典型例题

典型例题
典型例题

第一章

例 1.1-1 试判断下列信号是否为周期信号。若是,确定其周期。

(1) f 1(t )=sin 2t +cos 3

t

(2) f 2(t )=cos 2t +sin π

t

解 我们知道,如果两个周期信号x(t)和y(t)的周期具有公倍数,则它们的和信号 f(t)=x(t)+y(t)

仍然是一个周期信号, 其周期是x(t)和y(t)周期的最小公倍数。

(1) 因为sin 2t 是一个周期信号,其角频率ω1和周期T 1为

(2) 同理,可先求得f 2(t )中两个周期信号cos2t 和sin πt 的周期分别为

例 1.3-1 已知信号f(t)的波形如图1.3-6(a)所示,试画出f (1-2t )的波形。

例 1.4 –1 试化简下列各信号的表达式。

例 1.4 – 2 计算下列各式:

s

T s rad πωπ

ω===1

112,/2s

T s rad 323

22,/3222π

πωπω====s T π=1s

T 22=

(a )(b )

(c )(d )

例1.5-8 某离散系统框图如图1.5 - 8所示。试写出描述该系统输入输出关系的差分方程。

解 系统框图中有两个移位器,故系统是二阶系统。采用与连续系统中由框图列写微分方程相类似的方法,在左边移位器的输入端引入辅助函数x(k ),则该移位器的输出为x(k -1),右边移位器的输出为x(k -2)。 写出左边加法器的输出

第二章

y (t )f (k )b )

2()1()()(01----=k x a k x a k f k x )()2()1()(01k f k x a k x a k x =-+-=)2()1()(01---=k x b k x b k y

y(0)=y ′(0)=0,输入激励f(t)=e-tu(t),试求全响应y(t)

解 在求得该方程的齐次解和特解,它们分别是

yh(t)=c1e-t+c2e-2t

yp(t)=te-t

因此,完全解是

y(t)=c1e-t+c2e-2t+te-t

由初始条件y(0)=y ′(0)=0,有

y(0)=c1+c2=0

y ′

(0)=-c1-2c2+1=0

解得c1=-1,c2=1,所以,全响应为

y(t)=(-e-t+e-2t+te-t)·u(t)

2.

解 w1(t)=u(t-t0)-2u(t-2t0)+u(t-3t0)

w2(t)=u(t)-u(t-1)+u(t-2)-u(t-3)+u(t-4)-u(t-5)

w3(t)=u(t)+u(t-t0)+u(t-2t0)-u(t-3t0)-u(t-4t0)-u(t-5t0)

3.

已知某线性非时变系统的动态方程式为

试求系统的冲激响应h(t)。

解 由原方程可得

考虑到该动态方程的特征方程为λ2+3λ+2=0,特征根λ1=-1,λ2=-2,因此设

式中A 、B 为待定系数,将h(t)代入原方程式,解得A=1,B=1。因此,系统的冲激响应为

4.已知某线性非时变(LTI)系统的动态方程式为

y ″(t)+5y ′(t)+4y(t)=2f ′(t)+3f(t)t ≥0

试求系统的冲激响应h(t)。

解 冲激响应h(t)满足动态方程式

h ″(t)+5h ′(t)+4h(t)=2δ′(t)+3δ(t)t ≥0

由于动态方程式右边最高次为δ′(t),故方程左边的最高次h ″(t)中必含有δ′(t),故设

h ″(t)=A δ′(t)+B δ(t)+Cu(t)

因而有

h ′(t)=A δ(t)+Bu(t)

h(t)=Au(t)

将h ″(t),h ′(t)与h(t)分别代入原动态方程式可解得

22()()32()2()3()(0)d y t dy t y t f t f t t dt dt

'++=+≥22()()32()2()3()(0)d y t dy t y t t t t dt dt

δδ++=+≥2()()()

t t h t Ae u t e t --=+2()()()t t h t e u t e t --=+

因此可得

h(0+)=A=2,h ′(0+)=B=-7,h ″

(0+)=27 5.若描述系统的微分方程为 y ″(t)+3y ′(t)+2y(t)= 1/2 f ′(t)+2f(t)

试求系统的阶跃响应。 解 系统的特征根为λ1=-1,λ2=-2,由式(2―49) 知,其阶跃响应

g(t)=(c1e-t+c2e-2t+1)u(t) 它的一阶,二阶导数(考虑到冲激函数的抽样性质)分别为 g ′(t)=(c1+c2+1)δ(t)+(-c1e-t-2c2e-2t)u(t) g ″(t)=(c1+c2+1)δ′(t)+(-c1-2c2)δ(t)+(c1e-t+4c2e-2t)u(t) 将f(t)=u(t),y(t)=g(t),及其导数g ′(t)和g ″(t)代入系统的微分方程,稍加整理得 (c1+c2+1)δ′(t)+(2c1+c2+3)δ(t)+2u(t)= 1/2δ(t)+2u(t) 由系统对应相等有 6. 已知某线性非时变(LTI)系统数学模型为 输入激励f(t)=e-t u(t),且已知h(0)=0,h ′(0)=1。试用卷积积分法求系统的零状态响应yf(t)。

解 系统的特征方程为λ2+3λ+2,特征根为λ1=-1,λ2=-2。又因为n>m ,因此,设

h(t)=(c1e-t+c2e-2t)u(t)

由h(0)=0,h ′(0)=1,解得c1=1,c2=-1。因此,系统的冲激响应

h(t)=(e-t-e-2t)u(t)

由于激励f(t)=e-t u(t)和冲激响应h(t)均为因果函数,因此,在t>0时,有

因此,零状态响应

yf(t)=(te-t-e-t+e-2t)u(t)

1211223102112322

c c c c c c ?++==-??????++=??=???231()(1)()22

t t g t e e u t --=-++22()3()2()()d d y t y t y t f t dt dt

++=()2()022002()()()((1)()()t t t f t t t t t t t t t t y t f t h t e e e d e d e d te e e te e e u t ττττττ------------=*=-=-=--=-+???

7. 已知f1(t)=e-3t u(t),

f2(t)=e-5t u(t),试计算两信号的卷积f1(t)*f2(t)

解 根据卷积积分的定义,可得

8. 已知 分别如图2.29(a),(b)所示。试用图解法求两信号的卷积y(t)=f(t)*h(t)。

综合各段结果,有

121235()35()3535()()()()()()1()

21()()

2t t t t

t t f t f t f f t d e u e u t d e e d e e e e u

t τττττττ

τττ

τ

-∞∞----∞

∞----∞

----*=-=?-==-=-???100

(),()00,00,t T t t T

f t h t t t T t t T

<<<

(e )

( f )

(g )

(h )

22230(0)

1(0)

21()()()(2)

2

13(23)

220(3)

t t t T

y t f t h t Tt t T t T t Tt T T t T

t T <

???≤

??=*=-≤

北师大版-数学-七年级上册-《角》典型例题

《角》典型例题 例1 指出下面角的表示方法是否正确,错误的改正过来。 (1)如图①中的角可以表示为ABC ∠; (2)如图②中的BAC ∠可以表示为A ∠。 例2 如图,用量角器度量三角形的三个角,并指出哪个角是钝角。 例3 计算:(1)0.12°=( )′ (2)24′36″=( )° 例4 如图,在海岸上有A 、B 两个观测站,B 观测站与A 观测站的距离是2.5km ,某天,A 观测站观测到有一条船在南偏东50°方向,在同一时刻,B 观测站观测到该船在南偏东74°方向. (1)请根据以上情况画出船的位置. (2)计算船到B 观测站的距离(画图时用1cm 表示1km ) 例5 如图: (1)以B 为顶点的角有几个:把它们表示出来; (2)指出以射线BA 为边的角; (3)以D 为顶点,DC 为一边的角有几个?分别表示出来。

例6 填空题 (1);______638128?='''? (2)=''0451 '''?; (3)=?26.78 '''?; (4)?120=________平角=_______周角。 例7 求时钟表面3点25分时,时针与分针所夹角的度数.

参考答案 例1 分析 (1)中角顶点的字母没有写在中间,(2)中用A ∠表示,就很难分清是表示三个角中的哪个角。 解 (1)错,应表示为BAC ∠;(2)错,它能用BAC ∠或α∠表示。 说明:(1)表示角时顶点字母必须写在中间;(2)用顶点一个字母去表示角时,必须分清楚表示的是哪个角。 例2 分析 度量时应注意把量角器中角的顶点和所要度量的角的顶点重合,把量角器的“0”点落在被量角的一边上,使被量角的另一边和量角器都在被量角这一边的同侧,这时被量角的另一边所对的刻度就是这个角的度数。 解 经度量?=∠140A 是钝角;?=∠?=∠15,25C B 。 说明:学生所用的一般量角器只精确到度,有时要根据观察来确定角的近似值。 例3 分析 因为,度、分、秒之间的进率是60,所以(1)只需把0.12°乘以60就得到分;(2)则需先将秒变成分,再将分变成度,需要两次除以60。 解 (1)0.12°=(7.2)′ (2)24′36″=(0.41)° 说明:不要出现下面类似的错误:0.12°=1.2′。 例4 分析 (1)根据有关概念,准确地画出图形是解决本题的关键,以从表示A 观测站的点向正下方的射线为角的始边,画出A 观测站观测船的视线,类似地画出B 观测站观测船的视线. 所画两条射线的交点就是船的位置. (2)设船的位置为点C ,量出线段BC 的长是多少厘米,那么船C 到观测站的距离就是多少km . 解 (1) C 点即船的位置. (2)3=BC cm ,所以船到B 观测站的距离约为3km .

数学必修2---直线与方程典型例题(精)

第三章 直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率 【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式: 【典型例题】 题型 一 求直线的倾斜角 例 1 已知直线l 的斜率的绝对值等于3,则直线的倾斜角为( ). A. 60° B . 30° C. 60°或120° D. 30°或150° 变式训练: 设直线l 过原点,其倾斜角为α,将直线l 绕原点沿逆时针方向旋转45°,得到直线1l ,则 1l 的倾斜角为( )。 A. 45α+? B . 135α-? C. 135α?- D. 当0°≤α<135°时为45α+?,当135°≤α<180°时,为135α-? 题型 二 求直线的斜率 例 2如图所示菱形ABCD 中∠BAD =60°,求菱形A BCD 各边和两条对角线所在直线的倾斜角和斜率. 变式训练: 已知过两点22(2,3)A m m +-, 2(3,2)B m m m --的直线l 的倾斜角为45°,求实数m 的值. 题型 三 直线的倾斜角与斜率的关系 例3右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k3? B. k3

变式训练: 若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ). A .4,5a b == B.1b a -= C.23a b -= D.23a b -= 拓展 二 与参数有关问题 例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线l 与线段AB 始终有公共点,求直线l 的斜率k 的取值范围. 变式训练: 已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB相交,求直线l 的斜率k 的取值范围. 拓展 三 利用斜率求最值 例 6 已知实数x 、y 满足28,x y +=当2≤x ≤3时,求y x 的最大值与最小值。 变式训练: 利用斜率公式证明不等式:(0a m a a b b m b +><<+且0)m > 3.1.2 两条直线平行与垂直的判定 【知识点归纳】

高中数学线面角与线线角例题、习题-学生

线面角与线线角专练(小练习一)【知识网络】 1、异面直线所成的角:(1)范围:(0,]2π θ∈; (2)求法; 2、直线和平面所成的角:(1)定义:(2)范围:[0,90]o o ;(3)求法; 【典型例题】 例1:(1)在正方体1111ABCD A B C D -中,下列几种说法正确的是 ( ) A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45o 角 D 、11AC 与1B C 成60o 角 (2)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为 ( ) A 、2个 B 、4个 C 、6个 D 、8个 (3)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是1,2则这个棱柱的侧 面对角线E 1D 与BC 1所成的角是 ( ) A .90o B .60o C .45o D .30o (4)在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是 。 (5)点AB 到平面α距离距离分别为12,20,若斜线AB 与α成030的角,则AB 的长等于__ ___. 例2:.如图:已知直三棱柱ABC —A 1B 1C 1,AB =AC ,F 为棱BB 1上一点,BF ∶FB 1=2∶1,BF =BC =2a 。 (I )若D 为BC 的中点,E 为AD 上不同于 A 、D 的任意一点,证明EF ⊥FC 1; (II )试问:若AB =2a ,在线段AD 上的E 点能否使EF 与平面BB 1C 1C 成60°角,为什么?证明你的结论。 例3: 如图, 四棱锥P-ABCD 的底面是AB=2, BC =2的矩形, 侧面PAB 是等边三角形, 且侧面 PAB ⊥底面ABCD. (Ⅰ)证明:BC ⊥侧面PAB; (Ⅱ)证明: 侧面PAD ⊥侧面PAB; (Ⅲ)求侧棱PC 与底面ABCD 所成角的大小; A B C D P

直线与圆(典型例题和练习题)

直线与圆 1.本单元知识点 本单元的学习重点包括:直线的斜率、直线的方程、直线与直线的位置关系,圆的方程、圆与圆的位置关系,直线与圆的位置关系,直线与圆的距离问题,其中直线与圆的位置关系是高考热点. 2.典型例题选讲 例1. 过点M (0,1)作直线,使它被两直线082:,0103:21=-+=+-y x l y x l 所截得的线段恰好被M 所平分,求此直线的方程. 说明:直线方程有三种基本形式:点斜式、两点式、一般式,求直线方程时应根据题目条件灵活选择,并注意不同形式的适用范围. 如采用点斜式,需要注意讨论斜率不存在的情况. 例2.已知圆0822:221=-+++y x y x C 与圆024102:222=-+-+y x y x C 交于A,B 两点. (1)求直线AB 的方程; (2)求过A 、B 两点且面积最小的圆的方程. 说明:应用两圆相减求两圆公共弦的方法,可避免通过求两个交点再求公共弦方程. 另外,在求解与圆有关的问题时,应注意多利用圆的相关几何性质,这样利于简化解题步骤.

例3.若过点A (4,0)的直线l 与曲线1)2(22=+-y x 有公共点,求直线l 的斜率k 的取值范围. (一题多解) 说明:直线与圆的位置关系问题,可以从几何和代数两方面入手. 相切问题应抓住角度问题求斜率;相交问题应抓住半径r 、弦心距d 、半弦长2 l 构造的直角三角形使问题简化. 例4.设定点M (-3,4),动点N 在圆422=+y x 上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹. 说明:轨迹方程在必修2第122页有例题,求动点的轨迹方程要特别注意考虑轨迹与方程间的等价性,有时求得方程后还要添上或去掉某些点.

解三角形高考典型例题汇编

《解三角形》 一、 正弦定理:sin sin sin a b c A B C ===2R 推论:(1) ::sin :sin :sin a b c A B C = (2) a=2RsinA b=2RsinB c=2RsinC (3) sin =,sin =,sin = 222a b c A B C R R R 1. 在△中,若,则= 2. 在△中,a =b=6, A=300 ,则B= 3. 【2013山东文】在中,若满足,,,则 4.【2010山东高考填空15题】在△ABC 中a ,b=2,sinB+cosB ,则A=? 5.【2017全国文11】△ABC 中,sin sin (sin cos )0B A C C +-=,a =2,c ,则C =? 6. 在△ABC 中, C =90o , 角A ,B ,C 的对边分别是a ,b ,c.则 a b c +的取值范围是? 二、余弦定理:222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 推论 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-?=???+-= ?? 1. 在△ABC 中,如果sin :sin :sin 2:3:4A B C =,求cos C 的值 2. 在△ABC 中,若则A= 3. 【2012上海高考】在中,若,则的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 4.【2016山东文科】ABC △中角A ,B ,C 的对边分别是a ,b ,c ,,b c = 22 2(1sin )a b A =-, 则A =? (A )3π4 (B )π3 (C )π4 (D )π6

数学必修2 直线与方程典型 例题

第三章直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率 【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式: 【典型例题】 题型一求直线的倾斜角 例 1 已知直线的斜率的绝对值等于,则直线的倾斜角为(). A. 60° B. 30° C. 60°或120° D. 30°或150° 变式训练: 设直线过原点,其倾斜角为,将直线绕原点沿逆时针方向旋转45°, 得到直线,则的倾斜角为()。 A. B. C. D. 当0°≤α<135°时为,当135°≤α<180°时,为 题型二求直线的斜率 例2如图所示菱形ABCD中∠BAD=60°,求菱形ABCD各边和两条对角线所在直线的倾斜角和斜率. 变式训练:已知过两点, 的直线l的倾斜角为45°,求实数的值. 题型三直线的倾斜角与斜率的关系 例3右图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则(). A .k1<k2<k3 B. k3<k1<k2 C. k3<k2<k1 D. k1<k3<k2

拓展一三点共线问题 例4 已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值. 变式训练: 若三点P(2,3),Q(3,),R(4,)共线,那么下列成立的是(). A. B. C. D. 拓展二与参数有关问题 例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线与线段AB始终有公共点,求直线的斜率的取值范围. 变式训练: 已知两点,直线过定点且与线段AB相交,求直线的斜率的取值范围.

拓展三利用斜率求最值 例 6 已知实数、满足当2≤≤3时,求的最大值与最小值。 变式训练:利用斜率公式证明不等式:且 3.1.2 两条直线平行与垂直的判定 【知识点归纳】 1.直线平行的判定 2.两条直线垂直的判定(注意垂直与x轴和y轴的两直线): 【典型例题】 题型一两条直线平行关系 例 1 已知直线经过点M(-3,0)、N(-15,-6),经过点R(-2,)、S(0,),试判断与是否平行? 变式训练:经过点和的直线平行于斜率等于1的直线,则的值是(). A.4 B.1 C.1或3 D.1或4

线面角的计算方法

教师姓名 余永奇 学生姓名 洪 懿 上课时间 2014.11.15 辅导学科 数学 学生年级 高二 教材版本 人教版 课题名称 线面角,二面角的计算方法(文科) 本次学生 课时计划 第(10)课时 共(60)课时 教学目标 线面角的计算方法 教学重点 线面角的计算方法 教学难点 线面角的计算方法 教师活动 学生活动 上次作业完成情况(%) 一.检查作业完成情况,并讲解作业中存在的问题 二.回顾上次课辅导内容 三.知识回顾,整体认识 1、本章知识回顾 (1)空间点、线、面间的位置关系; (2)直线、平面平行的判定及性质; (3)直线、平面垂直的判定及性质。 2、本章知识结构框图 (二)整合知识,发展思维 1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。 公理1——判定直线是否在平面内的依据; 公理2——提供确定平面最基本的依据; 公理3——判定两个平面交线位置的依据; 公理4——判定空间直线之间平行的依据。 2、空间问题解决的重要思想方法:化空间问题为平面问题; 3、空间平行、垂直之间的转化与联系: 平面(公理1、公理2、公理3、公理4) 空间直线、平面的位置关系 直线与直线的位置关系 直线与平面的位置关系 平面与平面的位置关系 直线与直线平行 直线与平面平行 平面与平面平行

4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。 典型例题: 线面夹角的计算 例1(2014浙江高考文科20题)如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2, DE=BE=1,AC=2. (Ⅰ)证明:AC⊥平面BCDE; (Ⅱ)求直线AE与平面ABC所成的角的正切值. 例2(2013浙江,文20)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=BC=2,AD=CD=7,PA =3,∠ABC=120°,G为线段PC上的点. (1)证明:BD⊥平面APC; (43 3 ) (2)若G为PC的中点,求DG与平面APC所成的角的正切值; (3)若G满足PC⊥平面BGD,求PG GC 的值.(3/2) 直线与直线垂直直线与平面垂直平面与平面垂直

有关直线与圆的几个典型例题

有关直线与圆的几个典型例题 本节内容在高考题中通常是通过选择题、填空题进行考查,在解 答题中往往是出现在第(1)小题中,考查的热点是求直线的方程, 两直线平行、垂直的关系,关于直线的对称问题,直线与圆的位置关 系及圆与圆的位置关系等。要熟练掌握求直线方程的方法,注意根据 已知条件灵活选择方程形式;在解决圆的有关问题时,要注意圆的儿 何性质的应用。 例1:在A ABC 中,已知顶点A(3,-l),过点B 的内角平分线所在 直线的方程为x-4y+10=0,过点C 的中线所在直线的方程为 6x+10y-59=0,求顶点B 的坐标及BC 边的方程。 A + 3 J -1 解:设B 点坐标为(x,y),则AB 的中点E 的坐标为(丁'丁), 因 E 在直线 6x+10y-59=0±, 乳 + 3 ??? 6 ? 2 +10 ? 2 -59=0,整理得 3x+5y-55=Oo 乂过点B 的内角平分线所在直线方程为x-4y+10=0o 戸+ "-55 = 0, |x = 10, 解方程组仍10丸得卜" ???B 点坐标为(10,5)。 6 设BC 边所在直线斜率为k, AB 边所在直线斜率k AB = 7,角B 平 _1 分线的斜率为忆。 例2:已知过点A(1J),且斜率为的直线/与x,y 轴分别 交于P 、Q 点,过P 、Q 作直线2x+y=0的垂线,垂足分别为R, S, 2 - 9 - = k ???BC 边所在直线方程为2x+9y-65=0o 评注:本题是关于求直线方程的例 题。 6 一 7 6 一 7

求四边形PRSQ 的面积的最小值。 丄 解:设直线1的方程为y-l=-m(x-l),则P 、Q 的坐标分别为(1 +也,0), (0,1 +m) o 1 m +1 m +1 /? PR 所在直线方程为y=2(x ?m ),即x ?2y ?朋=0 丄 QS 所在直线方程为 y= 2 x+m+1,即 x-2y+2(m+l)=0。 | 2加十2十1十丄| 3十2眈十丄 m = m m +1 乂IPRI=怎,IQSI=品, ???四边形PRSQ 的面积为 (2 + -+m + 1) 3+2忍十丄2(购+丄尸十9⑻+丄)+ 10 . 〔。 〔 S=- ? ———?— =——世 ------------ 世—丄[(时丄)+分-丄, 2 75 10 5 4 80 丄 *.* m>0,?*. m+m $2, ?°?、勺 m=l 时,Smin=3.6。 故四边形PRSQ 面积的最小值为3.6o 评注:本题是关于直线的平行、垂直问题的例题 例3:根据下列条件求圆的方程: (1) 圆心在直线/]: 5x-3y=O 上,并且圆与直线伍:x-6y-10=0 相切于点P(4,?l); (2) 圆过点P(-2,4), Q(3,-l),并且在x 轴上截得的弦长等于6; (3) 圆心在曲线y 2=-18x ±,并且既与y 轴相切乂与圆 (x+2)2+(y- 3)2=l 外切。 解:(1)设圆心为C(3t,5t), 主十1 . 1 T PR//QS, |RS| = 75

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC中,C=90°,AB=c,AC=b,BC=a。 2 2 2 (1)三边之间的关系: a + b =c 。(勾股定理) (2)锐角之间的关系:A+B=90°; (3)边角之间的关系:(锐角三角函数定义) sin A=cos B=a c ,cos A=sin B= b c ,tan A= a b 。 2.斜三角形中各元素间的关系: 在△ABC中,A、B、C为其内角,a、b、c 分别表示A、B、C的对边。(1)三角形内角和:A+B+C=π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 a sin A b sin B c sin C 2R (R为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 2 2 2 2 2 2 2 2 2 a = b + c -2bc cos A; b =c +a -2ca cos B; c =a +b -2ab cos C。 3 .三角形的面积公式: (1)S =1 2 ah a= 1 2 bh b= 1 2 ch c(h a、h b、h c 分别表示a、b、c 上的高); (2)S =1 2 ab sin C= 1 2 bc sin A= 1 2 ac sin B; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

直线与方程(经典例题)

直线与方程 知识点复习: 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[ ) 90,0∈α时,0≥k ; 当( ) 180,90∈α时,0

线线角-线面角-二面角的一些题目.

B 1 D 1 A D C 1 B C A 1 线线角与线面角习题 新泰一中 闫辉 一、复习目标 1.理解异面直线所成角的概念,并掌握求异面直线所成角的常用方法. 2.理解直线与平面所成角的概念,并掌握求线面角常用方法. 3.掌握求角的计算题步骤是“一作、二证、三计算”,思想方法是将空间图形转化为平面图形即“降维”的思想方法. 二、课前预习 1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 . 2.如图,在长方体ABCD-A 1B 1C 1D 1中 ,B 1C 和C 1D 与底面所成的角分别为60ο和45ο ,则异面直线B 1C 和C 1D 所成角的余弦值为 ( ) (A). 4 6 (B). 36 (C).62 (D).6 3 3.平面α与直线a 所成的角为 3 π ,则直线a 与平面α内所有直线所成的角的取值范围是 . 4.如图,ABCD 是正方形,PD ⊥平面ABCD,PD=AD,则PA 与BD 所成的角的度数为 (A).30ο (B).45ο (C).60ο (D).90ο 5.有一个三角尺ABC,∠A=30ο, ∠C=90ο ,BC 是贴于桌面上, 当三角尺与桌面成45ο 角时,AB 边与桌面所成角的正弦值 是 . 三、典型例题 例1.(96·全国) 如图,正方形ABCD 所在平面与正方形 ABEF 所在平面成60ο 角,求异面直线AD 与BF 所成角的余弦值. 备课说明:1.求异面直线所成的角常作出所成角的平面图形.作法有: ①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线 或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容 易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并要 有严格的推理论证过程,还要有合理的步骤. 例2.如图在正方体AC 1中, (1) 求BC 1与平面ACC 1A 1所成的角; (2) 求A 1B 1与平面A 1C 1B 所成的角. 备课说明:求直线与平面所成角的关键是找直线在此平面上的射影,为此必须在这条直线上找一点作平面的垂线. 作垂线的方法常采用:①利用平面垂直的性质找平面的垂线.②点的射影在面内的特殊位置. A C B A D C 1D 1 A 1 B 1C B D B P C D A C B F E

直线与圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2=---+y x y x 相切,且和直线0=y 相切的圆的方程.

角和角的比较知识归纳及经典习题

角(基础)知识讲解 【高清课堂:角397364 角的概念】 要点一、角的概念 1.角的定义: (1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB. 图1 图2 (2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边. 要点诠释: (1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关. (2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角. 1.下列语句正确的是( C )

A.两条直线相交,组成的图形叫做角. B.两条具有公共端点的线段组成的图形叫做角. C.两条具有公共端点的射线组成的图形叫做角. D.过同一点的两条射线组成的图形叫做角. 【答案】 【解析】根据角的定义判断 【总结升华】角不能仅仅看作是有公共端点的两条射线,角的两种描述中都隐含了组成角的一个重要元素,即两条射线间的相对位置关系,这是角与“有公共端点的两条射线”的重要区别. 举一反三: 【变式】判断下列说法是否正确 (1)两条射线组成的图形叫做角( ×) (2)平角是一条直线( × ) (3)周角是一条射线( × ) 2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:

要点诠释: 用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母. 写出图中(1)能用一个字母表示的角;(2)以B为顶点的角;(3)图中共有几个角(小于180°). 【答案与解析】 解:(1)能用一个字母表示的角∠A、∠C. (2)以B为顶点的角∠ABE、∠ABC、∠CBE. (3)图中共有7个角. 【总结升华】(1)顶点处只有一个角时,才可以用一个字母表示;(2)一般数角时不包括平角和大于平角的角. 已知:如图,在∠AOE的内部从O引出3条射线,求图中共有多少个角?如果引出99条射线,则有多少个角? 分析:在∠AOE的内部从O点引出3条射线,那么在图形中,以O为端点的射线共5条。其中,任意一条射线与其他4条射线都必构成一个角(小于平角的角)。数角的时候要按一定的顺序,从OE边开始数,这样可得到4+3+2+1个角,所以,这5条射线共组成角的个数为10个角。 公式为:2)1 ( n n 。同理,如果引出99条射线,那么,以O为顶点的射线共101

最新直线与方程知识点及典型例题

第三章 直线与方程知识点及典型例题 1. 直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时 ,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。 直线的斜率常用k 表示。即k=tan α。斜率反映直线与轴的倾斜程度。 当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; 当直线l 与x 轴垂直时, α= 90°, k 不存在. 当[ ) 90,0∈α时,0≥k ; 当( ) 180 ,90∈α时,0

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

初中直线与圆的位置关系经典练习题

圆与直线的基本性质 一、定义 [例1]在ABC Rt?中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何位置关系?为什么? (1)r=2cm; (2)r=2.4cm; (3)r=3cm。 [例2]在ABC ?中,BC=6cm,∠B=30°,∠C=45°,以A为圆心,当半径r多长时所作的⊙A与直线BC相切?相交?相离? [变式题]已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是【】 A.相切B.相离C.相离或相切 D.相切或相交 二、性质 例1:如图,AB是⊙O的直径,C.D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于【】A.40°B.50°C.60°D.70°变式1:如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠ACP=【】 A. 30B. 45 C. 60D.67.5 例3:如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是【】 A.80° B.110° C.120° D.140° 变式2:如图,圆周角∠BAC=55°,分别过B,C两点作⊙O的切线,两切线相交与点P,则∠BPC=°. 例5:如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.

变式3:如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为cm2.例7:如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N. (1)求证:OM=AN; (2)若⊙O的半径R=3,PA=9,求OM的长.变式4:如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF 于点H,交⊙O于点C,连接BD. (1)求证:BD平分∠ABH; (2)如果AB=12,BC=8,求圆心O到BC的距离. 三、切线的判定定理: 例1:如图,AB是⊙O的直径,AC和BD是它的两条 切线,CO平分∠ACD.(1)求证:CD是⊙O的切线; (2)若AC=2,BC=3,求AB的长.

数学必修2---直线与方程典型例题

第三章直线与方程 【典型例题】 题型一求直线的倾斜角与斜率 设直线I斜率为k且1

3.1.2两条直线平行与垂直的判定 【 【典型例题】 题型一两条直线平行关系 例1 已知直线l i 经过点M (-3, 0)、N (-15,-6), 12 经过点R (-2, - )、S (0, 2 5),试判断^与12是否平行? 2 变式训练:经过点P( 2,m)和Q(m,4)的直线平行于斜率等于1的直线,贝U m的值是(). A . 4 B. 1 C. 1 或3 D. 1 或4 题型二两条直线垂直关系 例2已知ABC的顶点B(2,1), C( 6,3),其垂心为H( 3,2),求顶点A的坐标. 变式训练:(1) h的倾斜角为45 ° 12经过点P (-2,-1 )、Q (3,-6),问h与12是否垂直? (2)直线11,12的斜率是方程x2 3x 1 0的两根,则h与12的位置关系是—. 题型三根据直线的位置关系求参数 例3已知直线h经过点A(3,a)、B (a-2,-3),直线S经过点C (2,3)、D (-1,a-2) (1)如果I1//I2,则求a的值;(2)如果11丄12,则求a的值 题型四直线平行和垂直的判定综合运用 例4四边形ABCD的顶点为A(2,2 2 2)、B( 2,2)、C(0,2 2.. 2)、D(4,2),试判断四边形ABCD的形状.

(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】 考点一:平面直角坐标系中点的特征 例1 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围. 解:由第一象限点的坐标的特点可得: 20 m m > ? ? -> ? , 解得:m>2. 故答案为:m>2. 点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正. 例1 如果m是任意实数,则点P(m-4,m+1)一定不在() A.第一象限B.第二象限C.第三象限D.第四象限 思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:∵(m+1)-(m-4)=m+1-m+4=5, ∴点P的纵坐标一定大于横坐标, ∵第四象限的点的横坐标是正数,纵坐标是负数, ∴第四象限的点的横坐标一定大于纵坐标, ∴点P一定不在第四象限. 故选D. 点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).例2 如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是() A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1) 分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答. 解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知: ①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;

直线与圆知识点及经典例题

圆的方程、直线和圆的位置关系 【知识要点】 一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程这个方程叫做圆的标准方程。 说明: 1 、若圆心在坐标原点上,这时,则圆的方程就是。 2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了 圆,所以,只要三个量确定了且〉0,圆的方程就给定了。 就是说要确定圆的方程,必须具备三个独立的条件确定,可以根据条件,利用待定系数法来解决。 (二)圆的一般方程 将圆的标准方程, 展开可得。可见,任何一个圆的方程都可以写成: 问题:形如的方程的曲线是不是圆 将方程左边配方得: (1)当〉0时,方程(1 )与标准方程比较,方程表示以为圆心,以为半径的圆。, (3)当v 0时,方程没有实数解,因而它不表示任何图形。 圆的一般方程的定义: 当〉0时,方程称为圆的一般方程? 圆的一般方程的特点: ( 1 )和的系数相同,不等于零; ( 2)没有xy 这样的二次项。 (三)直线与圆的位置关系 1、直线与圆位置关系的种类 ( 1 )相离--- 求距离;(2) 相切--- 求切线;( 3)相交--- 求焦点弦长。 2、直线与圆的位置关系判断方法: 几何方法主要步骤: ( 1)把直线方程化为一般式,利用圆的方程求出圆心和半径 ( 2)利用点到直线的距离公式求圆心到直线的距离 (3)作判断:当d>r时,直线与圆相离;当 d = r时,直线与圆相切;当d0时,直线与圆相交。 【典型例题】 类型一:圆的方程 例 1 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系. 变式1:求过两点、且被直线平分的圆的标准方程. 变式2:求过两点、且圆上所有的点均关于直线对称的圆的标准方程. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为????圆心在上,故????圆的方程为. 又???该圆过、两点.??? 解之得:, 所以所求圆的方程为.解法二:(直接求出圆心坐标和半径) 因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线 的方程为:即. 又知圆心在直线上,故圆心坐标为.??半径. 故所求圆的方程为.又点到圆心的距离为

相关文档
最新文档