高中数学求函数零点近似解测试题(附答案)

合集下载

《二分法求方程的近似解》精选习题(含解析)

《二分法求方程的近似解》精选习题(含解析)

《二分法求方程的近似解》精选习题(含解析)一、选择题1.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是( )A.x1B.x2C.x3D.x42.下列函数不能用二分法求零点的是( )A.f(x)=3x-2B.f(x)=log2x+2x-9C.f(x)=(2x-3)2D.f(x)=3x-33用二分法求函数f(x)的一个正实数零点时,经计算f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为( )A.0.9B.0.7C.0.5D.0.44在用二分法求函数f(x)零点近似值时,第一次取的区间是[-2,4],则第三次所取的区间可能是( )A.[1,4]B.[-2,1]C.[-2,2.5]D.[-0.5,1]5已知函数f(x)的一个零点x0∈(2,3),在用二分法求精确度为0.01的x0的一个值时,判断各区间中点的函数值的符号最少要( )A.5次B.6次C.7次D.8次二、填空题6用二分法求函数f(x)=3x-x-4的一个零点,其参考数据如下:f(1.600)≈0.200 f(1.587 5)≈0.133 f(1.57 50)≈0.067f(1.562 5)≈0.003 f(1.556 2)≈-0.029 f(1.550 0)≈-0.060据此数据,可得方程3x-x-4=0的一个近似解(精确度0.01)为.7.已知函数f(x)=log a x+x-b(a>0且a≠1).当2<a<3<b<4时,函数f(x)的零点x0∈(n,n+1)(n∈N*),则n= .8.已知f(x)图象是一条连续的曲线,且在区间(a,b)内有唯一零点x0,用“二分法”求得一系列含零点x0的区间,这些区间满足(a,b)⊇(a1,b1)⊇(a2,b2)⊇…⊇(a k,b k),若f(a)<0,f(b)>0,则f(a k)的符号为.(填“正”,“负”,“正、负、零均可能”)9若函数f(x)=x3+x2-2x-2的一个正零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2 f(1.5)=0.625f(1.25)≈-0.984 f(1.375)≈-0.260f(1.437 5)≈0.162 f(1.406 25)≈-0.054那么方程x3+x2-2x-2=0的一个近似解(精确度为0.1)为.10下面是连续函数f(x)在上一些点的函数值:x 1 1.25 1.375 1.406 5 1.438 1.5 1.625 1.75 1.875 2 f(x) -2 -0.984 -0.260 -0.052 0.165 0.625 1.982 2.645 4.356由此可判断:方程f(x)=0的一个近似解为.(精确度0.1)三、解答题12在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障.这是一条长10km的线路,电线杆的间距为100m.如何迅速查出故障所在呢?13 已知函数f(x)=3x+在(-1,+∞)上为增函数,求方程f(x)=0的正根(精确度0.01).参考答案与解析1【解析】选C.观察图象可知:点x3的附近两旁的函数值都为负值,所以点x3不能用二分法求,故选C.2【解析】选C.因为f(x)=(2x-3)2≥0,所以不能用二分法求零点.3【解析】选B.因为f(0.72)>0,f(0.68)<0,所以零点在区间(0.68,0.72),|0.72-0.68|=0.04<0.1,零点在区间[0.68,0.72]内,故只有B选项符合要求.4【解析】选D.因为第一次所取的区间是[-2,4],所以第二次的区间可能是[-2,1],[1,4],第三次所取的区间可能是[-2,-0.5],[-0.5,1],[1,2.5],[2.5,4],只有选项D在其中.5【解析】选C.区间长度为1,每次长度缩小一半,注意到>0.01,>0.01,<0.01,因此判断各区间中点的函数值符号最少7次.6【解析】注意到f(1.5562)=-0.029和f(1.5625)=0.003,显然f(1.5562)·f(1.5625)<0,且=0.0063<0.01,故方程3x-x-4=0的一个近似解为1.5625或1.5562.答案:1.5625(或1.5562)7【解析】因为函数f(x)=log a x+x-b(2<a<3)在(0,+∞)上是增函数,f(2)=log a2+2-b<log a a+2-b=3-b<0,f(3)=log a3+3-b>log a a+3-b=4-b>0,所以x0∈(2,3)即n=2.答案:29【解析】因为=0.0625<0.1,所以在区间内的任何一个值都可以作为x3+x2-2x-2=0的一个近似解,故方程x3+x2-2x-2=0的一个近似解可取为1.4375或1.375.答案:1.4375(或1.375)10【解析】由题中表格对应的数值可得函数零点必在区间(1.4065,1.438)上,由精确度可知近似解可取为1.438或1.4065.答案:1.438(或1.4065)12【解析】如图所示,首先从AB线路的中点C开始检查,当用随身带的话机向两端测试时,发现AC段正常,判定故障在BC;再到BC段中点D检查,这次发现BD段正常,可见故障出在CD段;再到CD段中点E来检查……每查一次,可以把待查的线路长度缩减一半.要把故障可能发生的范围缩小到100m之内,查7次就可以了.13【解析】由于函数f(x)=3x+在(-1,+∞)上为增函数,故在(0,+∞)上也单调递增,因此f(x)=0的正根最多有一个.因为f(0)=-1<0,f(1)=>0,所以方程的正根在(0,1)内,取(0,1)为初始区间,用二分法逐次计算。

人教B版高中数学必修一2.4.2求函数零点近似解的一种计算方法——二分法

人教B版高中数学必修一2.4.2求函数零点近似解的一种计算方法——二分法

高中数学学习材料金戈铁骑整理制作第二章 2.4 2.4.2一、选择题1.三次方程x3+x2-2x-1=0的根不可能所在的区间为()A.(-2,-1)B.(-1,0)C.(0,1) D.(1,2)[答案] C[解析]∵f(-2)=-1<0,f(-1)=1>0,f(0)=-1<0,f(1)=-1<0,f(2)=7>0,∴三次方程x3+x2-2x-1=0的三个根分别在区间(-2,-1)、(-1,0)、(1,2)内,故选C.2.用二分法求函数f(x)=x3-2的零点时,初始区间可选为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)[答案] B[解析]∵f(1)=-1,f(2)=6,∴f(1)·f(2)<0,故选B.3.(2013~2014学年度四川省中学高一月考)用二分法求方程x3+3x-7=0在(1,2)内近似解的过程中,设函数f(x)=x3+3x-7,算得f(1)<0,f(1.25)<0,f(1.5)>0,f(1.75)>0,则该方程的根落在区间()A.(1,1.25) B.(1.25,1.5)C.(1.5,1.75) D.(1.75,2)[答案] B[解析]本题考查用二分法求函数零点的一般步骤以及零点存在性定理.由f(1.25)<0,f(1.5)>0得f(1.25)·f(1.5)<0,根据零点存在性定理,函数f(x)的一个零点x0∈(1.25,1.5),即方程x3+3x-7=0的根落在区间(1.25,1.5),故选B.4.(2013~2014学年度黑龙江省哈尔滨市第三十二中学高一期中测试)若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2f(1.5)=0.625f(1.25)=-0.984f(1.375)=-0.260f(1.438)=0.165f(1.406 5)=-0.052那么方程x3+x2-2x-2=0的一个近似根(精确到0.1)为()A.1.2B.1.3C.1.4D.1.5[答案] C[解析]∵f(1.4065)<0, f(1.438)>0,∴f(1.4065)·f(1.438)<0,又1.4∈(1.4065,1.438),故选C.5.已知函数y=f(x)的图象是连续不断的,有如下的对应值表:x 12345 6y 123.5621.45-7.8211.45-53.76-128.88 则函数y=f(x)在区间[1,6]上的零点至少有()A.2个B.3个C.4个D.5个[答案] B[解析]由表可知,f(2)·f(3)<0, f(3)·f(4)<0,f(4)·f(5)<0,由函数零点存在性定理得,函数y=f(x)在区间(2,3)、(3,4)、(4,5)各应至少存在一个零点,所以函数y=f(x)在区间[1,6]上的零点至少有3个.故选B.6.下列命题中正确的是()A.方程(x-2)(x-5)=1有两个相异实根,且一个大于5,一个小于2B.函数y=f(x)的图象与直线x=1的交点个数是1C.零点存在性定理能用来判断函数零点的存在性,也能用来判断函数零点的个数D.利用二分法所得方程的近似解是惟一的[答案] A[解析]设函数f(x)=(x-2)(x-5)-1,有f(5)=-1, f(2)=-1.又因为函数f(x)的图象是开口向上的抛物线,所以抛物线与x轴在(5,+∞)内有一个交点,在(-∞,2)内也有一个交点,从而方程(x-2)(x-5)=1有两个相异实根,且一个大于5,一个小于2,故A正确;由函数的定义知,函数y=f(x)的图象与直线x=1的交点个数为1或0,故B错误;零点存在性定理能用来判断函数零点的存在性,但不能用来判断函数零点的个数,故C 错误;由于精确度的不同,所得方程的近似解是不一样的,但精确度确定后,所得方程的近似解是惟一的,故D错误.二、填空题7.已知二次函数f(x)=x2-x-6在区间[1,4]上的图象是一条连续的曲线,且f(1)=-6<0,f(4)=6>0.由零点存在性定理可知函数在[1,4]内有零点.用二分法求解时,取(1,4)的中点a,则f(a)=________.[答案]-2.25[解析]区间[1,4]的中点为2.5,f(2.5)=2.52-2.5-6=-2.25.8.已知定义在R上的函数f(x)的图象是连续不断的,且有如下部分对应值表:x 12345 6f(x)136.115.6-3.910.9-52.5-232.1 则f(x)的零点至少有________个.[答案] 3[解析]因为f(2)>0,f(3)<0,f(4)>0,f(5)<0,∴f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,故f(x)的零点至少有3个.三、解答题9.求方程x5-x3-3x2+3=0的无理根.(精确到0.01).[分析]若令f(x)=x5-x3-3x2+3,则f(x)=(x2-1)(x3-3),则方程的无理根就是x3-3=0的根.[解析]令f(x)=x5-x3-3x2+3,则f(x)=(x2-1)·(x3-3).显然方程f(x)=0有两个有理根,即x1=1,x2=-1,则无理根就是方程x3-3=0的根.令g(x)=x3-3,以下用二分法求函数g(x)的零点.由于g(1)=-2<0,g(2)=5>0,故可以取[1,2]作为计算的初始区间,列表如下:端点或中点横坐标计算端点或中点的函数值定区间a0=1,b0=2g(1)=-2,g(2)=5[1,2] x0=1.5g(x0)=0.375[1,1.5]x1=1.25g(x1)≈-1.046 9[1.25,1.5] x2=1.375g(x2)≈-0.400 4[1.375,1.5] x3=1.437 5g(x3)≈-0.029 5[1.437 5,1.5]x 4=1.468 75 g (x 4)≈0.168 4 [1.437 5,1.468 75] x 5=1.453 125 g (x 5)≈0.068 4 [1.437 5,1.453 125] x 6=1.445 312 5 g (x 6)≈0.019 2 [1.437 5,1.445 312 5] x 7=1.441 406 25g (x 7)≈-0.005 3[1.441 406 25,1.445 312 5]由于区间[1.441 406 25,1.445 312 5]的长度 1.445 312 5-1.441 406 25=0.003 906 25<0.01,因此可取1.44为所求函数的一个零点的近似值,因此原方程的无理根是1.44.一、选择题1.在用二分法求函数f (x )的一个正实数零点时,经计算, f (0.64)<0, f (0.72)>0, f (0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )A .0.68B .0.72C .0.7D .0.6[答案] C[解析] 已知f (0.64)<0,f (0.72)>0,则函数f (x )的零点的初始区间为[0.64,0.72],又0.68=(0.64+0.72)/2,且f (0.68)<0,所以零点在区间[0.68,0.72]上,且该区间的左、右端点精确到0.1所取的近似值都是0.7,因此0.7就是所求函数的一个正实数零点的近似值.2.用二分法求函数y =f (x )在区间(2,4)上的惟一零点的近似值时,验证f (2)·f (4)<0,取区间(2,4)的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0所在的区间是( )A .(2,4)B .(2,3)C .(3,4)D .无法确定 [答案] B[解析] ∵f (2)·f (4)<0, f (2)·f (3)<0, ∴f (3)·f (4)>0,∴x 0∈(2,3).3.二次函数f (x )=ax 2+bx +c (a ≠0,x ∈R )的部分对应值如下表:x -3 -2 -1 0 1 2 3 4 y6m-4-6-6-4n6不求a 、b 、c 的值,可以判断方程ax 2+bx +c =0的两根所在的区间是( ) A .(-3,-1)和(2,4) B .(-3,-1)和(-1,1) C .(-1,1)和(1,2) D .(-∞,-3)和(4,+∞)[答案] A[解析] ∵f (-3)·f (-1)<0, f (2)·f (4)<0, 故选A.4.(2013~2014学年度河南开封中学高一月考)用二分法研究函数f (x )=x 3+3x -1的零点时,第一次计算得f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次应计算________,则横线上应填的内容分别为( )A .(0.5,1), f (0.75)B .(0,0.5), f (0.125)C .(0,0.5), f (0.25)D .(0,1), f (0.25)[答案] C[解析] ∵f (0)<0,f (0.5)>0,∴f (0)·f (0.5)<0,又函数f (x )的图象是不间断的,∴f (x )在(0,0.5)内必有零点,利用二分法,则第二次应计算f (0+0.52)=f (0.25).由f (0.25)=-0.234 375<0, 可以判断x 0∈(0.25,0.5). 二、填空题5.给出以下结论,其中正确结论的序号是________. ①函数图象通过零点时,函数值一定变号; ②相邻两个零点之间的所有函数值保持同号;③函数f (x )在区间[a ,b ]上连续,若满足f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上一定有实根;④“二分法”对连续不断的函数的所有零点都有效. [答案] ②③[解析] 零点有变号零点与不变号零点,故①不对;“二分法”针对的是连续不断的函数的变号零点,故④不对.据零点的性质知②③都正确.6.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c (x ≤0)2 (x >0),若f (-4)=2,f (-2)=-2,则关于x 的方程f (x )=x 的解的个数是________.[答案] 3[解析] 由已知⎩⎪⎨⎪⎧ 16-4b +c =24-2b +c =-2得⎩⎪⎨⎪⎧b =4c =2,∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2 (x ≤0)2 (x >0),作图象如图所示.由图象可知f (x )=x 的解的个数为3. 三、解答题7.求方程x 3-x -1=0在[1,1.5]的一个实根(精确到0.1). [解析] 设f (x )=x 3-x -1, ∵f (1)=-1<0,f (1.5)=0.875>0,∴方程在[1,1.5]内有实根,用二分法逐次计算,列表如下:第1次 第2次 第3次 第4次 第5次 左端点 1 1.25 1.25 1.312 5 1.312 5 右端点1.51.51.3751.3751.343 75∵1.312 5≈1.3,1.343 75≈1.3,∴方程在区间[1,1.5]的零点精确到0.1的近似值是1.3. 8.(2013~2014学年度湖北荆州中学高一期末测试)已知函数f (x )=ax 3-2ax +3a -4在区间(-1,1)上有一个零点.(1)求实数a 的取值范围;(2)若a =3217,用二分法求方程f (x )=0在区间(-1,1)上的根.[解析] (1)若a =0,则f (x )=-4,与题意不符,∴a ≠0. 由题意得f (-1)·f (1)=8(a -1)(a -2)<0,即⎩⎪⎨⎪⎧ a -1<0a -2>0或⎩⎪⎨⎪⎧a -1>0a -2<0, ∴1<a <2,故实数a 的取值范围为1<a <2. (2)若a =3217,则f (x )=3217x 3-6417x +2817,∴f (-1)=6017>0, f (0)=2817>0, f (1)=-417<0,∴函数零点在(0,1),又f (12)=0,∴方程f (x )=0在区间(-1,1)上的根为12.9.已知函数f (x )=3ax 2+2bx +c ,a +b +c =0,f (0)>0,f (1)>0,证明a >0,并利用二分法证明方程f (x )=0在[0,1]内有两个实根.[解析] ∵f (1)>0,∴3a +2b +c >0, 即3(a +b +c )-b -2c >0, ∵a +b +c =0,∴-b -2c >0, 则-b -c >c ,即a >c . ∵f (0)>0,∴c >0,则a >0. 在[0,1]内选取二等分点12,则f (12)=34a +b +c =34a +(-a )=-14a <0.∵f (0)>0,f (1)>0,∴f (x )在区间(0,12)和(12,1)上至少各有一个零点,又f (x )最多有两个零点,从而f (x )=0在[0,1]内有两个实根.。

高三数学《导数与函数的零点问题》测试题含答案

高三数学《导数与函数的零点问题》测试题含答案

《导数与函数的零点问题》测试题含答案一.选择题:本大题共12小题,第1到11小题为单选题,在每小题给出的四个选项中,只有一个是符合题目要求的,第12题为多选题,全部选对为正确. 1. 函数()326xf x x =+-的零点所在的区间是( )A .()1,0-B .()0,1C .()1,2D .()2,32. 已知函数()328f x x x =+-的零点用二分法计算,附近的函数值参考数据如下表所示:则方程3280x x +-=的近似解可取为(精确度为0.01)( ) A .1.50 B .1.66 C .1.70 D .1.753. 函数12()()2xf x x=+的零点个数为( ) A.3 B.2 C.1 D.04. 已知函数()ln(1)2f x x x =++-,在下列区间中,函数()f x 一定有零点的是( ) A .[]0,1 B .[]1,2 C .[]2,3 D .[]3,45. 已知函数()xe f x a x=-.若()f x 没有零点,则实数a 的取值范围是( )A .[0,)eB .(0,1)C .(0,)eD .(0,1) 6. 若方程lg ||sin ||0x x -=则其解的个数为( )A .3B .4C .6D .5 7. 设函数()22,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若关于x 的方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3122341x x x x x ++⋅的取值范围是( )A .()3,-+∞B .(]3,3-C .[)3,3-D .(),3-∞ 8. 已知定义在R 上的奇函数()f x 满足(1)(1)f x f x -=+,当[0,1)x ∈时,21()21x xf x ,则当函数1()()3g x f x kx =--在[0,7]上有三个零点时,实数k 的取值范围是( )A .12,415⎡⎫--⎪⎢⎣⎭ B .22,915⎛⎤-- ⎥⎝⎦ C .22,915⎛⎤-- ⎥⎝⎦ D .221,9153⎛⎤⎧⎫--⋃-⎨⎬ ⎥⎝⎦⎩⎭9. 设函数tan ,(2,2),22()3cos ,[2,2]22x x k k f x x x k k ππππππππ⎧∈-+⎪⎪=⎨⎪∈++⎪⎩(k Z ∈),()sin ||g x x =,则方程()()0f xg x -=在区间[3,3]ππ-上的解的个数是( )A .7B .8C .9D .10 10. 已知M 是函数()2112sin 2x f x ex π--⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦在[]3,5x ∈-上的所有零点之和,则M 的值为( )A .4B .6C .8D .1011. 已知函数22,0,(),0,x a x f x x ax x +<⎧=⎨-≥⎩若函数()(())g x f f x =恰有8个零点,则a 的值不可能为( ) A .8 B .9 C .10 D .1212.(多选题)若关于x 的一元二次方程()()23x x m --=有实数根12,x x ,且12x x <,则下列结论中正确的说法是( )A .当0m =时,122,3x x ==B .14m >-C .当0m >时,1223x x <<<D .当0m >时,1223x x <<< 二.填空题:把答案填在答题卡相应题号后的横线上 13. 方程4220x x --=的解为______.14. 若函数()y f x =的图像是连续不断的,有如下的对应值表:则函数()y f x =在[]1,6x ∈上的零点至少有______个.15. 关于x 的方程2(3)4210m x mx m +-+-=有两根12,x x ,且101x <<,212x <<,则实数m 的取值范围是__________16. 已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =________三.解答题:解答应写出文字说明,证明过程或演算步骤17.已知函数3()sin f x x x =-,()f x '为()f x 的导函数.(Ⅰ)求函数()f x 在0x =处的切线方程;(Ⅱ)求证:()f x '在,22ππ⎛⎫- ⎪⎝⎭上有且仅有两个零点.18.已知函数()(1)ln f x x x =-,3()ln eg x x x =--. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)令()()()(0)h x mf x g x m =+>两个零点1212,()x x x x <,证明:121ex e x +>+.19.已知函数()()222ln ,2af x ax xg x ax ax x=+-=-+ (Ⅰ)若0,a ≥试讨论函数()f x 的单调性;(Ⅱ)当0a >时,若函数()f x 与()g x 的图象有且仅有一个交点()00,x y ,求[]0x 的值(其中[]x 表示不超过x 的最大整数,如[[][0.3710,0.37 1.2.92])=-=-=.参考数据:ln 20.693 ,ln3 1.099 ,ln5 1.609,ln 7 1.946====20.已知函数1()ln 1x f x x a x -⎛⎫=- ⎪+⎝⎭.(Ⅰ)讨论函数()f x 的单调性; (Ⅱ)若函数1()ln 1x f x x a x -⎛⎫=- ⎪+⎝⎭有三个零点,求实数a 的取值范围.21.已知函数2213()ln 224f x x ax x ax x ⎛⎫=-+-⎪⎝⎭,其中0a e <<.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)讨论函数()f x 零点的个数;(Ⅲ)若函数()f x 存在两个不同的零点12,x x ,求证:212x x e <.22.已知函数2()ln f x ax x x =--,a R ∈.(Ⅰ)当38a =时,求函数()f x 的最小值; (Ⅱ)若10a -,证明:函数()f x 有且只有一个零点;(Ⅲ)若函数()f x 有两个零点,求实数a 的取值范围.导数与函数的零点问题答案一.选择题: 1. C因为()132)1(160f -=+---⋅<,()03600f =-<,()132610f =+-=-<,()294670f =+-=>,所以()f x 在()1,2上存在零点.故选:C. 2. B由表知函数零点在区间(1.625,1.6875) ,所以近似解可取为1.66,选B. 3. C()12()2x f x x =+,当0x >时,()12()02x f x x=+>;当0x <时,()f x 单调递减且()10f -= ,故函数有且仅有一个零点 故选:C4. B()ln(1)2f x x x =++-在(1,)-+∞是连续的增函数,(1)ln 210,(2)ln30f f =-<=>,函数()f x 一定有零点,且在区间[]1,2上. 故选:B 5. A当0a =时,()x e f x x =,令=0x e x,则>=00x xe e ,恒成立,=0x e x ∴无解,即()x ef x x =无零点.故选:A.6. C方程lg ||sin ||0x x -=,即lg ||sin ||x x =,令lg y x = ,()sin f x x =,易知它们都是偶函数,分别画出它们的图像,由图可知它们有6个交点. 故选:C . 7. B作出函数22,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩的图象如下图所示:可得:124x x +=-,341x x =,所以()12234333114x x x x x x x ++=+-, 因为230log 2x <-≤,所以3114x ≤<,所以331343x x -<-≤,所以3122341()x x x x x ++的范围是(]3,3-,故选:B.8. D因为(1)(1)f x f x -=+,所以()f x 的周期为2,又因为()f x 为奇函数,()()f x f x =--, 令1x =,得(1)(1) f f =--,又(1)(1)f f -=,所以(1)(1)0f f =-=,当(1,1)x ∈-时,212()12121x x xf x -==-++,由221x y =+单调递减得函数()f x 在(1,1)-上单调递增, 所以(1)()(1)f f x f -<<,得11()33f x -<<,作出函数图象如图所示, 由图象可知当13y kx =+经过点13,3⎛⎫- ⎪⎝⎭时,29k =-,当13y kx =+过点15,3⎛⎫- ⎪⎝⎭时,215k =-,当13y kx =+经过点(1,0)时,13k =-,所以当函数1()()3g x f x kx =--在[0,7]上有三个零点时,22915k -<≤-或13k =-.故选:D.9. A由题意得,方程()()0f x g x -=在区间[3,3]ππ-上的解的个数即函数()f x 与函数()g x 的图像在区间[3,3]ππ-上的交点个数.在同一坐标系内画出两个函数图像,注意当02x π<<时,sin tan x x <恒成立,易得交点个数为7.选A .10. C 因为()212112sin 2cos 2x x f x ex e x ππ----⎡⎤⎛⎫=+-=- ⎪⎢⎥⎝⎭⎣⎦,所以()()2f x f x =-,因为()10f ≠,所以函数零点有偶数个,两两关于1x =对称.当[]1,5x ∈时, ()(]210,1x y e--=∈,且单调递减;[]2cos π2,2y x =∈-,且在[]1,5上有两个周期,因此当[]1,5x ∈时, ()21x y e --=与2cos πy x =有4个不同的交点;从而所有零点之和为428⨯=,选C.11. A易知,当0a ≤时,方程()0f x =只有1个实根, 从而()(())g x f f x =不可能有8个零点, 则0,a >()0f x =的实根为2,a -0,a . 令()f x t =,则(())()0f f x f t ==, 则2,0,t a a =-数形结合可知,直线y a =与()f x 的图象有2个交点,直线0y =与()f x 的图象有3个交点,所以由题意可得直线2y a =-与()f x 的图象有3个交点,则必有224aa ->-,又0a >,所以8a >.故选:A 12. ABD当0m =时,()()230x x --=,∴122,3x x ==,故A 对; 方程()()23x x m --=化为2560x x m -+-=,由方程有两个不等实根得()2546140m m ∆=--=+>,∴14m >-,故B 对; 当0m >时,画出函数()()23y x x =--和函数y m =的图象如图,由()()23x x m --=得,函数()()23y x x =--和函数y m =的交点横坐标分别为12,x x ,由图可知,1223x x <<<,故C 错,D 对;故选:ABD . 二.填空题: 13. 1x =设20x t =>,即转化为求方程220t t --=的正实数根 由220t t --=得2t =或1t =-(舍),所以=22x t =,则1x = 故答案为:1x = 14. 2由表得(1)(2)0,(4)(5)0f f f f <<,因为函数的图像是连续不断的, 所以函数在(1,2)内至少有一个零点,在(4,5)内至少有一个零点, 所以函数()y f x =在[]1,6x ∈上的零点至少有两个. 故答案为:2 15. 11(2,)2. 设2()(3)421f x m x mx m =+-+-,()f x 的零点为12,x x ,且101x <<,212x <<,需满足30(0)210(1)20(2)2110m f m f m f m +>⎧⎪=->⎪⎨=-+<⎪⎪=-+>⎩ 或30(0)210(1)20(2)2110m f m f m f m +<⎧⎪=-<⎪⎨=-+>⎪⎪=-+<⎩,解得1122m << 或m ∈∅,实数m 的取值范围是11(2,)2.故答案为:11(2,)216. 12()()()()221111211x x x x f x x x a e e x a e e --+--+=-++=--++设1t x =-,则()()21ttf t t a e e-=-++,定义域为R ,()()()()21t t f t t a e e f t --=--++=所以()f t 为偶函数,所以()f x 的图像关于1x =成轴对称,要使()f x 有唯一零点,则只能()10f =,即()21210a e e-⨯++=,解得12a =, 故答案为:12. 三.解答题:17.解:(Ⅰ)()2cos 3,f x x x '=-()01f '=,又()00f =,所以切点为()0,0. 故()f x 在0x =处的切线方程为y x =;(Ⅱ)2()cos 3,f x x x '=-因为()f x '为偶函数,且()01f '=,则只需证明()f x '在0,2π⎛⎫ ⎪⎝⎭上有且仅有一个零点即可.因为()sin 6f x x x ''=--,当0,2x π⎛⎫∈ ⎪⎝⎭时()0f x ''<,故()f x '在0,2π⎛⎫⎪⎝⎭上单调递减, 因为()010f '=>,23022f ππ⎛⎫⎛⎫'=-⨯< ⎪ ⎪⎝⎭⎝⎭, 由零点存在定理,可知存在00,2x π⎛⎫∈ ⎪⎝⎭使得()00f x '=,所以()f x '在0,2π⎛⎫⎪⎝⎭上有且仅有一个零点, 因此()f x '在,22ππ⎛⎫- ⎪⎝⎭上有且仅有两个零点.18.解:(Ⅰ)由题意,函数()(1)ln f x x x =-,则1()ln 1f x x x=+-',且()01f '=, 当01x <<时,()0f x '<,函数()f x 单调递减; 当1x ≥时,()0f x '≥,函数()f x 单调递增;所以函数()f x 在(0,1)上单调递减,在[1,)+∞上单调递增. (Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点可知 由11()(1ln )1h x m x xx-'=++-且0m >可知,当01x <<时,()0h x '<,函数()h x 单调递减;当1x ≥时,()0h x '≥,函数()h x 单调增;即()h x 的最小值为3(1)10h e=-<,因此当1x e =时,1113(1)2()(1)(1)(1)0m e e h m e e e e e-+-=--+---=>, 可知()h x 在1(,1)e上存在一个零点;当x e =时,3()(1)10h e m e e e=-+-->,可知()h x 在(1,)e 上也存在一个零点, 因此211x x e e -<-,即121x e x e+>+.19. 解:(Ⅰ)()2222122'2a ax x a f x a x x x--=-+-= 对于函数()222,h x ax x a =--21160a ∆=+> 当0a =时,则()1'0,f x x=-<()f x ∴在()0,∞+单调递减; 当0a >时,令()0f x '<,则2220ax x a --<,解得104x a+<< ∴()f x在⎛ ⎝⎭单调递减; 令()0f x '>,解得x >()f x在1,4a ⎛⎫++∞ ⎪ ⎪⎝⎭单调递增. (Ⅱ)0a >且两函数有且仅有一个交点 ()00,x y ,则方程222ln 2a ax x ax ax x +-=-+ 即方程22ln 0a ax x x+-=在()0,∞+只有一个根 令()22ln a F x ax x x =+-,则()3222'ax x a F x x--= 令()[)322,0,x ax x a x ϕ=--∈+∞,则()2'61x ax ϕ=- ()0,a x ϕ>∴在⎛ ⎝单调递减,在⎫+∞⎪⎪⎭上单调递增,故()min x ϕϕ=注意到()()020,a x ϕϕ=-<∴在⎛ ⎝无零点,在⎫+∞⎪⎪⎭仅有一个变号的零点m ()F x ∴在()0.m 单调递减,在(),m +∞单调递增,注意到()130F a =>根据题意m 为 ()F x 的唯一零点即0m x =20003002ln 0220a ax x x ax x a ⎧+-=⎪∴⎨⎪--=⎩消去a ,得:3003300232ln 111x x x x +==+-- 令()332ln 11H x x x =---,可知函数()H x 在()1,+∞上单调递增 ()101022ln 220.693077H =-=⨯-<,()292932ln 32 1.00902626H =-=⨯-> ()[]002,3,2x x ∴∈∴=20.解:(Ⅰ)222112(22)1()ln ()1(1)(1)x a x a x f x x a f x x x x x x -+-+⎛⎫'=-∴=-= ⎪+++⎝⎭当2(22)40,02a a ∆=--≤≤≤时,()0f x '≥,即()f x 在(0,)+∞上单调递增;当0a <时,()0f x '>,即()f x 在(0,)+∞上单调递增;当2a >时,(0,1(1)x a a ∈--++∞时()0f x '>,即()f x 在(0,1a -和(1)a -+∞上单调递增;(11x a a ∈--时()0f x '<,即()f x 在(11a a --上单调递减;综上:当2a ≤时, ()f x 在(0,)+∞上单调递增;当2a >时, ()f x 在(0,1a -和(1)a -+∞上单调递增;在(11a a --上单调递减;(Ⅱ)因为单调函数至多一个零点,所以2a >,因为(1)0,111f a a =-<<-所以(10,(10,f a f a ->-<因为0,();,()x f x x f x →→-∞→+∞→+∞而()f x 在(0,1a -和(1)a -+∞上单调递增;在(11a a --上单调递减;所以()f x 在(0,1a -上有且仅有一个零点,在(11a a --上有且仅有一个零点(即1),在(1)a -++∞上有且仅有一个零点,所以当2a >时,函数1()ln 1x f x x a x -⎛⎫=- ⎪+⎝⎭有三个零点. 21.解:(Ⅰ)函数()f x 的定义域为{}|0x x >,()()()211313ln 2ln 22222f x x a x x ax a x x a x x a a x x⎛⎫'=-+-⋅+-=-+-+- ⎪⎝⎭ ()()ln ()(ln 1)x a x x a x a x =---=--,令()0f x '=,得x a =或x e =,因为0a e <<,当0x a <<或x e >时,()0f x '>,()f x 单调递增;当a x e <<时,()0f x '<,()f x 单调递减,所以()f x 的增区间为()0,a ,(),e +∞;减区间为(),a e (Ⅱ)取{}=min 1,2a δ,则当()0,x δ∈时,102x a -<,ln 0x <,3204a x -> 所以()13ln 2024f x x x a x x a x ⎛⎫⎛⎫=-+-> ⎪ ⎪⎝⎭⎝⎭; 又因为0a e <<,由(1)可知()f x 在(0,)a 上单调递增,因此,当(]0,x a ∈,()0f x >恒成立,即()f x 在(]0,a 上无零点.;下面讨论x a >的情况: ①当04e a <<时,因为()f x 在(,)a e 单调递减,(,)e +∞单调递增,且()0f a >,()1320244e f e e e a e a e e a ⎛⎫⎛⎫⎛⎫=-+-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()222224*********f e e e a e a e e ⎛⎫⎛⎫=-+-=> ⎪ ⎪⎝⎭⎝⎭, 根据零点存在定理,()f x 有两个不同的零点; ②当4e a =时,由()f x 在(,)a e 单调递减,(,)e +∞单调递增,且()0f e =,此时()f x 有唯一零点e ; ③若4e a e <<,由()f x 在(),a e 单调递减,(),e +∞单调递增,()()04e f x f e e a ⎛⎫≥=-> ⎪⎝⎭, 此时()f x 无零点;综上,若04e a <<,()f x 有两个不同的零点;若4e a =,()f x 有唯一零点e ;若4e a e <<,()f x 无零点 (Ⅲ)证明:由(2)知,04e a <<,且12a x e x <<<, 构造函数()()2e F x f x f x ⎛⎫=- ⎪⎝⎭,(,)x a e ∈, 则()()()()4232ln 1ln 1e e F x x a x a x x x ⎛⎫'=----- ⎪⎝⎭()43243ln 1x ax e ax e x x -+-=-, 令4324()g x x ax e ax e =-+-,(,)x a e ∈,因为当(,)x a e ∈时,220x e ax +->,220x e -<,所以43242222()=()()<0g x x ax e ax e x e ax x e =-+-+--又ln 1ln 10x e -<-=,所以()0F x '>恒成立,即()F x 在(,)a e 单调递增,于是当a x e <<时,()()0F x F e <=,即 ()2e f x f x ⎛⎫< ⎪⎝⎭, 因为1(,)x a e ∈,所()211e f x f x ⎛⎫< ⎪⎝⎭,又12()()f x f x =,所以()221e f x f x ⎛⎫< ⎪⎝⎭, 因为2x e >,221e e e x e>=,且()f x 在(),e +∞单调递增,所以由()221e f x f x ⎛⎫< ⎪⎝⎭,可得221e x x <,即212x x e <22.解:(Ⅰ)当38a =时,23()ln 8f x x x x =--.所以31(32)(2)()144x x f x x x x +-'=--=,(0)x >. 令()0f x '=,得2x =,当(0,2)x ∈时,()0f x '<;当(2,)x ∈+∞时,()0f x '>,所以函数()f x 在(0,2)上单调递减,在(2,)+∞上单调递增.所以当2x =时,()f x 有最小值1(2)ln 22f =--. (Ⅱ)由2()ln f x ax x x =--,得2121()21,0ax x f x ax x x x--'=--=>. 所以当0a 时,221()0ax x f x x --'=<,函数()f x 在(0,)+∞上单调递减, 所以当0a 时,函数()f x 在(0,)+∞上最多有一个零点.因为当10a -时, ()110f a =-<,221()0e e a f e e -+=>, 所以当10a -时,函数()f x 在(0,)+∞上有零点.综上,当10a -时,函数()f x 有且只有一个零点.(Ⅲ)由(2)知,当0a 时,函数()f x 在(0,)+∞上最多有一个零点.因为函数()f x 有两个零点,所以0a >.由2()ln f x ax x x =--,得221(),(0)ax x f x x x --'=>,令2()21g x ax x =--. 因为(0)10g =-<,20a >,所以函数()g x 在(0,)+∞上只有一个零点,设为0x .当0(0,)x x ∈时,()0<g x ,()0f x '<;当0(x x ∈,)+∞时,()0>g x ,()0f x '>.所以函数()f x 在0(0,)x 上单调递减;在0(x ,)+∞上单调递增.要使得函数()f x 在(0,)+∞上有两个零点,只需要函数()f x 的极小值0()0f x <,即2000ln 0ax x x --<. 又因为2000()210g x ax x =--=,所以002ln 10x x +->,又因为函数()2ln 1h x x x =+-在(0,)+∞上是增函数,且()10h =,所以01x >,得0101x <<. 又由200210ax x --=,得22000111112()()24a x x x =+=+-,所以01a <<. 以下验证当01a <<时,函数()f x 有两个零点.当01a <<时,21211()10a a g a a a a -=--=>,所以011x a<<. 因为22211()10a e e a f e e e e -+=-+=>,且0()0f x <. 所以函数()f x 在01(,)x e上有一个零点. 又因为2242222()(1)10a f ln a a a a a a =----=>(因为ln 1)x x -,且0()0f x <.所以函数()f x 在02(,)x a上有一个零点. 所以当01a <<时,函数()f x 在12(,)e a内有两个零点.综上,实数a 的取值范围为(0,1). 下面证明:ln 1x x -.设()1ln t x x x =--,所以11()1x t x x x -'=-=,(0)x >.令()0t x '=,得1x =. 当(0,1)x ∈时,()0t x '<;当(1,)x ∈+∞时,()0t x '>.所以函数()t x 在(0,1)上单调递减,在(1,)+∞上单调递增.所以当1x =时,()t x 有最小值()10t =.所以()1ln 0t x x x =--,得ln 1x x -成立.。

(必修第一册)用二分法求方程的近似解(同步练习)(含解析)

(必修第一册)用二分法求方程的近似解(同步练习)(含解析)

4.5.2用二分法求方程的近似解一、单选题1.用二分法求函数f (x )的一个正实数零点时,经计算f (0.64)<0,f (0.72)>0,f (0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为( ) A .0.9B .0.7C .0.5D .0.42.用二分法研究函数f (x )=x 3+3x -1的零点时,第一次计算,得f (0)<0,f (0.5)>0,第二次应计算f (x 1),则x 1等于( ) A .1B .-1C .0.25D .0.753.设函数3()48f x x x =+-,用二分法求方程3480x x +-=近似解的过程中,计算得到()10f <,()30f >,则方程的近似解落在区间( ) A .()1,1.5 B .()1.5,2 C .()2,2.5D .()2.5,34.已知函数()22log 6f x x x =--,用二分法求()f x 的零点时,则其中一个零点的初始区间可以为( )A .()1,2B .()2,2.5C .()2.5,3D .()3,3.55.一种药在病人血液中的量保持1500mg 以上才有效,而低于500mg 病人就有危险.现给某病人注射了这种药2500mg ,如果药在血液中以每小时20%的比例衰减,为了充分发挥药物的利用价值,那么从现在起经过( )小时向病人的血液补充这种药,才能保持疗效.(附:1g20.301=,1g30.4771=,答案采取四舍五入精确到0.1h ) A .2.3小时B .3.5小时C .5.6小时D .8.8小时二、多选题6.用二分法求函数()232xf x x =+-在区间[]0,2上的零点近似值取区间中点1,则( ) A .下一个存在零点的区间为()0,1B .下一个存在零点的区间为()1,2C .要达到精确度1的要求,应该接着计算12f ⎛⎫⎪⎝⎭D .要达到精确度1的要求,应该接着计算32f ⎛⎫ ⎪⎝⎭7.以下函数图象中,能用二分法求函数零点的是( )A .B .C .D .8.若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下:A .1.25B .1.4375C .1.40625D .1.42199.下列函数中,有零点但不能用二分法求零点的近似值的是( )A .y =2x+1B .y =1010x x x x -+≥⎧⎨+<⎩,,,C .y =12x 2+4x +8D .y =|x |10.若函数()f x 的图像在R 上连续不断,且满足(0)0f <,(1)0f >,(2)0f >,则下列说法错误的是( ) A .()f x 在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点 B .()f x 在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点 C .()f x 在区间(0,1)上一定有零点,在区间(1,2)上可能有零点 D .()f x 在区间(0,1)上可能有零点,在区间(1,2)上一定有零点三、填空题11.为了求函数()237x f x x =+-的一个零点,某同学利用计算器得到自变量x 和函数()f x 的部分对应值,如下表所示:12.已知函数()322f x x x =--,()()120f f ⋅<,用二分法逐次计算时,若0x 是[]1,2的中点,则()0f x =________.四、解答题13.用二分法求24x x +=在[1]2,内的近似解(精确度为0.2).参考数据:14.判断函数()321f x x =-的零点个数,并用二分法求零点的近似值.(精确度0.1)15.为确定传染病的感染者,医学上可采用“二分检测方案”.假设待检测的总人数是2m (m 为正整数).将这2m 个人的样本混合在一起做第1轮检测(检测1次),如果检测结果是阴性,可确定这些人都未感染;如果检测结果是阳性,可确定其中有感染者,则将这些人平均分成两组,每组12m -个人的样本混合在一起做第2轮检测,每组检测1次.依此类推:每轮检测后,排除结果为阴性的组,而将每个结果为阳性的组再平均分成两组,做下一轮检测,直至确定所有的感染者. 例如,当待检测的总人数为8,且标记为“x ”的人是唯一感染者时,“二分检测方案”可用下图表示.从图中可以看出,需要经过4轮共n 次检测后,才能确定标记为“x ”的人是唯一感染者.(1)写出n 的值;(2)若待检测的总人数为8,采用“二分检测方案”,经过4轮共9次检测后确定了所有的感染者,写出感染者人数的所有可能值;(3)若待检测的总人数为102,且其中不超过2人感染,写出采用“二分检测方案”所需总检测次数的最大值.参考答案1.B 【分析】利用二分法求函数零点的近似值的条件及方法分析判断即得. 【详解】依题意,函数的零点在(0.68,0.72)内,四个选项中只有0.70.68,()0.72∈,且满足|0.72-0.68|<0.1, 所以所求的符合条件的近似值为0.7. 故选:B 2.C 【分析】根据二分法的原理,直接求解即可. 【详解】第一次计算,得f (0)<0,f (0.5)>0,可知零点在()0,0.5之间, 所以第二次计算f (x 1),则x 1=00.52+=0.25. 故选:C 3.A 【分析】根据二分法求方程的近似解的过程,由条件先求得()20f >,再求32f ⎛⎫⎪⎝⎭的符号,只须找到满足()()0f a f b <即可【详解】取12x =,因为()24828260f =⨯+-=>,所以方程近似解()01,2x ∈, 取232x =,因为3273f 4870282⎛⎫=⨯+-=> ⎪⎝⎭,所以方程近似解031,2x ⎛⎫∈ ⎪⎝⎭,故选:A. 4.C 【分析】根据函数解析式,结合二次函数与对数函数单调性,分别判断ABD 都不正确,再结合零点存在性定理,即可得出结果. 【详解】因为函数()22log 6f x x x =--在()0,∞+上显然是连续函数,2yx 和2log 6y x =+在()0,∞+上都是增函数,当()1,2x ∈时,2222246log 16log 6x x <=<=+<+,所以()22log 60f x x x =--<在()1,2x ∈上恒成立; 当()2,2.5x ∈时,22222.5 6.257log 26log 6x x <=<=+<+,所以()22log 60f x x x =--<在()2,2.5x ∈上也恒成立;当()3,3.5x ∈时,222239log 3.56log 6x x >=>+>+,所以()22log 60f x x x =-->在()3,3.5x ∈上恒成立,又22(2.5) 2.5log 2.560f =--<,2(3)9log 360f =-->,根据函数零点存在性定理,可得()f x 的其中一个零点的初始区间可为()2.5,3. 故选:C. 【点睛】 方法点睛:判断零点所在区间的一般方法:先根据题中条件,判断函数在所给区间是连续函数,再由零点存在性定理,即可得出结果. 5.A 【分析】药在血液中以每小时20%的比例衰减,根据指数函数模型列方程或不等式求解. 【详解】设从现在起经过x 小时向病人的血液补充这种药,才能保持疗效. 则25000.81500x ⨯=,0.80.6x =,lg 0.8lg 0.6x =,lg 0.8lg 0.6x =,6lglg 0.6lg 2lg310.3010.4771110 2.38lg 0.83lg 2130.3011lg 10x +-+-====≈-⨯-.故选:A . 6.AC 【分析】根据二分法求零点的步骤,逐一检验选项,即可得答案. 【详解】因为()0020210f =+-=-<,()222620f =+->,()112320f =+->,所以()()010f f <,所以下一个存在零点的区间为()0,1,故A 正确,B 错误; 要达到精确度1的要求,应该接着计算12f ⎛⎫⎪⎝⎭,故C 正确,D 错误.故选:AC . 7.ABC 【分析】根据利用二分法无法求不变号的零点问题确定选项. 【详解】D 选项虽然有零点,但是在零点左右两侧函数值符号都相同, 因此不能用二分法求零点,而A ,B ,C 选项符合利用二分法求函数零点的条件. 故选:ABC . 【点睛】本题考查了零点判定定理的应用和二分法求解函数的零点.属于容易题. 8.BCD 【分析】由根的存在性定理判断根的较小区间,从而求近似解. 【详解】解:由表格可得,函数32()22f x x x x =+--的两点在(1.375,1.4375)之间, 符合条件的有BCD. 故选:BCD . 9.CD 【分析】根据二分法定义,只有零点两侧函数值异号才可用二分法求近似值. 【详解】对于选项C ,y =12x 2+4x +8=12(x +4)2≥0,故不能用二分法求零点的近似值. 对于选项D ,y =|x |≥0,故不能用二分法求零点的近似值. 易知选项A ,B 有零点,且可用二分法求零点的近似值. 故选:CD . 10.ABD 【分析】根据()f x 的图像在R 上连续不断,()00f <,()10f >,()20f >,结合零点存在定理,判断出在区间()0,1和()1,2上零点存在的情况,得到答案. 【详解】由题知()()010f f ⋅<,所以根据函数零点存在定理可得()f x 在区间()0,1上一定有零点, 又()()120f f ⋅>,无法判断()f x 在区间()1,2上是否有零点,在区间(1,2)上可能有零点. 故选:ABD . 11.1.4 【分析】根据函数零点存在定理、用二分法求方程的近似解的相关知识,代值求解即可. 【详解】由题表知()()1.375 1.43750f f ⋅<,且1.4375 1.3750.06250.1-=<, 所以方程的一个近似解可取为1.4, 故答案为:1.4. 12. 1.625-. 【分析】先求出0x 的值,再代入解析式即可求解. 【详解】因为0x 是[]1,2的中点,所以0 1.5x =,所以()()30 1.5 1.52 1.52 1.625f x f ==-⨯-=-,故答案为: 1.625-. 13.1.375 【分析】本题直接用二分法求方程的近似解即可. 【详解】解:令()24xf x x =+-,则()12140f =+-<,()222240f =+->,∵24x x +=在[1]2,内的近似解可取为1.375. 14.0.75 【分析】首先由()()010f f ⋅<结合()f x 的单调性可知()f x 有且只有一个零点()00,1x ∈,再利用取区间中点的方法利用零点存在性定理将零点所在区间逐渐减半,直到满足精确度即可. 【详解】因为()321f x x =-,所以()010f =-<,()12110f =-=>因为()()010f f ⋅<,所以()f x 在区间()0,1内有零点,因为()321f x x =-在R 上为增函数,所以()f x 有且只有一个零点()00,1x ∈,取区间()0,1的中点10.5x =,()30.520.510.750f =⨯-=-<,所以()()0.510f f ⋅<,可得()00.5,1x ∈,取区间()0.5,1的中点20.75x =,()30.7520.7510.156250f =⨯-=-<,所以()()0.7510f f ⋅<,可得()00.75,1x ∈,取区间()0.75,1的中点30.875x =,()30.87520.87510.33980f =⨯-=>,所以()()0.750.8750f f ⋅<,可得()00.75,0.875x ∈,取区间()0.75,0.875的中点40.8125x =,()30.812520.812510.07280f =⨯-=>,所以()()0.750.81250f f ⋅<,可得()00.75,0.8125x ∈, 因为0.81250.750.06250.1-=<,所以()321f x x =-零点的近似值可取为0.75.15.(1)7n =;(2)感染者人数可能的取值为2,3,4;(3)39. 【分析】(1)由图可计算得到n的取值;(2)当经过4轮共9次检测后确定所有感染者,只需第3轮对两组都进行检查,由此所有可能的结果;(3)当所需检测次数最大时,需有2名感染者,并在第2轮检测时分居两组当中,从而将问题转化为待检测人数为92的组,每组1个感染者,共需的检测次数,由此可计算求得结果.【详解】(1)由题意知:第1轮需检测1次;第2轮需检测2次;第3轮需检测2次;第4轮需检测2次;12227∴=+++=;n(2)由(1)可知:若只有1个感染者,则只需7次检测即可;经过4轮共9次检测查出所有感染者,比只有1个感染者多2次检测,则只需第3轮时,对两组都都进行检查,即对最后4个人进行检查,可能结果如下图所示:∴感染者人数可能的取值为2,3,4.(3)若没有感染者,则只需1次检测即可;+⨯=次检测即可;若只有1个感染者,则只需121021若有2个感染者,若要检测次数最多,则第2轮检测时,2个感染者不位于同一组中;+⨯=次检测;∴此时两组共此时相当于两个待检测人数均为92的组,每组1个感染者,此时每组需要12919⨯=次检测;需21938∴若有2个感染者,且检测次数最多,共需38139+=次检测.综上所述:所需总检测次数的最大值为39.。

配套K12高中数学第二章函数2.4函数与方程2.4.2求函数零点近似解的一种计算方法_二分法课堂导学

配套K12高中数学第二章函数2.4函数与方程2.4.2求函数零点近似解的一种计算方法_二分法课堂导学

2.4.2 求函数零点近似解的一种计算方法—二分法课堂导学三点剖析一、函数零点的性质【例1】函数f(x)=x 3-2x 2+3x-6在区间[-2,4]上的零点必定在( )A.[-2,1]内B.[25,4]内 C.[1,47]内 D.[47,25]内解析:由于f(-2)=-8-8-6-6=-28<0,f(4)=64-32+12-6=38>0, 且f(242+-)=f(1)=1-2+3-6=-4<0, ∴零点在区间[1,4]内.又f(241+)=f(25)=8125225-+215-6=8125-11>0, ∴零点在区间[1,25]内.又f(2251+)=f(47)<0, ∴零点在区间[47,25]内.∴选D.答案:D二、求方程的近似解【例2】求方程2x 3+3x-3=0的一个实数解,精确到0.01.思路分析:考查函数f(x)=2x 3+3x-3,从一个两端函数值反号的区间开始,应用二分法逐步缩小方程实数解所在的区间.解:经试算,f(0)=-3<0,f(2)=19>0,所以函数f(x)=2x 3+3x-3在[0,2]内存在零点,即方程2x 3+3x-3=0在[0,2]内有解. 取[0,2]的中点1,经计算f(1)=2>0, 又f(0)<0,所以方程2x 3+3x-3=0在[0,1]内有解.3∴x 10=2734375.07421875.0+=0.738 281 25≈0.74为方程2x 3+3x-3=0精确到0.01的一个实数解. 三、函数零点的应用【例3】已知二次函数f(x)=ax 2+bx+c.(1)若a>b>c 且f(1)=0,证明f(x)必有两个零点; (2)若对x 1、x 2∈R 且x 1<x 2,f(x 1)≠f(x 2),方程f(x)=21[f(x 1)+f(x 2)]有两个不等实根,证明必有一实根属于(x 1,x 2). 证明:(1)∵f(1)=0,∴a+b+c=0. 又∵a>b>c,∴a>0,c<0,即ac<0.∴Δ=b 2-4ac>0.∴方程ax 2+bx+c=0有两个不等实根. 故函数f(x)有两个零点. (2)令g(x)=f(x)21-[f(x 1)+f(x 2)],则g(x 1)=f(x 1)21-[f(x 1)+f(x 2)]=2)()(21x f x f -,g(x 2)=f(x 2)21-[f(x 1)+f(x 2)]=2)()(21x f x f -.∴g(x 1)·g(x 2)=41-[f(x 1)-f(x 2)]2.∵f(x 1)≠f(x 2),∴g(x 1)·g(x 2)<0.∴g(x)=0在(x 1,x 2)内必有一实根. 故f(x)=21[f(x 1)+f(x 2)]在(x 1,x 2)内必有一实根. 各个击破 类题演练1 函数y=lgx x9-的零点所在的大致区间是…( ) A.(6,7) B.(7,8) C.(8,9) D.(9,10) 解析:代入验证,可知f(9)=lg9-1<0,f(10)=1109->0.∴f(9)·f(10)<0. 答案:D 变式提升1下列各图中函数图象与x 轴均有公共点,但不能用二分法求公共点横坐标的是( )解析:用二分法只能求变号零点的近似值,而B 中的零点是不变号零点,故选B.答案:B 类题演练2求方程x 3-4x+1=0的一个正数的零点.(精确到0.1)解析:设f(x)=x 3-4x+1,由于f(1)=-2<0,f(2)=1>0,故可取区间[1,2]作为计算的初始区间. 用二分法逐次计算,列表如下:由上表计算可知区间[1.813,1.875]的长度小于0.1,∴这个区间的中点1.843 7为所求函数的一个正实数零点近似值. 变式提升2先用求根公式求出方程2x 2-3x-1=0的解,用二分法求出这个方程的近似解.(精确到0.1) 解析:方程的两个解分别为x 1=473+,x 2=473-. 取区间(1.775,1.8)和(-0.3,-0.275).令f(x)=2x 2-3x-1在区间(1.775,1.8)内,用计算器可算得 f(1.775)=-0.023 75,f(1.8)=0.08. 于是f(1.775)\5f(1.8)<0.∴方程在区间(1.775,1.8)内有一个解.又|1.8-1.775|=0.025<0.1,此时区间(1.775,1.8)的两个端点精确到0.1的近似值都是1.8, ∴方程在区间(1.775,1.8)内精确到0.1的近似解为1.8.同理,可得方程在区间(-0.3,-0.275)内精确到0.1的近似解为-0.3. 类题演练3x 1与x 2分别是实系数一元二次方程ax 2+bx+c=0和-ax 2+bx+c=0的一个根,且x 1≠x 2,x 1≠0,x 2≠0.求证:方程2a x 2+bx+c=0有且仅有一根介于x 1与x 2之间. 证明:令f(x)=2a x 2+bx+c.∵x 1、x 2分别是方程ax 2+bx+c=0和-ax 2+bx+c=0的一个根, ∴ax 12+bx 1+c=0,-ax 22+bx 2+c=0.故bx 1+c=-ax 12,bx 2+c=ax 22, f(x 1)=2a x 12+bx 1+c=2a x 12-ax 12=21-ax 12,f(x 2)=2a x 22+bx 2+c=2a x 22+ax 22=23ax 22. ∴f(x 1)f(x 2)=43 a 2x 12x 22.∵a≠0,x 1x 2≠0,∴f(x 1)·f(x 2)<0. 故方程2a x 2+bx+c=0有且仅有一根介于x 1与x 2之间. 变式提升3一块电路板的线路AB 之间有64个串联的焊接点(如图所示),如果线路不通的原因是由于焊口脱落所致,要想检验出哪一处焊口脱落,问至多需要检测的次数是多少? 解析:对焊接点一一检测很麻烦,当然也是不需要的.只需选线路AB 的中点C,然后判断出焊口脱落的点所在的线路为AC,还是BC,然后依次循环上述过程即可很快检验出焊点的位置,最多次数是6次.根据“二分法”的思想,具体分析如下:第1次取中点把焊点数减半为264=32(个),第2次取中点把焊点数减半为464=16(个),第3次取中点把焊点数减半为864=8(个),第4次取中点把焊点数减半为1664=4(个),第5次取中点把焊点数减半为3264=2(个),第6次取中点把焊点数减半为6464=1(个),所以至多需要检测的次数是6次.。

高考数学复习考点12 零点定理(练习)(解析版)

高考数学复习考点12 零点定理(练习)(解析版)

考点12:零点定理【题组一 求零点】1.函数f (x )2120810x x log x x ⎧-≤⎪=⎨⎪-+⎩(),()(>)的零点为_____. 【答案】﹣3【解析】当0x ≤时,()120,38xf x x =-=∴=-; 当0x >时,()()2log 10,0f x x x =-+=∴=,不满足,排除;故函数零点为3- 故答案为:3- 2.若函数()()2log a f x x =+的零点为2-,则a =________. 【答案】3【解析】根据题意,若函数f (x )=log 2(x +a )的零点为﹣2, 则f (﹣2)=log 2(a ﹣2)=0,即a ﹣2=1,解可得a =3,故答案为33.设函数[)()222,1,()2,,1x x f x x x x ⎧-∈+∞⎪=⎨-∈-∞⎪⎩,则函数()y f x =的零点是________________. 【答案】0或1【解析】()0f x =等价于1220x x ≥⎧⎨-=⎩或2120x x x <⎧⎨-=⎩,解得1x =或0x =,所以,函数()y f x =的零点是0或1.故答案为:0或1. 【题组二 零点区间】1.函数3()log (2)1f x x x =++-的零点所在的一个区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)【答案】A【解析】3(0)log 210f =-<,3(1)log (12)1110f =++-=>,所以(0)(1)0f f <, 根据零点存在性定理,函数3()log (2)1f x x x =++-的零点所在的一个区间是(0,1),故选:A. 2.已知函数()26log 21f x x x =--+.在下列区间中,包含()f x 零点的区间是( ) A .()0,1B .()1,3C .()3,5D .()5,7【答案】D【解析】函数()26log 21f x x x =--+,在其定义域上连续, 又()2255log 53log 08f =-=<,()2237log 72log 04f =--=>, 故函数()f x 的零点在区间()5,7上.故选:D. 3.函数1()sin 2f x x x =-在下列哪个区间必有零点( ) A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭【答案】B【解析】∵(0)0sin 00f =-=,1024f ππ⎛⎫=-<⎪⎝⎭,()02f ππ=>, ∴()02f f ππ⎛⎫⋅<⎪⎝⎭,∴在区间,2ππ⎛⎫⎪⎝⎭内必有零点.故选:B .【题组三 零点个数】1.函数()231xf x log x =-的零点个数为 .【答案】2【解析】函数()231xf x log x =-的零点,即方程2310xlog x -=的解,即213xlog x ⎛⎫= ⎪⎝⎭,转化为函数2y log x =与13xy ⎛⎫= ⎪⎝⎭的交点,在同一平面直角坐标系上作出函数2y log x =与13xy ⎛⎫= ⎪⎝⎭的图象,如下所示:从函数图象可知,2y log x =与13xy ⎛⎫= ⎪⎝⎭有两个交点,即方程2310x log x -=有两个实数根,即函数()231x f x log x =-有两个零点.2.函数()22xf x e x =+-在区间()21-,内零点的个数为 .【答案】2【解析】令22e 20,2xxx e x +-==-+,画出2,2xy e y x ==-+的图象如下图所示,由图可知,图象有两个交点,故原函数有2个零点.3.函数f (x )=cosπx ﹣(12)x+1在区间[﹣1,2]上的零点个数为 . 【答案】3【解析】根据题意可知,函数1()cos ()12xf x x π=-+在区间[1,2]-上的零点的个数, 即为函数cos y x π=的图象与函数1()12xy =-的图象在区间[1,2]-上的交点的个数,在同一坐标系中画出两个函数图象如图所示:可以发现有三个公共点,所以函数1()cos ()12xf x x π=-+在区间[1,2]-上有三个零点, 4.函数()2ln f x x x =+的零点个数是 .【解析】因为ln y x =与2yx 均在0,上为增函数,所以函数()2ln f x x x =+至多一个零点又221111ln 10f e e e e ⎛⎫⎛⎫⎛⎫=+=-+< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1ln1110f =+=>,()110f f e ⎛⎫⋅< ⎪⎝⎭,即函数()f x 在1,1e ⎛⎫⎪⎝⎭上有一个零点.5.函数()3f x x =,则()f x 的零点个数为________. 【答案】1【解析】函数()f x 定义域为[)0,+∞303x x -=⇔-=令123,y x y =-=()f x 的零点的个数就是函数123,y x y =-=,[)0,x ∈+∞的交点个数如上图所示,则()f x 的零点个数为1.故答案为:16.定义在R 上的偶函数()f x 满足()(4)f x f x =-,且当[0,2]x ∈时,()cos f x x =,则()()lg g x f x x =-的零点个数为____________. 【答案】10【解析】由于定义在R 上的偶函数()y f x =满足()4()f x f x =-, 所以()y f x =的图象关于直线2x =对称,画出[0,)x ∈+∞时,()y f x =部分的图象如图,在同一坐标系中画出lg y x =的图象, 由图可知:当(0,)x ∈+∞时,有5个交点, 又lg y x =和()y f x =都是偶函数,所以在(,0)x ∈-∞上也是有5个交点,所以()()lg g x f x x =-的零点个数是10, 故答案为:10.7.函数25()sin log ||22f x x x π⎛⎫=- ⎪⎝⎭的零点个数为_______________. 【答案】6【解析】函数25()sin log ||22f x x x π⎛⎫=- ⎪⎝⎭的零点,即方程25sin log ||022x x π⎛⎫-=⎪⎝⎭的解,令()5sin 22g x x π⎛⎫=⎪⎝⎭,()2log ||h x x = 也就是函数()5sin 22g x x π⎛⎫=⎪⎝⎭与()2log ||h x x =的交点,在同一平面直角坐标系中画出()5sin 22g x x π⎛⎫=⎪⎝⎭与()2log ||h x x =的图象如下所示,由图可知()5sin 22g x x π⎛⎫= ⎪⎝⎭与()2log ||h x x =有6个交点,即25()sin log ||22f x x x π⎛⎫=- ⎪⎝⎭有6个零点.故答案为:68.f(x)是R 上的偶函数,f(x +2)=f(x),当0≤x≤1时,f(x)=x 2,则函数y =f(x)-|log 5x|的零点个数为 . 【答案】5【解析】∵f(x +2)=f(x),∴函数()f x 的周期为2. 由题意可得()5f x log x =,在同一坐标系内画出函数()y f x =和5y log x =的图象,如下图,由图象得,两函数图象有5个交点, 所以函数y =f(x)-|log 5x|共有5个零点. 9.若偶函数()f x 的图像关于32x =对称,当30,2x ⎡⎤∈⎢⎥⎣⎦时,()f x x =,则函数()()20log g x f x x =-在[]20,20-上的零点个数是 .【答案】26【解析】令()20log h x x =,定义域为非零的实数集,()()2020log log h x x x h x -=-==,所以该函数为偶函数,又()f x 是偶函数()g x ∴是偶函数,且0x ≠,由()()20log 0g x f x x =-=得()20log f x x =当0x >时有()20log f x x = 偶函数()f x 的图象关于32x =对称, ()()f x f x ∴-=且()()3f x f x =-,()()()()333f x f x f x f x ∴+=-+=-=⎡⎤⎣⎦,()f x ∴是3T =的周期函数,32kx ∴=,k Z ∈为()f x 的对称轴 当30,2x ⎡⎤∈⎢⎥⎣⎦时,()f x x =∴()()()()()2021111120f f f f h =-=-===当(]0,20x ∈,()f x ,()h x 在同一坐标系中的图象如下可知()f x 与()h x 在(]0,20上有13个交点即()g x 在(]0,20上有13个零点()g x 是偶函数()g x ∴在[]20,20-上共有26个零点.10.定义在R 上的奇函数()f x 满足()()22f x f x -=-+,且在区间[)2,4上,()2,234,34x x f x x x -≤<⎧=⎨-≤<⎩,则函数()3log y f x x =-的零点的个数为______. 【答案】5【解析】由题,因为()f x 满足()()22f x f x -=-+,所以()f x 关于()2,0中心对称, 又因为()f x 是奇函数,所以()()()222f x f x f x -=--=-+,所以()()22f x f x -=+,即()f x 的周期为4,画出()y f x =与3log y x =的图像,如图所示,则交点有5个,故函数()3log y f x x =-的零点有5个,故答案为:5 11.函数()f x 对于任意实数x ,都()()f x f x -=与(1)(1)f x f x -=+成立,并且当01x ≤≤时,()2f x x =.则方程()02019xf x -=的根的个数是 . 【答案】2020【解析】对任意实数x 都有f (x +2)=f [1+(1+x )]=f [1﹣(1+x )]=f (﹣x ), 由于f (x )为偶函数,f (﹣x )=f (x )∴f (x +2)=f (x ) ∴函数f (x )是以2为周期的周期函数,且值域为[]0,1.方程()02019x f x -=的根的个数即函数()f x 图象与直线y 2019x=的交点个数, 当2019x =时,y 12019x ==,当x 2019>时,函数()f x 图象与直线y 2019x=无交点,由图像可得二者的交点个数为2020个12.已知定义在R 上,且最小正周期为4的函数()f x ,满足()()f x f x -=-,则在区间()10,10-内函数()y f x =的零点个数的最小值是______【答案】9【解析】函数()f x 是奇函数,则(0)0f =,又周期为4,则(2)(2)f f -=,又(2)(2)f f -=-,所以(2)(2)0f f -==,所以(2)0,f k k Z =∈.在(10,10)-上有9个偶数,因此函数至少有9个零点.故答案为:9.【题组四 根据零点求参数】1.方程24(2)50x m x m +-+-=的一根在区间()1,0-内,另一根在区间()02,内,则m 的取值范围是 . 【答案】7,53⎛⎫-⎪⎝⎭【解析】∵方程24(2)50x m x m +-+-=的一根在区间(−1,0)内,另一根在区间(0,2)内, ∴函数()24(2)5x m x f x m +-=+-的两个零点一个在区间(−1,0)内,另一个在区间(0,2)内,则(1)4(2)50(0)50(2)162(2)50f m m f m f m m -=--+->⎧⎪=-<⎨⎪=+-+->⎩,解得753m -<<,∴m 的取值范围是7,53⎛⎫-⎪⎝⎭. 2.已知函数()()2log 13f x x x m =+++的零点在区间(]0,1上,则m 的取值范围为 . 【答案】[4,0-)【解析】由题意,函数2()log (1)3f x x x m =+++是定义域上的单调递增函数, 又由函数()f x 在区间(0,1]上存在零点,则满足()()0010f f ⎧<⎪⎨≥⎪⎩,即22log (01)300log (11)310m m ++⨯+<⎧⎨++⨯+≥⎩,解得40m -≤<,即实数m 的取值范围为[4,0)-。

2020-2021学年高一上数学新教材必修一第3章:零点的存在性及其近似值的求法(含答案)

2020-2021学年高一上数学新教材必修一第3章:零点的存在性及其近似值的求法(含答案)

2020-2021学年高一上数学新教材必修一
第3章:零点的存在性及其近似值的求法
一、选择题
1.下列函数中,不能用二分法求零点的是()
A.f(x)=2x+3B.f(x)=x2+2x-6
C.f(x)=x2-2x+1 D.f(x)=2x-1
2.下列关于函数f(x),x∈[a,b]的命题中,正确的是()
A.若x0∈[a,b]且满足f(x0)=0,则x0是f(x)的一个零点
B.若x0是f(x)在[a,b]上的零点,则可以用二分法求x0的近似值
C.函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点
D.用二分法求方程的根时,得到的都是近似解
3.若函数f(x)=2ax2-x-1在(0,1)内恰有一个零点,则a的取值范围是()
A.a<-1 B.a>1
C.-1<a<1 D.0≤a<1
4.函数y=f(x)的图像在区间[1,4]上是连续不断的曲线,且f(1)·f(4)<0,则函数y=f(x)()
A.在(1,4)内有且仅有一个零点
B.在(1,4)内至少有一个零点
C.在(1,4)内至多有一个零点
D.在(1,4)内不一定有零点
5.若函数f(x)=x3+x2-2x-2的一个零点(正数)附近的函数值用二分法逐次计算,参考数据如下表:
那么方程x3+为()
A.1.5 B.1.25
第1 页共8 页。

专题40 高中数学用二分法求方程的近似解(解析版)

专题40 高中数学用二分法求方程的近似解(解析版)

专题40 用二分法求方程的近似解知识点一二分法的概念对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.知识点二用二分法求方程近似解的步骤给定精确度ε,用二分法求函数y=f(x)零点x0的近似值的一般步骤如下:(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0.(2)求区间(a,b)的中点C.(3)计算f(c),并进一步确定零点所在的区间:①若f(c)=0(此时x0=c),则c就是函数的零点;②若f(a)f(c)<0(此时x0∈(a,c)),则令b=c;③若f(c)f(b)<0(此时x0∈(c,b)),则令a=C.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).知识点三新知拓展1.用二分法求函数零点近似值的方法仅适用于函数的变号零点(曲线通过零点时,函数值的符号变号),对函数的不变号零点(曲线通过零点时,函数值的符号不变号)不适用.如求函数f(x)=(x-1)2的零点近似值就不能用二分法.2.用二分法求函数零点的近似值时,要根据函数的性质尽可能地找到含有零点的更小的区间,这样可以减少用二分法的次数,减少计算量.3.二分法采用逐步逼近的思想,使区间逐步缩小,使函数零点所在的范围逐步缩小,也就是逐渐逼近函数的零点.当区间长度小到一定程度时,就得到近似值.4.由|a-b|<ε,可知区间[a,b]中任意一个值都是零点x0的满足精确度ε的近似值.为了方便,这里统一取区间端点a(或b)作为零点的近似值.精确度与精确到是不一样的概念.比如得数是1.25或1.34,精确到0.1都是通过四舍五入后保留一位小数得1.3.而“精确度为0.1”指零点近似值所在区间[a,b]满足|a-b|<0.1,比如零点近似值所在区间[1.25,1.34].若精确度为0.1,则近似值可以是1.25,也可以是1.34.5.在第一步中要使区间[a,b]的长度尽量小,且f(a)·f(b)<0.6.由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解.对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数F(x)零点近似值的步骤求解.题型一二分法的适用条件1.下列图象与x轴均有交点,其中不能用二分法求函数零点的是()[解析]按定义,f(x)在[a,b]上是连续的,且f(a)·f(b)<0,才能不断地把函数零点所在的区间一分为二,进而利用二分法求出函数的零点.故结合各图象可得选项B,C,D满足条件,而选项A不满足,在A中,图象经过零点x0时,函数值不变号,因此不能用二分法求解.故选A.2.已知函数f(x)的图象如图所示,其中零点的个数与可以用二分法求解的个数分别为()A.4,4B.3,4C.5,4 D.4,3[解析]图象与x轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以用二分法求解的个数为3,故选D.3.下列函数图象中表示的函数能用二分法求零点的是()[解析]由于只有C满足图象连续,且f(a)·f(b)<0,故只有C能用二分法求零点.4.下列函数图象与x轴均有交点,其中不能用二分法求图中函数零点的是()A B C D[解析]二分法的理论依据是零点存在定理,必须满足零点两侧函数值异号才能求解.而选项B图中零点两侧函数值同号,即曲线经过零点时不变号,称这样的零点为不变号零点.另外,选项A,C,D零点两侧函数值异号,称这样的零点为变号零点.答案为B5.已知函数y=f(x)的图象如图所示,则不能利用二分法求解的零点是________.[解析]因为x3左右两侧的函数值同号,故其不能用二分法求解.6.用二分法求如图所示的函数f(x)的零点时,不可能求出的零点是()A.x1 B.x2C.x3D.x4[解析]由二分法的原理可知,x3不能用二分法求出,因为其左右两侧的函数值同负.7.下列函数中不能用二分法求零点近似值的是()A.f(x)=3x-1 B.f(x)=x3C.f(x)=|x| D.f(x)=ln x[解析]对于选项C而言,令|x|=0,得x=0,即函数f(x)=|x|存在零点,但当x>0时,f(x)>0;当x<0时,f(x)>0,所以f(x)=|x|的函数值非负,即函数f(x)=|x|有零点,但零点两侧函数值同号,所以不能用二分法求零点的近似值.8.用二分法求函数f(x)在区间[a,b]内的零点时,需要的条件是()①f(x)在区间[a,b]上是连续不断的;②f(a)·f(b)<0;③f(a)·f(b)>0;④f(a)·f(b)≥0.A.①②B.①③C.①④D.②[解析]由二分法的定义知①②正确.9.下列函数不宜用二分法求零点的是()A.f(x)=x3-1 B.f(x)=ln x+3C.f(x)=x2+22x+2 D.f(x)=-x2+4x-1[解析]因为f(x)=x2+22x+2=(x+2)2≥0,不存在小于0的函数值,所以不能用二分法求零点.题型二用二分法求方程的近似解(函数零点的近似值)1.下面关于二分法的叙述中,正确的是()A.用二分法可求所有函数零点的近似值B.用二分法求方程的近似解时,可以精确到小数点后的任一位C.二分法无规律可循,无法在计算机上完成D.只能用二分法求函数的零点[解析]用二分法求函数零点的近似值,需要有端点函数值符号相反的区间,故选项A错误;二分法是一种程序化的运算,故可以在计算机上完成,故选项C错误;求函数零点的方法还有方程法、函数图象法等,故D错误,故选B.2.关于“二分法”求方程的近似解,说法正确的是( )A .“二分法”求方程的近似解一定可将y =f (x )在[a ,b ]内的所有零点得到B .“二分法”求方程的近似解有可能得不到y =f (x )在[a ,b ]内的零点C .应用“二分法”求方程的近似解,y =f (x )在[a ,b ]内有可能无零点D .“二分法”求方程的近似解可能得到f (x )=0在[a ,b ]内的精确解[解析]二分法求零点,则一定有且能求出,故B ,C 不正确;零点左侧与右侧的函数值符号相同的零点不能用二分法得到,故A 不正确,故选D.3.用二分法求函数f (x )=x 3+5的零点可以取的初始区间是( )A .[-2,-1]B .[-1,0]C .[0,1]D .[1,2][解析]∵f (-2)=-3<0,f (-1)=4>0,f (-2)·f (-1)<0,可取[-2,-1]作为初始区间,用二分法逐次计算. 4.函数f (x )的图象是连续不断的曲线,在用二分法求方程f (x )=0在(1,2)内近似解的过程可得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的解所在区间为( )A .(1.25,1.5)B .(1,1.25)C .(1.5,2)D .不能确定[解析]由于f (1.25)·f (1.5)<0,则方程的解所在区间为(1.25,1.5).5.用二分法求函数f (x )=2x +3x -7在区间[0,4]上的零点近似值,取区间中点2,则下一个存在零点的区间为( )A .(0,1)B .(0,2)C .(2,3)D .(2,4)[解析] 因为f (0)=20+0-7=-6<0,f (4)=24+12-7>0,f (2)=22+6-7>0,所以f (0)·f (2)<0,所以零点在区间(0,2)内.6.在用二分法求函数f (x )的一个正实数零点时,经计算,f (0.64)<0,f (0.72)>0,f (0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )A .0.68B .0.72C .0.7D .0.6[解析]已知f (0.64)<0,f (0.72)>0,则函数f (x )的零点的初始区间为[0.64,0.72],又0.68=12(0.64+0.72),且f (0.68)<0,所以零点在区间[0.68,0.72],且该区间的左、右端点精确到0.1所取的近似值都是0.7,因此,0.7就是所求函数的一个正实数零点的近似值.答案C7.用二分法求函数y =f (x )在区间[2,4]上零点的近似值,经验证有f (2)·f (4)<0.取区间的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0∈________(填区间). [解析]因为f (2)·f (3)<0,所以零点在区间(2,3)内.8.在用“二分法”求函数f (x )零点近似值时,第一次所取的区间是[-2,4],则第三次所取的区间可能是()A .[1,4]B .[-2,1] C.⎣⎡⎦⎤-2,52 D.⎣⎡⎦⎤-12,1 [解析]∵第一次所取的区间是[-2,4],∴第二次所取的区间可能为[-2,1],[1,4], ∴第三次所取的区间可能为⎣⎡⎦⎤-2,-12,⎣⎡⎦⎤-12,1,⎣⎡⎦⎤1,52,⎣⎡⎦⎤52,4.答案D 9.若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法计算,其参考数据如下:A .1.25B .1.375C .1.42D .1.5[解析]由表格可得,函数f (x )=x 3+x 2-2x -2的零点在(1.406 25,1.437 5)之间.结合选项可知,方 程x 3+x 2-2x -2=0的一个近似根(精确度为0.05)可以是1.42.故选C. 10.用二分法求函数f (x )=3x -x -4的一个零点,其参考数据如下:[解析] f (1.562 5)≈0.003>0,f (1.556 2)≈-0.029<0,方程3x -x -4=0的一个近似解在(1.556 2,1.562 5)上,且满足精确度为0.01,所以所求近似解可取为1.562 5.11.在用二分法求方程f (x )=0在[0,1]上的近似解时,经计算,f (0.625)<0,f (0.75)>0,f (0.687 5)<0,即得出方程的一个近似解为________.(精确度为0.1)[解析]∵f (0.625)<0,f (0.75)>0,f (0.687 5)<0,∴方程的解在(0.687 5,0.75)上,而|0.75-0.687 5|<0.1,∴方程的一个近似解为0.687 5.(答案不唯一)12.用二分法求方程ln(2x +6)+2=3x 的根的近似值时,令f (x )=ln(2x +6)+2-3x ,并用计算器得到下表:[解析]因为f (1.25)·f (1.375)<0,故根据二分法的思想,知函数f (x )的零点在区间(1.25,1.375)内,但区间(1.25,1.375)的长度为0.125>0.1,因此需要取(1.25,1.375)的中点1.312 5,两个区间(1.25,1.312 5)和(1.312 5,1.375)中必有一个满足区间端点的函数值符号相异,又区间的长度为0.062 5<0.1,因此1.312 5是一个近似解.13.用二分法研究函数f (x )=x 3+3x -1的零点时,第一次经过计算得f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次应计算________.[解析] ∵f (0)<0,f (0.5)>0,∴x 0∈(0,0.5),故第二次应计算f (0.25).14.已知函数f (x )=ln x +2x -6有一个零点,求这个零点所在的一个区间,使这个区间的长度不超过14(不能用计算器).[解析] ∵f (2)<0,f (3)>0,∴f (x )的零点x 0∈(2,3).取x 1=52,∵f ⎝⎛⎭⎫52=ln 52-1=ln 52-ln e<0, ∴f ⎝⎛⎭⎫52f (3)<0,∴x 0∈⎝⎛⎭⎫52,3.取x 2=114,∵f ⎝⎛⎭⎫114=ln 114-12=ln 114-ln e12 >0, ∴f ⎝⎛⎭⎫114f ⎝⎛⎭⎫52<0,∴x 0∈⎝⎛⎭⎫52,114.而⎪⎪⎪⎪114-52=14≤14,∴⎝⎛⎭⎫52,114即为符合条件的一个区间. 15.已知方程2x +2x =5.(1)判断该方程解的个数以及所在区间; (2)用二分法求出方程的近似解(精确度0.1).参考数值:[解析](1)令f (所以函数f (x )=2x +2x -5至多有一个零点.因为f (1)=21+2×1-5=-1<0,f (2)=22+2×2-5=3>0, 所以函数f (x )=2x +2x -5的零点在(1,2)内. (2)用二分法逐次计算,列表如下:因为|1.375-1.25|=所以函数的零点近似值为1.312 5,即方程2x +2x =5的近似解可取为1.312 5. 16.用二分法求方程x 2-5=0的一个近似正解.(精确度为0.1)[解析]令f (x )=x 2-5,因为f (2.2)=-0.16<0,f (2.4)=0.76>0,所以f (2.2)·f (2.4)<0, 即这个函数在区间(2.2,2.4)内有零点x 0,取区间(2.2,2.4)的中点x 1=2.3,f (2.3)=0.29,因为f (2.2)·f (2.3)<0,所以x 0∈(2.2,2.3), 再取区间(2.2,2.3)的中点x 2=2.25,f (2.25)=0.062 5,因为f (2.2)·f (2.25)<0, 所以x 0∈(2.2,2.25),由于|2.25-2.2|=0.05<0.1,所以原方程的近似正解可取为2.25. 17.求方程lg x =2-x 的近似解.(精确度为0.1)[解析]在同一平面直角坐标系中,作出y =lg x ,y =2-x 的图象如图所示, 可以发现方程lg x =2-x 有唯一解,记为x 0,并且解在区间(1,2)内.设f (x )=lg x +x -2,则f (x )的零点为x 0.用计算器计算得f (1)<0,f (2)>0⇒x 0∈(1,2); f (1.5)<0,f (2)>0⇒x 0∈(1.5,2);f (1.75)<0,f (2)>0⇒x 0∈(1.75,2),f (1.75)<0,f (1.875)>0⇒x 0∈(1.75,1.875);f (1.75)<0,f (1.8125)>0⇒x 0∈(1.75,1.8125). ∵|1.8125-1.75|=0.0625<0.1,∴方程的近似解可取为1.8125. 18.求函数f (x )=x 3-3x 2-9x +1的一个负零点(精确度0.01).[解析] 确定一个包含负数零点的区间(m ,n ),且f (m )·f (n )<0.因为f (-1)>0,f (-2)<0,所以可以取区间(-2,-1)作为计算的初始区间,当然选取在较大的区间也可以.用二分法逐步计算, 列表如下:端点(中点)端点或中点的函数值 取值区间f (-1)>0,f (-2)<0 (-2,-1) x 0=-1-22=-1.5f (x 0)=4.375>0 (-2,-1.5) x 1=-1.5-22=-1.75 f (x 1)≈2.203>0 (-2,-1.75) x 2=-1.75-22=-1.875 f (x 2)≈0.736>0 (-2,-1.875) x 3=-1.875-22=-1.937 5 f (x 3)≈-0.097 4<0 (-1.937 5,-1.875) x 4=-1.875-1.937 52=-1.906 25f (x 4)≈0.328 0>0 (-1.937 5,-1.906 25) x 5=-1.937 5-1.906 252=-1.921 875f (x 5)≈0.117 4>0 (-1.937 5,-1.921 875) x 6=-1.937 5-1.921 8752=-1.929 687 5f (x 6)≈0.010 5>0(-1.937 5,-1.929 687 5)由于|19.若函数y =f (x )在区间(a ,b )内的零点用二分法按精确度为ε求出的结果与精确到ε求出的结果相等,则称函数y =f (x )在区间(a ,b )内的零点为“和谐零点”.试判断函数f (x )=x 3+x 2-2x -2在区间(1,1.5)上按ε=0.1用二分法逐次计算求出的零点是否为“和谐零点”.(参考数据:f (1.25)≈-0.984,f (1.375)≈-0.260,f (1.4375)≈0.162,f (1.4065)≈-0.052)[解析] 函数f (x )=x 3+x 2-2x -2在区间(1,1.5)上有f (1)=-2<0,f (1.5)>0,故f (x )在(1,1.5)内有零点. 又f (x )=0,即x 3+x 2-2x -2=0,所以(x +1)(x -2)(x +2)=0, 所以f (x )在(1,1.5)内的零点为2,故精确到ε=0.1的零点为1.4.而根据二分法,将(1,1.5)分为(1,1.25),(1.25,1.5),因f (1.25)≈-0.984<0,故f (x )的零点在(1.25,1.5)内,此时区间长度为0.25>ε,继续下去,f (x )的零点在(1.375,1.4375)内,此时区间长度为0.0625<ε,此时零点的近似解可取1.375或1.4375,显然不等于1.4,故求出的零点不为“和谐零点”.题型三 二分法的实际应用1.已知函数f (x )=3ax 2+2bx +c ,a +b +c =0,f (0)>0,f (1)>0,证明a >0,并利用二分法证明方程f (x )=0在区间[0,1]内有两个实根.[解析] ∵f (1)>0,∴3a +2b +c >0,即3(a +b +c )-b -2c >0.∵a +b +c =0,∴-b -2c >0,则-b -c >c ,即a >c .∵f (0)>0,∴c >0,则a >0. 在区间[0,1]内选取二等分点12,则f ⎝⎛⎭⎫12=34a +b +c =34a +(-a )=-14a <0. ∵f (0)>0,f (1)>0,∴函数f (x )在区间⎝⎛⎭⎫0,12和⎝⎛⎭⎫12,1上各有一个零点. 又f (x )最多有两个零点,从而f (x )=0在[0,1]内有两个实根. 2.已知函数f (x )=13x 3-x 2+1.(1)证明方程f (x )=0在区间(0,2)内有实数解;(2)使用二分法,取区间的中点三次,指出方程f (x )=0(x ∈[0,2])的实数解x 0在哪个较小的区间内. [解析](1)∵f (0)=1>0,f (2)=-13<0,∴f (0)·f (2)=-13<0,由函数的零点存在性定理可得方程f (x )=0在区间(0,2)内有实数解.(2)取x 1=12(0+2)=1,得f (1)=13>0,由此可得f (1)·f (2)=-19<0,下一个有解区间为(1,2).再取x 2=12(1+2)=32,得f ⎝⎛⎭⎫32=-18<0,∴f (1)·f ⎝⎛⎭⎫32=-124<0,下一个有解区间为⎝⎛⎭⎫1,32. 再取x 3=12⎝⎛⎭⎫1+32=54,得f ⎝⎛⎭⎫54=17192>0,∴f ⎝⎛⎭⎫54·f ⎝⎛⎭⎫32<0,下一个有解区间为⎝⎛⎭⎫54,32. 故f (x )=0的实数解x 0在区间⎝⎛⎭⎫54,32内.3.在26枚崭新的金币中,有一枚外表与真金币完全相同的假币(质量小一点),现在只有一架天平,则应用二分法的思想,最多称________次就可以发现这枚假币.[解析]从26枚金币中取18枚,将这18枚金币平均分成两份,分别放在天平两端,(1)若天平不平衡,则假币一定在质量小的那9枚金币里面.从这9枚金币中拿出6枚,然后将这6枚金币平均分成两份,分别放在天平两端,若天平平衡,则假币一定在剩下的那3枚金币里;若不平衡,则假币一定在质量小的那3枚金币里面,从含有假币的3枚金币里取两枚,分别放在天平两端,若天平平衡,则剩下的那一枚是假币,若不平衡,则质量小的那一枚是假币.(2)若天平平衡,则假币在剩下的8枚金币里,从这8枚金币中取6枚,将这6枚金币平均分成两份,分别放在天平两端,若天平平衡,假币在剩下的两枚里,若天平不平衡,假币在质量小的3枚里.在含有假币的金币里取2枚分别放在天平左右,即可找到假币.综上可知,最多称3次就可以发现这枚假币.故填3.4.现有12个小球,从外观上看完全相同,除了1个小球质量不合标准外,其余的小球质量均相同,用同一架天平(无砝码),限称三次,把这个“坏球”找出来,并说明此球是偏轻还是偏重.如何称?[解析]先在天平左右各放4个球.有两种情况:(1)若平,则“坏球”在剩下的4个球中.取剩下的4个球中的3个球放天平的一端,取3个好球放天平的另一端,①若仍平,则“坏球”为4个球中未取到的那个球,将此球与1个好球放上天平比一比,即知“坏球”是轻还是重;②若不平,则“坏球”在天平一端的3个球之中,且知是轻还是重.任取其中2个球分别放在天平左右两端,无论平还是不平,均可确定“坏球”.(2)若不平,则“坏球”在天平上的8个球中,不妨设天平右端较重.从右端4个球中取出3个球,置于一容器内,然后从左端4个球中取3个球移到右端,再从外面好球中取3个补到左端,看天平,有三种可能.①若平,则“坏球”是容器内3个球之一且偏重;②若左端重,“坏球”已从左端换到右端,因此,“坏球”在从左端移到右端的3个球中,并且偏轻;③若右端重,据此知“坏球”未变动位置,而未被移动过的球只有两个(左右各一),“坏球”是其中之一(暂不知是轻还是重).显然对于以上三种情况的任一种,再用天平称一次,即可找出“坏球”,且知其是轻还是重.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学求函数零点近似解测试题(附答案)
2.4.2求函数零点近似解的一种计算方法二分法测试题
一、选择题
1.函数f(x)=-+4x-4在区间[1,3]上()A.没有零点B.有一个零点C.有两个零点D.有无数个零点
2方程在区间[-2,4]上的根必定属于区间()A.[-2,1]B.[2.5,4]C.[1,]D.[,2.5]
3.下列关于二分法的叙述,正确的是()
A.用二分法可以求所有函数零点的近似值
B.用二分法求方程近似解时,可以精确到小数点后任一数

C.二分法无规律可寻,无法在计算机上进行
D.二分法只用于求方程的近似解
4.函数f(x)= 在[0,2]上()
A.有3个零点
B.有2个零点
C.有1个零点
D.没有个零点5.函数f(x)=3 ax-2a+1在[-1,1]上存在一个零点,则a的取值范围是()
A.a
B.a
C.
D..a 或a
6.方程在区间[-2,4]上的根必定属于区间( )
A.[-2,1]B C.[1, D.[
二、填空题
7.函数f(x)=-5的零点近似值(精确到0.1)是.
8.方程-6=0的近似解(精确到0.01)是.
三、解答题
9.求方程的无理根(精确到0.01)
参考答案:
一、选择题
1.B
2.D
3.B
4.C
5.D
6.D
二、填空题
7.2。


8.2.45
三、解答题
9.原方程可化为,显然方程的一个有理根为-1,而方
程的无理根就是方程的根,令,则只须求函数f(x)的零点即可,又因为f(x)是偶函数,所以只须求出f(x)的一个正零点即可,用二分法求得正零点的近似值为2.83.因此,原方程的无理根的近似值为2.83和-2.83。

相关文档
最新文档