利用,但实际的应用程度有限,尚未形成规模化的产业化应用。
四、未来发展方向未来的污泥处理技术应该朝着以下方向发展:1. 提高处理效果稳定性。
通过对污泥处理过程中的关键环节进行优化,提高处理效果的稳定性,减少外界因素的干扰。
2. 降低处理成本。
通过引入新的工艺和技术,减少能源和化学药剂的使用,降低污泥处理的经济成本。
3. 推动资源化利用。
加强对污泥处理副产物的研究和开发,实现更广泛的资源化利用,推动污泥处理成为可持续发展的环境产业。
4. 强化技术创新和科研合作。
加强与高校、科研机构等的合作,提升污泥处理技术的科技含量,推动技术创新。
餐厨垃圾处理项目厌氧系统现状分析及解决方案

**餐厨垃圾项目厌氧系统现状分析报告一、厌氧系统现状**餐厨垃圾项目项目水解酸化罐指标表现为pH值4.0左右,温度57℃,挥发酸含量1000mg/L;厌氧罐指标表现为pH值降低,由8.04降至7.78,;挥发酸含量由升高,由1080mg/L逐步升至1900mg/L,且在降低厌氧进料量后挥发酸无明显降低;酸碱比由0.1升至0.22;吨进料产气由60m³降至53m³;11月7日和11月15日送沼科所化验的厌氧系统数据显示丙酸含量有上升趋势。
二、原因分析1、水解酸化效果差水解罐pH值过低,抑制了水解酸化菌的水解酸化作用,导致大量大分子有机物进入厌氧系统进行酸化作用,造成厌氧系统挥发酸增长,pH值降低。
水解罐温度过高,造成消化系统中氢分压的提高, 间接造成丙酸的累积, 同时阻碍了产生氢气的丁酸型产酸发酵过程。
2、系统受到负荷冲击11月1日至11月6日期间,厌氧控制系统由于CPU问题导致系统频繁故障,影响厌氧系统按时进料和总进料量,进料量波动较大;在排除CPU故障后,厌氧进料量提量过快,在5天内从186m³提至270m ³,对系统稳定性产生冲击。
3、系统受到丙酸抑制由于餐厨垃圾中微量元素含量极少,伴随进料、出料,系统内微量元素含量不断下降,同时在较高负荷下运行,限制了氢营养型甲烷菌和甲烷八叠球菌属的生长和代谢,甲烷产量最先受到系统失衡影响,对系统失衡的敏感度和预警有效性优于 VFA 浓度的变化。
甲烷鬃菌属取代甲烷八叠球菌属成为优势甲烷菌属,而氢营养型甲烷菌消失殆尽,同时产甲烷菌群落多样性显著下降,导致产甲烷菌群落功能下降,H2/CO2 产甲烷途径被阻断,氢分压上升引发对丙酸代谢的反馈抑制,导致丙酸累积。
三、解决方案1、调节水解罐pH值与温度水解酸化菌最适环境pH值为5.5-6.5,可通过提高沼液回流比的方式或投碱进行调节。
目前沼液回流量为20m³/d,回流比为9%,受水解罐液位高度影响,回流量有限,投碱最为直接,间歇投碱保证pH值一周后可使pH值维持在5.5-6.5之间。
城市污泥处理现状及对策分析

城市污泥处理现状及对策分析首先,我们来看城市污泥处理的现状。
一方面,目前许多城市的污水处理厂采用的是传统的污泥处理工艺,如沉淀池、消化池等,这种处理方式存在污泥处置不当的问题,容易造成环境污染。
另一方面,一些地区的污水处理厂虽然引进了先进的污泥处理技术,如厌氧消化、压滤脱水等,但仍然面临脱水处理成本高、能源消耗大等问题,导致污泥处理不彻底、资源回收不充分。
要解决城市污泥处理的问题,我们需要采取一系列的对策。
首先,要加强污泥产生的源头控制。
通过加强工业企业和居民生活区的污水处理设施建设,减少产生的污泥数量;通过加强环保意识教育,提高居民对垃圾分类和环保的重视程度,从而减少有机废弃物的产生。
此外,还可以通过改善城市供水管网、加强工业废水处理等措施,减少进入污水处理厂的污泥数量。
其次,要推广先进的污泥处理技术。
目前,国内外推广的一些污泥处理技术,如热压脱水、干化处理等,能够有效地实现污泥减量、资源化利用,但这些技术还未在大规模应用中得到推广。
政府应加大对这些技术的支持力度,鼓励城市污水处理厂引进先进的污泥处理设备和技术,并加强研发工作,提高国内技术水平。
此外,还可以加强污泥的资源化利用。
污泥中含有大量的有机物质和养分元素,可以用作农业肥料、生物燃料和建材等。
政府应鼓励科研机构与企业合作,开展污泥资源化利用研究,制定相关政策和标准,推动资源化利用的发展。
同时,还要加强对污泥资源化利用产品的推广,提高人们对这些产品的认知度和接受度。
最后,要加强对污泥处理过程中产生的污泥处理渣和废水的处置。
在传统工艺中,污泥处理渣和废水往往被直接排放或填埋,造成环境污染。
现代的污泥处理技术可以通过热解、焚烧等方式将污泥处理渣转化为能源或建材,同时对废水进行进一步处理以达到排放标准。
政府要对这些处理渣和废水的安全处置给予重视,并加强监管。
总结起来,城市污泥处理是一个复杂而严峻的问题,需要多方面的努力来解决。
加强源头控制、推广先进的污泥处理技术、加强污泥资源化利用和处理渣废水的处置等都是有效的对策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
污泥厌氧消化技术现状及应注意的问题王涛1,2(1.机械科学研究总院环保技术与装备研究所,北京100044;2.机科发展科技股份有限公司,北京100044)摘要:阐述了厌氧消化技术背景与基本原理。
通过对国内示范项目运行情况的研究分析,从处理方面分析了应注意的泥质影响、池形选择、温度与无害化、含固率与搅拌动力等问题;结合行业技术指南分析了处置方面应注意的问题。
通过处理与处置全过程成本经济分析,得出了该技术参考运行成本。
最后给出了该技术的适用条件。
关键词:厌氧消化、中温厌氧消化、处理、处置、无害化、沼气、全过程1.厌氧消化技术概述1.1技术来源厌氧消化是利用兼氧菌和厌氧菌进行厌氧生化反应,分解污泥中有机质的一种污泥处理工艺。
1881年法国Mouras净化器是污水(污泥)厌氧生物处理的雏形;1905年,德国的Imhoff 池的出现,第一次将泥水分离进行厌氧处理;1927年,首次在厌氧消化池中加上了加热装置,使产气速率显著提高;随后,又增加了机械搅拌器,反应速率进一步提高;20世纪50年代初又出现了利用沼气循环的搅拌装置。
多种形式的厌氧消化池形成了现代污泥厌氧消化技术的核心工艺体系。
1.2技术原理厌氧消化的作用机理有两段论、三段论、四段论之分,就两段论可以分为产酸阶段和产甲烷阶段,其中产酸阶段又可细分为水解阶段、酸化阶段、酸性衰退阶段。
水解酸化阶段(酸性发酵):污水中不溶性大分子有机物,如多糖、淀粉、纤维素、烃类(烷、烯、炔等)水解,主要产物为甲、乙、丙、丁酸、乳酸;紧接着氨基酸、蛋白质、脂肪水解生成氨和胺、多肽等。
产甲烷阶段(碱性发酵):产甲烷细菌把甲酸、乙酸、甲胺、甲醇等基质通过不同途径转化为甲烷,其中最主要的基质为乙酸。
全部反应可以概括为:淀脂1.3厌氧消化池分类厌氧消化池从构造上一般分为池顶、池体和池底三部分:池顶主要起到收集沼气的作用;池体主要起到容纳作用;池底一般主要起到排泥的作用。
按照消化池形状可以分为:圆柱形、椭圆形(卵形)和龟甲形等。
按照池顶结构形式可以分为:固定盖式和移动盖式。
按照搅拌形式可以分为:机械搅拌和沼气搅拌两种形式;机械搅拌又分为泵搅拌、桨叶搅拌、水射器搅拌等;沼气搅拌又可分为气提式搅拌、竖管式搅拌和气体扩散式搅拌等。
1.4国内应用情况2000年,建设部、国家环保局、科技部联合发布《城市污水处理及污染防治技术政策》规定:“处理能力达于10万m3/d的污水处理二级设施产生的污泥,宜采取厌氧消化工艺进行处理”。
截至2011年,国内已建成市政污水处理厂3078座,其中配套建设厌氧消化系统的50余座,这其中稳定正常运行不超过10座。
2010、2011年污泥处理处置十大推荐案例中共列入6个厌氧消化项目,其中还包括当时“尚未进行24小时连续运行和冬季运行”的上海市白龙岗污水厂污泥处理工程。
以下主要依据中国水网2010、2011年度污泥处理处置推荐案例评选资料及部分国内公开发表文献资料摘录列举国内正常运行的主要厌氧消化工程实例情况:1.4.1大连东泰夏家河污泥处理厂夏家河项目占地2.47公顷,日处理市政污泥600吨。
采用LIIP消化罐12个(圆柱形平底形式),直径16m,高度15m,有效高度11.2m,单位有效容积2230m3,污泥停留时间22~25d,进泥含固率10%,污泥投配率4~5%,消化温度37℃,沼气日产量30000-32000 m3,池容产气率1.12~1.20m3/m3,经提纯处理后CH4日产量16500立方米供应市政燃气。
电耗15000~18000 kW.h/d(搅拌强度19.5W/m3)。
沼渣脱水后含水率降至70%左右,送至垃圾填埋场晾晒填埋;沼液排至夏家河污水处理厂处理排放。
项目工程总投资14913万元,运行成本130-150 元/吨。
项目于2007年开工建设,2009年4月正式运行。
1.4.2青岛麦岛污水厂污泥处理项目麦岛项目为青岛麦岛140,000 m3/d污水处理厂扩建工程配套子项目,污水厂占地3.9公顷,污泥系统处理规模48tDS/d(相当于含水率80%脱水污泥240t/d)。
采用圆柱形消化池2座,直径29.3m,高度25.7m,有效高度18m,单位有效容积12700m3,污泥停留时间20d,进泥含固率3.8~4%,污泥投配率1.9kgDS/m3.d,消化温度35±2℃,沼气日产量14400~15000 m3,池容产气率0.59m3/m3,产品首先用于4台500kV A沼气发电机能源,剩余的沼气通过火炬燃烧。
搅拌强度0.9W/m3。
沼渣脱水后含水率降至78%以下,送至垃圾填埋场或堆肥处理;沼液由污水处理厂处理排放。
项目于2008年6月正式运行。
1.4.3北京小红门污水厂污泥处理项目小红门项目为北京小红门600,000 m3/d污水处理厂工程配套子项目,污泥系统处理规模132.5tDS/d(相当于含水率80%脱水污泥662.5t/d)。
采用卵形消化池5座,单位有效容积12300m3,污泥停留时间20d,进泥含固率3.2%,污泥投配率5%,消化温度35℃,沼气日产量30000m3,池容产气率0.49m3/m3,产品用于沼气拖动鼓风机。
搅拌强度3W/m3。
沼渣脱水后含水率降至83%左右,送至石灰干化车间干化外运填埋;沼液由污水处理厂处理排放。
项目工程总投资20000万元,运行费用1464万元/年。
项目于2008年11月竣工正式投入运行。
1.4.4上海白龙岗污水厂污泥处理项目白龙岗项目为上海白龙岗污水厂2,000,000 m3/d污水处理厂升级改造工程配套子项目,污泥系统处理规模204tDS/d(相当于含水率80%脱水污泥1020t/d)。
采用卵形消化池8座,池体最大直径25m,垂直高度44m(地上32m,地下12m),单位有效容积12400m3,设计污泥停留时间24.3d,进泥含固率5%,污泥投配率4.1%,消化温度33~35℃,沼气日产量44512m3,池容产气率0.45m3/m3,产品用于消化池加热保温和后续污泥干化。
搅拌强度4.7W/m3。
沼渣脱水后含水率降至75%左右,送至流化床干化工序处理至含固率70%外运;沼液由污水处理厂处理排放。
项目工程总投资63000万元,运行成本约120 元/吨脱水污泥。
项目于2010年10月建成,2011年4月12日进入调试运行。
1.4.5新疆乌鲁木齐河东污水厂污泥消化及热电联产项目新疆乌鲁木齐河东污水厂污泥消化及热电联产项目为新疆乌鲁木齐河东污水厂原污泥厌氧消化系统维修改造项目。
污泥系统处理规模79tDS/d(相当于含水率80%脱水污泥395t/d)。
采用圆柱形消化池4座,直径20m,高度30.2m,期中柱体高度20m,单位有效容积7164m3,污泥停留时间16d,进泥含固率4%,消化温度35℃,沼气日产量41225 m3。
产品首先用于沼气发电机能源,剩余的沼气通过火炬燃烧。
电耗60000kW.h/d(搅拌强度0.94W/m3)。
沼渣脱水后含水率降至78%左右,送至垃圾填埋场或堆肥处理;沼液由污水处理厂处理排放。
注:按照0.85Nm3/kgVSS产气率估算,上述污泥系统处理规模与沼气日产量对应100%的有机质含量和60%的降解率,显然失实。
项目于2006年由于设备问题停用,2009年经改造后恢复运行使用,2010年底开始4座消化池正常运行。
1.4.6郑州王新庄污水厂污泥厌氧消化及沼气利用项目郑州王新庄污水厂污泥厌氧消化及沼气利用项目为郑州王新庄污水厂工程配套子项目,污泥系统处理规模相当于含水率80%脱水污泥330t/d。
采用圆柱形消化池,一级3座,二级1座,直径28.8m,高度20.2m,期中柱体高度14.5m,单位有效容积10000m3,污泥总停留时间24d,进泥含固率5%,污泥投配率5%,消化温度35±1℃,沼气日产量20000 m3左右,池容产气率0.5m3/m3,经提纯处理后CH4日产量10000立方米供应市政燃气。
沼渣脱水后含水率降至78%左右,送至垃圾填埋场或堆肥处理;沼液由污水处理厂处理排放。
项目于2001年正式运行,根据2006.3.14~3.23运行数据记录(平均值):生污泥量1205m3/d,进泥含水率94.89%,沼气产量17625m3/d,基本达到设计指标。
表1.1厌氧消化典型案例主要技术参数对比2.处理过程应注意的问题2.1泥质中国城镇污水处理厂水质与发达国家存在差异,在污水处理工艺选择和优化方面已经积累了丰富的经验,在污泥处理处置方面同样可以借鉴污水处理经验,在充分分析掌握中国泥质特点的前提下,引入国外成熟技术时,应在本土化改良后谨慎适度推广,否则将只能是事倍功半,甚至无功而返。
2.1.1有机质含量中国城镇污水处理厂污泥有机质含量呈现地域和季节不均匀特点,总体水平较发达国家明显偏低。
我国2001年抽样调查数据较美国2000年统计数据低28%,这主要是由于我国市政污水进水浓度偏低造成的;2009年抽样数据较2001年低25%,这主要是由于新建大量中小污水处理厂,较大中城市污水处理厂进水浓度更低。
下表清楚地反映了上述情况。
表2.1城市污水处理厂有机质含量统计表(单位:g/kg)HRT=20d的情况下,如果按照50%的有机物降解率和0.85Nm3/kgVSS的产气率估算,本文1.4节所列举的项目有机质含量平均应达到55%以上,方可实现设计产气率目标;按照45%的有机物降解率和0.8Nm3/kgVSS的产气率估算,本文1.4节所列举的项目有机质含量平均应达到65%以上,方可实现设计产气率目标;而如果按照40%的有机物降解率和0.7Nm3/kgVSS的产气率估算,则这一指标必须达到83%以上方可实现设计产气率目标。
因此,有机质含量低将直接影响厌氧消化过程的产气率指标,从而影响系统能耗和运行成本,这也是我国大部分厌氧消化池停运的主要原因之一。
保守粗略估计,有机质含量低于60%的污泥很难在日后运行过程中实现设计经济指标。
2.1.2含砂量污泥中有机质成分偏低对应着无机成分偏高,从侧面反映出污水处理厂进水含砂量偏高。
究其原因原因主要有:雨污分流系统不完善、污水管道受损、人为因素等。
根据设计规范:城市污水的含砂量可按10万m3污水沉砂30m3计算(注:合流制污水的含砂量应根据实际情况确定),但有些污水处理厂进水口水样检测高于上述值,甚至是设计含砂量的2~3倍。
目前污水厂所采用的沉砂系统主要用于去除污水中粒径大于0.2mm,密度大于2.65t/立方米的砂粒,以保护管道、阀门等设施免受磨损和阻塞。
因此即使在除砂系统正常工作的前提下部分砂粒也会随污泥进入到污水生化反应系统和污泥处理系统中。
在污泥处理系统中,由于砂粒具有流动性差、易沉积的特点,会引起污泥管道堵塞、消化池底部积砂,从而影响消化池的正常运行和沼气产量,并且磨损设备尤其是机械式搅拌器。