高一上半期数学试题(含答案)
四川省成都市树德中学2023-2024学年高一上学期期中数学试题 扫描版含答案

树德中学高2023级高一上学期半期数学试题命题人:常勇审题人:邓连康、韦莉、梁刚一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合{}22,a a 中实数a 的取值范围是()。
A .{}0,2a a a ==或B .{}0,2a a a ==且C .{}0,2a a a ≠≠或D .{}0,2a a a ≠≠且2.下列四组函数中,表示相同函数的一组是()。
A .()11f x x x +⋅-=,()21g x x =-B .()2f x x =,()()2g x x=C .10()1,0x f x x ≥⎧=⎨-<⎩,,,0()1,0xx x g x x ⎧≠⎪=⎨⎪=⎩D .()1f x =,()0g x x=3.荀子曰:“故不积跬步,无以至千里;不积小流,无以成江海.“这句来自先秦时期的名言.此名言中的“积跬步”是“至千里”的()。
A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.树德中学2023年秋季运会亮点之一----师生火炬传递,火炬如图(1)所示,数学建模活动时将其抽象为图(2)所示的几何体.假设火炬装满燃料,燃烧时燃料以均匀的速度消耗,记剩余燃料的高度为h ,则h 关于时间t 的函数的大致图象可能是()。
A .B .C .D .5.满足{}1A ⊆ {}1,2,3,4的集合A 的个数为()。
A .7B .8C .15D .166.已知函数321x y x +=-,(],x m n ∈的最小值为8,则实数m 的取值范围是()。
A .()0,1B .()1,2C .(]1,2D .[)1,27.定义在R 上函数()y f x =满足以下条件:①函数()1y f x =+是偶函数;②对任意12,(,1]x x ∈-∞,当12x x ≠时都有()()2211)(0()x x f x f x -->,则()0f ,32f ⎛⎫⎪⎝⎭,()3f -的大小关系为()。
高一上半期数学试题含答案

高一上期半期考试数学试卷一、选择题:1.已知集合M ={x |x <3},N ={x |22x >},则M ∩N = ( )A .∅B .{x |0<x <3}C .{x |1<x <3}D .{x |2<x <3} 2. 有五个关系式:①∅≠⊂}0{;②}0{=∅;③∅=0;④}0{0∈;⑤∅∈0其中正确的有 ( ) A.1个. B.2个. C.3个. D.4个. 3.下列各组函数中表示同一函数的是( ) A .()f x x = 与()()2g x x =B .()f x x = 与()33g x x =C .()f x x x = 与()()()2200x x g x x x ⎧ >⎪=⎨- <⎪⎩D .()211x f x x -=- 与()()11g x x x =+ ≠4. 下列各图形中,是函数的图象的是( )5.设,)31(,)31(,)32(313231===c b a 则c b a ,,的大小关系是( )A.b c a >>B.c b a >>C.b a c >>D.a c b >>6.下列函数为偶函数且在[)+∞,0上为增函数的是( ) A .y x = B .2y x = C .2x y = D .2x y -=7.已知函数⎩⎨⎧>-≤=2),1(log 2,2)(2x x x x f x ,则))5((f f 的值为( )A .1B .2C .3D .4 8.下列函数中值域为),0(+∞的是( ) A. y =-5xB.y =(31)1-x C.y =1)21(-xD.y =x 21-9.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )OxyO x yOxyO xyA B C DA .)23(-f >)252(2++a a fB .)23(-f <)252(2++a a fC .)23(-f ≥)252(2++a a fD .)23(-f ≤)252(2++a a f{}{}[][][)[][]2,0.1,0.,21,0.),2(1,0.B A ,0,,2A .)()(B A .1022D C B x y y B x y x B A x B A x x B A xx +∞+∞⨯>==⎭⎬⎫⎩⎨⎧-==⋂∉⋃∈=⨯ A等于()则已知且是非空集合,定义、设 二、填空题 11.函数y =的定义域是 ;12.函数)10(1)(1≠>+=-a a a x f x 且恒过定点 ; 13.300)32(10])2[(])37(2[25.013132021--+-⨯⨯----=___________;14. 设{}{}25,121A x x B x m x m =-≤≤=+≤≤-,若A B B ⋂=,则实数m 的取值范围是 ;15. 设定义在R 的函数)(x f 同时满足以下条件:①0)()(=-+x f x f ; ②)2()(+=x f x f ;③当10<≤x 时,12)(-=x x f 。
四川省成都市2023-2024学年高一上学期期中数学试题含解析

高2023级高一上学期半期数学试题(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}22,a a 中实数a 的取值范围是()A.{0,a a =或2}a =B.{0,a a =且2}a = C.{0,a a ≠或2}a ≠ D.{0,a a ≠且2}a ≠【答案】D 【解析】【分析】根据已知,结合集合元素的互异性,即可求解.【详解】由集合元素的互异性可知,22a a ≠,解得0a ≠且2a ≠,所以实数a 的取值范围为{0,a a ≠且2}a ≠.故选:D.2.下列四组函数中,表示相同函数的一组是()A.()f x =()g x = B.()f x =()2g x =C.10()1,0x f x x ≥⎧=⎨-<⎩,,,0()1,0xx x g x x ⎧≠⎪=⎨⎪=⎩D.()1f x =,()0g x x=【答案】C 【解析】【分析】根据相等函数满足定义域、对应关系相同,逐一判断即可.【详解】对于A ,函数()f x ={}|1x x ≥,函数()g x =的定义域为{|1x x ≥或}1x ≥-,故两个函数的定义域不一样,所以不是相同函数,故A 错误;对于B ,函数()f x =x ∈R ,函数()2g x =的定义域为{}|0x x ≥,故两个函数的定义域不一样,所以不是相同函数,故B 错误;对于C ,10()1,0x f x x ≥⎧=⎨-<⎩,,,01,0()()1,01,0xx x x g x f x x x ⎧≠≥⎧⎪===⎨⎨-<⎩⎪=⎩,故C 正确;对于D ,函数()1f x =的定义域为x ∈R ,函数()0g x x =的定义域为{}|0x x ≠,故两个函数的定义域不一样,所以不是相同函数,故D 错误.故选:C.3.荀子曰:“故不积跬步,无以至千里;不积小流,无以成江海”,这句话是来自先秦时期的名言.此名言中的“积跬步”一定是“至千里”的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件【答案】B【解析】【分析】根据四种命题的基本关系,利用命题与其逆否命题的真假性可知“积跬步”一定是“至千里”的必要条件;【详解】由已知设“积跬步”为命题p,“至千里”为命题q,“故不积跬步,无以至千里”,即“若p⌝,则q⌝”为真命题,其逆否命题为“若q,则p”为真命题,反之不成立,所以命题p是命题q的必要不充分条件,故“积跬步”一定是“至千里”的必要条件;故选:B.4.杭州亚运会火炬如图(1)所示,小红在数学建模活动时将其抽象为图(2)所示的几何体.假设火炬装满燃料,燃烧时燃料以均匀的速度消耗,记剩余燃料的高度为h,则h关于时间t的函数的大致图象可能是()A. B.C. D.【答案】A 【解析】【分析】根据火炬的形状:中间细、上下粗来分析剩余燃料的高度h 随时间t 变化的下降速度.【详解】由图可知,该火炬中间细,上下粗,燃烧时燃料以均匀的速度消耗,燃料在燃烧时,燃料的高度一直在下降,刚开始时下降的速度越来越快,燃料液面到达火炬最细处后,燃料的高度下降得越来越慢,结合所得的函数图象,A 选项较为合适.故选:A.5.满足{}1A ⊆⫋{}1,2,3,4的集合A 的个数为()A.7 B.8C.15D.16【答案】A 【解析】【分析】利用元素与集合的关系、集合与集合的关系分析运算即可得解.【详解】∵{}1A ⊆,∴1A ∈,∵A ⫋{}1,2,3,4,∴满足题意的集合A 有:{}{}{}{}{}{}{}1,1,2,1,3,1,4,1,2,3,1,2,4,1,3,4,共7个.故选:A .6.已知函数321x y x +=-,(],x m n ∈的最小值为8,则实数m 的取值范围是()A.()0,1 B.()1,2 C.(]1,2 D.[)1,2【答案】D 【解析】【分析】对反比例型函数321x y x +=-分离常数,由(],x m n ∈时的最小值为8得到n ,求出m 范围.【详解】由323(1)553111x x y x x x +-+===+---,因为321x y x +=-在(],x m n ∈上的最小值为8,所以(],x m n ∈时,553851011x x x +≥⇒≥⇒->--,所以1m n ≤<,易知反比例型函数531y x =+-在()1,+∞单调递减.所以531y x =+-在x n =处取到的最小值为8,即53821n n +=⇒=-,所以12m ≤<.故选:D7.定义在R 上函数()y f x =满足以下条件:①函数()1y f x =+是偶函数;②对任意12,(,1]x x ∈-∞,当12x x ≠时都有()()()()12120x x f x f x -->,则()0f ,32f ⎛⎫⎪⎝⎭,()3f -的大小关系为()A.()()3032f f f ⎛⎫>>-⎪⎝⎭B.()()3302f f f ⎛⎫->>⎪⎝⎭C.()()3302f f f ⎛⎫>->⎪⎝⎭D.()()3302f f f ⎛⎫->>⎪⎝⎭【答案】B 【解析】【分析】根据条件判断函数的对称性和单调性,利用单调性比较函数值大小即可.【详解】由函数()1y f x =+是偶函数,所以函数()y f x =图象关于直线1x =对称,又对任意12,(,1]x x ∈-∞,当12x x ≠时都有()()()()12120x x f x f x -->,所以函数()y f x =在(,1]-∞上单调递增,又3122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,13012-<<<,所以()()1302f f f ⎛⎫->> ⎪⎝⎭,所以()()3302f f f ⎛⎫->> ⎪⎝⎭.故选:B8.已知函数()f x 是定义在()0,∞+上的单调函数,且()0,x ∀∈+∞时,都有2()1f f x x ⎛⎫+=- ⎪⎝⎭,则(1)f =()A.-4或-1B.-4C.-1D.0【答案】C 【解析】【分析】根据题意,采用换元法,求出()f x 的解析式,从而得到(1)f .【详解】由题意得,设2()f x xk +=,k 是一个大于0的常数,因为()2()1f f x f k x ⎛⎫+==- ⎪⎝⎭,所以2()f x k x +=,2()f x k x =-,则有2()1kf k k =-=-,因为()0,k ∈+∞,所以1k =,2()1f x x=-,所以()21111f =-=-,故选:C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题中正确的是()A.若15,23a b -<<-<<,则12a b <-<B.若a b >,则22a b >C.若22ac bc >,则a b >D.若0,0a b m >>>,则b m ba m a+>+【答案】CD 【解析】【分析】根据不等式的性质及其利用特例对各项进行判断,从而求解.【详解】对于A 项:因为:15a -<<,23b -<<,所以得:32b -<-<,又因为:15a -<<,所以得:47a b -<-<,故A 项错误;对于B 项:令1a =,2b =-,所以得:a b >,但2214a b =<=,故B 项错误;对于C 项:由22ac bc >,得:20c >,所以得:a b >,故C 项正确;对于D 项:由0a b >>,0m >,得:0a b ->,所以得:()()()0a b mb m b ab am ab bm a m a a a m a a m -++---==>+++,故D 项正确;故选:CD.10.下列说法不正确...的是()A.()A A ∅⊆为任意集合B.定义在R 上的奇函数()f x 在()0+∞,上是增函数,则()f x 在R 上为增函数C.函数()2f x =的最小值为2D.一元二次方程220x mx -+=的两根都在(1,)+∞内的充要条件是m ≥【答案】BCD 【解析】【分析】根据集合包含关系,函数单调性与奇偶性关系,函数值域求法,一元二次方程根的分布,依次判断即可.【详解】对于A ,根据规定空集是任何集合的子集,所以A 正确;对于B ,比如函数1,0()0,0x f x x x ⎧-≠⎪=⎨⎪=⎩,()f x 在()0+∞,,(),0∞-上分别递增,但()f x 在R 上不单调,所以B 不正确;对于C ,()22f x ==2≥,当且仅当=1=1=不成立,故“=”取不到,所以C 错误;对于D ,一元二次方程220x mx -+=的两根都在(1,)+∞,则22808m m ∆=-≥⇒≥,设2()2f x x mx =-+,则()f x 对称轴122mx m =>⇒>,且(1)1203f m m =-+>⇒<,综上可知3m ≤<,所以D 错误;故选:BCD11.不等式(1)(3)20a x x --+>的解集为12(,)(,)x x -∞+∞ ,其中12x x <,则下列结论中正确的是()A.124x x +=B.122x x ->C.1234x x << D.不等式2(32)40a x ax a +-+<解集为2111,x x ⎛⎫⎪⎝⎭【答案】ACD 【解析】【分析】由题意得方程(1)(3)20a x x --+=的两个根分别为12,x x ,然后利用根与系数的关系,结合0∆>,可得12,,x x a 的关系,再逐个分析判断.【详解】因为不等式(1)(3)20a x x --+>的解集为12(,)(,)x x -∞+∞ ,其中12x x <,所以方程(1)(3)20a x x --+=,即24320ax ax a -++=的两个根分别为12,x x ,且0a >,所以12122432Δ164(32)0x x a x x aa a a a +=⎧⎪+⎪=⎪⎨⎪=-+>⎪>⎪⎩,即12124232x x x x a a +=⎧⎪⎪=+⎨⎪>⎪⎩,对于A ,124x x +=,所以A 正确,对于B,12x x -=因为2a >,所以1102a <<,所以804a <<,所以8044a<-<,所以02<<,所以1202x x <-<,所以B 错误,对于C ,因为2a >,所以1102a <<,所以2334a<+<,所以1234x x <<,所以C 正确,对于D ,因为12124322x x a x x a a +=⎧⎪+⎪=⎨⎪>⎪⎩,所以12121243220,0x x a ax x a x x =+⎧⎪+=⎪⎨>⎪⎪>>⎩,所以由2(32)40a x ax a +-+<,得21212()0ax x x a x x x a -++<,所以21212()10x x x x x x -++<,得()()x x x x --<12110,因为120x x <<,所以21110x x <<,所以不等式()()x x x x --<12110的解集为2111,x x ⎛⎫ ⎪⎝⎭,即不等式2(32)40a x ax a +-+<解集为2111,x x ⎛⎫⎪⎝⎭,所以D 正确,故选:ACD12.根据已学函数()0c y x c x =+≠的图象与性质来研究函数()()0bf x ax ab x=+≠的图象与性质,则下列结论中正确的是()A.若0ab >,()f x在⎫+∞⎪⎪⎭为增函数B.若0ab <,0m ∀>,方程()f x m =一定有4个不同实根C.设函数()()()2322131x x g x f x x +++=++在区间[)(]2,00,2-U 上的最大值为M ,最小值为N ,则M N +=8D.若2,2a b ==-,对任意[)1,x ∞∈+,()()0f mx mf x +<恒成立,则实数m 的取值范围是1m <-【答案】BCD 【解析】【分析】由题意,类比()0cy x c x=+≠,通过单调性,奇偶性,恒成立问题逐选项判断即可.【详解】解:()b b a f x ax a x x x ⎛⎫ ⎪=+=+ ⎪ ⎪⎝⎭,当0,0a b <<,则0b a >,易知b a y x x =+在⎫+∞⎪⎪⎭为增函数,则()b a f x a x x ⎛⎫ ⎪=+ ⎪ ⎪⎝⎭在⎫+∞⎪⎪⎭为减函数,故A 错误.设()()F x f x =,又()()0bf x ax ab x=+≠为奇函数,则()()()()()F x f x f x f x F x -=-=-==,即()y f x =是偶函数,当0ab <时,()y f x =的图象如图,所以0m ∀>,方程()f x m =一定有4个不同实根,故B 正确;()()()()()2332322221344444111x x x x x x xg x f x f x f x x x x +++++++=+=+=+++++易知()()3241x xh x f x x +=++在[)(]2,00,2-U 为奇函数,则()()max min 0h x h x +=,又()()max min 44M h x N h x ⎧=+⎪⎨=+⎪⎩,所以()()max min 88M N h x h x +=++=.故C 正确.由2,2a b ==-,()()0f mx mf x +<得22220m mx mx mx x-+-<,整理得:112⎛⎫<+ ⎪⎝⎭mx m m x ,即212mx m m<+恒成立.①当0m >时,22121x m<+,因为22y x =在[)1,x ∞∈+上无最大值,因此此时不合题意;②当0m <时,22121x m>+,因为22y x =在[)1,x ∞∈+上的最小值为2,所以2112m +<,即21m >,解得1m <-或1(m >舍去).综合可得:1m <-.故D 正确.故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知)1fx x x -=-,则()f x =________.【答案】21,1x x -≥-【解析】【分析】根据配凑法求解,注意定义域的求解.【详解】因为)211x x x =-,所以)2211x x x -=--,所以))22111f x x x x =-=--11x ≥-.∴()21,1f x x x =-≥-.故答案为:21,1x x -≥-14.函数[]()f x x =的函数值表示不超过x 的最大整数,例如[]3.54-=-,[]2.12=,则函数[]()11y x x x =--<<的值域为____________.【答案】[)0,1【解析】【分析】分()1,0x ∈-、[)0,1x ∈讨论,结合新函数定义可得答案.【详解】当()1,0x ∈-时,[]1x =-,所以()10,1=+∈y x ,当[)0,1x ∈时,[]0x =,所以[)0,1=∈y x ,综上所述,[]()11y x x x =--<<的值域为[)0,1.故答案为:[)0,1.15.树德中学对高一强基班的学科培优进行了调查.调查结果显示:参加物理培优的有60人,参加数学培优的有80人,参加化学培优的有50人,三科培优都参加的有24人,只选择两科培优参加的有22人,不参加其中任何一科培优的有15人,则接受调查的高一强基班学生共有_____________人.【答案】135【解析】【详解】利用文恩图的辅助求解即可.【分析】由文恩图可得;参加培优的人数为()60+80+5022224120--⨯=,又不参加其中任何一科培优的有15人,所以接受调查的高一强基班学生共有12015135+=故答案为:135.16.已知,,a b c 是正实数,且b c +=,则22162ac a bc a +++最小值为___________.【答案】4-【解析】【分析】根据题意,化简得到2216216()22ac a c a bc a b bc a ++=++++,结合题意,利用基本不等式求得22c b bc+≥,再由2161616(22(2)4222c a a a b bc a a a ++≥+=++-+++,结合基本不等式,即可求解.【详解】因为,,a b c是正实数,且b c +=,可得2216216216()222ac a ac a c a bc a b bc a b bc a ++=++=+++++,又因为()222422233333b c c c c c b b bc b b bc b c ++=++=+≥,当且仅当433c b b c =,即26633b c ==时,等号成立,所以2161616()22(2)444222c a a a b bc a a a ++≥+=++-≥-=+++,当且仅当162(2)2a a +=+时,即2a =-时,等号成立,所以22162ac a bc a +++的最小值为4-.故答案为:4-.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设全集U =R ,集合{}23100A x x x =+-≤,9|14B x x ⎧⎫=≥⎨⎬+⎩⎭.(1)求图中阴影部分表示的集合;(2)已知集合{}|1021C x a x a =-<<+,是否存在实数a 使得()U A C ⋂=∅ð,若存在,求a 的取值范围.若不存在,说明理由.【答案】(1){}|54x x -≤≤-;(2)存在,a 的取值范围为3a ≤.【解析】【分析】(1)解不等式化简集合A ,B ,利用补集、交集的定义结合韦恩图求解即得.(2)利用给定的结果,结合集合的包含关系列式求解即得.【小问1详解】{}{}(5)(2)052A x x x x x =+-≤=-≤≤,5{|0}{|45}4x B x x x x -=≤=-<≤+,则{|4}U B x x =≤-ð,所以图中阴影部分表示的集合为(){|54}U A B x x ⋂=-≤≤-ð.【小问2详解】由(1)知{|52}A x x =-≤≤,由()U A C =∅ ð,得C A ⊆,当C =∅时,1021a a -≥+,解得3a ≤;当C ≠∅时,1021105212a a a a -<+⎧⎪-≥-⎨⎪+≤⎩,无解,所以存在实数a 使得()U A C =∅ ð,a 的取值范围为3a ≤.18.设函数()()211f x ax a x =+--.(1)命题:R p x ∃∈,使得()3f x x <-成立.若p 为假命题,求实数a 的取值范围;(2)求不等式()()00f x a <<的解集.【答案】(1)08a ≤≤(2)答案见解析.【解析】【分析】(1)由题意可得不等式220ax ax -+≥在R 上恒成立,讨论a 是否为0,结合判别式解不等式,即可求得答案;(2)不等式()()00f x a <<等价于()()110ax x +-<,分类讨论a 的取值范围,确定1a-与1的大小关系,即可求得答案.【小问1详解】p 为假命题,:R p x ∴⌝∀∈,()3f x x ≥-恒成立为真命题,即不等式220ax ax -+≥在R 上恒成立,当0a =时,20≥恒成立,则0a =满足题意.当0a ≠时,需满足()2Δ80a a a >⎧⎪⎨=--≤⎪⎩,解得08a <≤,综上,08a ≤≤.【小问2详解】不等式()()00f x a <<等价于()()110ax x +-<.当1a =-时,则11a-=,原不等式即为()210x --<,解得1x ≠;当10a -<<时,则11a ->,解得1x <或1x a >-;当1a <-时,则11a -<,解得1x a<-或1x >;综上所述,当1a <-时,原不等式的解集为1{|1}x x x a<->或;当1a =-时,原不等式的解集为{}1x x ≠;当10a -<<时,原不等式的解集为1{1}x x x a<>-或.19.已知()xf x x a=-.(1)若0a >且()f x 在()1,+∞内单调递减,求a 的取值范围;(2)函数()y g x =的图象关于点(,)P m n 成中心对称图形的充要条件是函数()y g x m n =+-为奇函数.当1a =时,求()()323h x f x x x =+-的对称中心.【答案】(1)(0,1](2)(1,1)-【解析】【分析】(1)设121x x <<,作差得到()()()()()211212a x x f x f x x a x a --=--,只需()()120x a x a -->,分1a >和01a <≤两种情况,得到答案;(2)利用()()0h x m n h x m n -+-++-=⎡⎤⎡⎤⎣⎦⎣⎦得到等式,对照系数得到方程组,求出11m n =⎧⎨=-⎩,得到对称中心.【小问1详解】设121x x <<,则()()()()()2112121212a x x x xf x f x x a x a x a x a --=-=----.∵0a >,121x x <<,∴()210a x x ->,∴要使()()120f x f x ->,只需()()120x a x a -->恒成立若1a >,则当121x a x <<<时,()()120x a x a --<不合题意;若01a <≤时,()()120x a x a -->恒成立.综上所述,a 的取值范围为(0,1].【小问2详解】当1a =时,则()3232131131h x x x x x x x x +-=+=+---,要想()y h x m n =+-为奇函数,则要()()0h x m n h x m n -+-++-=⎡⎤⎡⎤⎣⎦⎣⎦,即()()()()3232111313011x m x m n x m x m n x m x m ++-+--+-++++-+-=-+-+-,即()()()23222662622011m m x m m n x m x m -+-+-+-=-+-+-,所以3222066026220m m m m n -=⎧⎪-=⎨⎪-+-=⎩,解得11m n =⎧⎨=-⎩,即()()323h x f x x x =+-的对称中心为(1,1)-.20.依法纳税是每个公民应尽的义务,个人取得的所得应依照《中华人民共和国个人所得税法》向国家缴纳个人所得税(简称个税).2019年1月1日起,个税税额根据应纳税所得额、税率和速算扣除数确定,计算公式为:个税税额=应纳税所得额×税率-速算扣除数.应纳税所得额的计算公式为:应纳税所得额=综合所得收入额-基本减除费用-专项扣除-专项附加扣除-依法确定的其它扣除.其中,“基本减除费用”(免征额)为每年60000元,税率与速算扣除数见下表:级数全年应纳税所得额所在区间税率(%)速算扣除数1[]0,36000302(]36000,1440001025203(]144000,3000002016920…………已知小王缴纳的专项扣除:基本养老金、基本医疗保险费、失业保险等社会保险费和住房公积金占综合所得收入额的比例分别是8%,2%,1%,9%,专项附加扣除是36000元,依法确定的其它扣除是4000元.(1)设小王全年应纳税所得额为t (不超过300000元)元,应缴纳个税税额为y 元,求()y f t =;(2)如果小王全年综合所得收入额为150000元,那么他全年应缴纳多少个税?(3)设小王全年综合所得收入额为x (不超过500000)元,全年应缴纳个税税额为y 元,求y 关于x 的函数解析式.【答案】(1)()[](](]0.03,0,360000.12520,36000,1440000.216920,144000,300000t t y f t t t t t ⎧∈⎪==-∈⎨⎪-∈⎩(2)600元(3)[](](](]0,0,1250000.0243000,125000,1700000.0812520,170000,3050000.1636920305000,500000x x x y x x x x ⎧∈⎪-∈⎪=⎨-∈⎪⎪-∈⎩,【解析】【分析】(1)根据税率与速算扣除数表得到函数解析式;(2)首先求出小王全年应纳税所得额,再代入(1)中解析式即可;(3)首先求出小王全年应纳税所得额为0.8100000t x =-,再分四种情况讨论,分别求出所对应的函数解析式.【小问1详解】根据税率与速算扣除数表,可得()[](](]0.03,0,360000.12520,36000,1440000.216920,144000,300000t t y f t t t t t ⎧∈⎪==-∈⎨⎪-∈⎩.【小问2详解】小王全年应纳税所得额为15000060000150000(8%2%1%9%)36000400020000t =--⨯+++--=元.则小王全年应缴纳个税为()200000.0320000600f =⨯=元.【小问3详解】小王全年应纳税所得额为60000(8%2%1%9%)3600040000.8100000t x x x =--+++--=-,当0.81000000t x =-≤,即0125000x ≤≤时0y =;0.8100000(0,36000](125000,170000]t x x =-∈⇒∈当,则0.030.0243000y t x ==-;0.8100000(36000,144000](170000,305000]t x x =-∈⇒∈当,则0.125200.0812520y t x =-=-;0.8100000(144000,300000](305000,500000]t x x =-∈⇒∈当,则0.2169200.1636920y t x =-=-;故y 关于x 的函数解析式为[](](](]0,0,1250000.0243000,125000,1700000.0812520,170000,3050000.1636920305000,500000x x x y x x x x ⎧∈⎪-∈⎪=⎨-∈⎪⎪-∈⎩,.21.定义在{}0x x ≠上的函数()f x ,对任意x ,y ,都有()()()3f xy f x f y =+-,且(2)1f =,当01x <<时,()3f x >.(1)证明:()f x 在()0,∞+上单调递减;(2)解不等式(35)5f x ->-.【答案】(1)证明见解析(2)1173x x ⎧-<<⎨⎩且53x ⎫≠⎬⎭【解析】【分析】(1)令1xy x =,2x x =,设120x x <<,则由已知可得()()11223x f x f x f x ⎛⎫-=-⎪⎝⎭,再结合当01x <<时,()3f x >可证得结论;(2)令1x y ==,可求得()13f =,令1x y ==-,可求得()13f -=,令1y =-,可证得()f x 为偶函数,利用赋值法可得(16)5f =-,则原不等式转化为(35)(16)f x f ->,再利用函数的单调性可求得结果.【小问1详解】证明:令1xy x =,2x x =,设120x x <<,则12x y x =,且01y <<,所以()()11223x f x f x f x ⎛⎫=+-⎪⎝⎭,即()()11223x f x f x f x ⎛⎫-=- ⎪⎝⎭.又当01x <<时,()3f x >,则123x f x ⎛⎫> ⎪⎝⎭,即()()12f x f x >所以()y f x =在()0,∞+上单调递减.【小问2详解】令1x y ==,则()13f =.令1x y ==-,则()13f -=.令1y =-,则()()()()13f x f x f f x -=+--=,所以()f x 为偶函数.令2x y ==,则(4)1f =-;令44x y ==,,则(16)5f =-,由(35)5(16)f x f ->-=,则(35)(16)f x f ->,又()f x 在()0,∞+上单调递减,则03516x <-<,即1173x -<<且53x ≠,所以不等式的解集为1173x x ⎧-<<⎨⎩且53x ⎫≠⎬⎭.22.函数2()2||(R)f x x x a a a =+-+∈,2221()(R)x ax g x a x -+=∈.(1)若函数()f x 为偶函数,求实数a 的值并指出此时函数()f x 的单调区间;(2)若0a <时,[]1211,,2,2,3x x ⎡⎤∀∈--∃∈-⎢⎥⎣⎦都有12()()g x f x =,求实数a 的取值范围.【答案】(1)0a =,f (x )单调递减区间为(),0∞-,单调递增区间为()0,∞+(2)217a -≤≤-【解析】【分析】(1)利用函数奇偶性求得参数0a =,再利用二次函数的性质即可得解;(2)先将问题转化为()g x 的值域是()f x 的值域的子集;法一:分类讨论a 的取值范围,结合二次函数的性质即可得解;法二:分类讨论a 的取值范围,结合二次函数的性质与基本不等式即可得解.【小问1详解】因为函数f (x )为偶函数,则()()f x f x -=恒成立,则x a x a x a --=+=-恒成立,由x 的任意性,得0a =,当0a =时,则2()2f x x x =+,易得()f x 是偶函数,当0x >时,2()2f x x x =+,开口向上,对称轴为=1x -,所以()f x 在()0,∞+上单调递增,结合其奇偶性,可知()f x 在(),0∞-上单调递减,则函数f (x )单调递减区间为(),0∞-,单调递增区间为()0,∞+.【小问2详解】因为[]1211,,2,2,3x x ⎡⎤∀∈--∃∈-⎢⎣⎦都有12()()g x f x =,所以()g x 的值域是()f x 的值域的子集,因为22221211()11,3x ax a g x x x x x -+⎡⎤==-+∈--⎢⎣⎦,令21,()21t h t t at x==-+,则[]min min max max 3,1,()(),()()t g x h t g x h t ∈--==,又2222,()223,x x a x af x x x a a x x a x a⎧+-≥=+-+=⎨-+<⎩,法一:①当10a -≤<时,易知()f x 在[]2,a -上单调递减,在[],2a 上单调递增,且()2f a a a =+,又(2)83f a -=+,()28f a =-,故()()max 28f x f a ==-,()()2min f x f a a a ==+,则()2,8f x a a a ⎡⎤∈+-⎣⎦又[]2()21,3,1h t t at t =-+∈--在为减函数,则()[][](1),(3)22,106h x h h a a ∈--=++,所以210221068a a a a a a-≤<⎧⎪+≤+⎨⎪+≤-⎩,解得217a -≤≤-;②当21a -<<-时,()f x 在[][]2,,,1a a --上单调递减,在[]1,2-上单调递增,又(1)1f a -=--,(2)83f a -=+,()28f a =-,故()()max 28f x f a ==-,()()min 11f x f a =-=--,即()[]1,8f x a a ∈---,又2()21h t t at =-+在[]3,a -为减函数,在[],1a -为增函数,则[]2()(),(3)1,106h x h a h a a ⎡⎤∈-=-++⎣⎦,所以221111068a a a a a -<<-⎧⎪--≤-+⎨⎪+≤-⎩,则a ∈∅;③当32a -<≤-时,()f x 在[]2,1--上单调递减,在[]1,2-上单调递增,故()()max 28f x f a ==-,()()min 11f x f a =-=--,即()[]1,8f x a a ∈---,又2()21h t t at =-+在[]3,a -为减函数,在[],1a -为增函数,则[]2()(),(1)1,22h x h a h a a ⎡⎤∈-=-++⎣⎦,所以23211228a a a a a -<≤-⎧⎪--≤-+⎨⎪+≤-⎩,则a ∈∅;④当3a ≤-时,()f x 在[]2,1--上单调递减,在[]1,2-上单调递增,故()()max 28f x f a ==-,()()min 11f x f a =-=--,即()[]1,8f x a a ∈---,又2()21h t t at =-+在[]3,1--为增函数,则[][]()(3),(1)106,22h x h h a a ∈--=++,所以31106228a a a a a ≤-⎧⎪--≤+⎨⎪+≤-⎩,则a ∈∅;综上,217a -≤≤-.法二:当10a -≤<时,易知()f x 在[]2,a -上单调递减,在[],2a 上单调递增,且()2f a a a =+,又(2)83f a -=+,()28f a =-,故()()max 28f x f a ==-,()()2min f x f a a a ==+,则()2,8f x a a a ⎡⎤∈+-⎣⎦又[]2()21,3,1h t t at t =-+∈--在为减函数,则()[][](1),(3)22,106h x h h a a ∈--=++,所以210221068a a a a a a-≤<⎧⎪+≤+⎨⎪+≤-⎩,解得217a -≤≤-;当1a <-时,()[]1,8f x a a ∈---,所以对任意[]23,1,1218t a t at a ∈----≤-+≤-恒成立,则22272121t t a t t +-≤≤--恒成立,对于2221t y t +=-,令21m t =-,则[]7,3m ∈--,12m t +=,所以221221991221424442m t m m y t m m m+⎛⎫+ ⎪+-⎛⎫⎝⎭===++=-+ ⎪--⎝⎭112≤-=-,当且仅当944m m -=-,即3m =-时,等号成立,则2max 1221t t ⎛⎫+ ⎪-⎭=-⎝,对于2721t y t -=-,令21m t =-,则[]7,3m ∈--,12m t +=,所以22177127221424m t m y t m m +⎛⎫- ⎪-⎝⎭===+--,易得其[]7,3m ∈--上单调递增,则()2min 7712722142477t t =⎛⎫--+-=- ⎪-⨯-⎝⎭,所以22max min272121217t t a t t ⎛⎫⎛⎫+--=≤≤=- ⎪ ⎪--⎝⎭⎝⎭,又1a <-,故此时a ∈∅;综上:217a -≤≤-.。
重庆巴蜀高2024高1上半期数学-含答案

数学试卷
注意事项: 1.答题前,考生务必将自己的姓名、准考证号、班级、学校在答题卡上填写清楚。 2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡
皮擦干净后,再选涂其他答案标号。在试卷上作答无效。 3.考试结束后,请将答题卡交回,试卷自行保存。满分 150 分,考试用时 120 分钟。
t1+t2 = d 5 + c 5 = 2 c d 12 ,从而 2a 2b +c d 14 ,D 正确.
二、填空题 题号 13
答案 2
14
[0,1)
15
m 0
16
(1) R ; (2){0}[2, )
14
【详解】由
0 x
2x 1
0
2
0
x 1,从而 g(x) 的定义域为[0,1) ;
dx
t1,t(2 t1<t2),由韦达定理知
tt11
+t2 = t2 =k
2
0
,从而
t1,t2
不可能均为正数,且恒有
t1
1 ,
若 M 有三个元素,则还须 t2 [1, 3) 或 t2 =0 ,令 h(t) t2 2t k 则:
h(3) 15+k 0 h(1) 3 k 0 15 k 3
一、单选题:本题共 8 个小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有
一项是符合题目要求的。
1、设命题 p :所有菱形都是平行四边形,则 p 为( )
A.所有菱形都不是平行四边形
B.有的菱形是平行四边形
C.有的菱形不是平行四边形
D.不是菱形的四边形不是平行四边形
江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。
3.考试结束后,请将答题卡交监考人员。
一、单项选择题:本大题共8小题,每小题5分,共40分。
在每题给出的四个选项中只有一项是最符合题意的。
1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。
江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)

江西省2024—2025学年上学期第一次模拟选科联考高一数学试卷共4页,19小题,满分150分。
考试用时120分钟。
注意事项:1.考查范围:必修第一册第一章至第三章第二节。
2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A.{2,3,4,5}B.{1,3,4}C.{3,4}D.{3}2.已知命题,,则为A., B.,C., D.,3.已知为定义在R 上的奇函数,当时,,则A. B.C. D.4.已知是幂函数,若,则a =A.B.2C.4D.65.若A. B. C. D.6.已知定义在R 上的函数满足,且,且,,则A. B.C. D.7.若关于x 的不等式的解集为,且,则实数m 的值为}{1,2,3,4,5U =2}{1,M =}2,{3,4N =()U M N = ð:1p x ∃>320x ->p ⌝1x ∀…320x ->1x ∀…320x -…1x ∀>320x -<1x ∀>320x -…()f x 0x >31()1f x x x =-+(1)f -=12-1232-3292()(4)m f x m x -=-()2f a =121a <-=5(1)a -+5(1)a +6(1)a -+6(1)a +()f x (5)(5)f x f x +=-12,(5,)x x ∀∈+∞12x x ≠121[(()()x x x f --2]()0f x >(5.5)(4.5)f f >(2.7)(3.2)f f <(7.3)(7.9)f f >(2.7)(5.2)f f >220()21x m x m m +-+-<12(,)x x 12112x x +=A.-4B.-1C.1D.48.已知函数若存在实数x ,使,则实数a 的取值围为A. B.C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列计算中正确的是A.C. D.10.使成立的一个充分条件可以是A.且 B.且C.且 D.且11.已知函数的定义域为R ,且的图象关于原点对称,的图象关于y 轴对称,则A. B.C.函数是增函数D.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则________.13.已知幂函数的图象过点,则________.14.对于任意实数x ,表示不小于x 的最小整数,例如(1.2)=2,,表示不大于x 的最大整数,例如[1.2]=1,.已知定义在R 上的函数,若集合,则集合A 中所有元素的和为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数在上单调递减,其中,且.(1)求的解析式;(2)求函数,的值域.16.(15分)已知集合,,且.23,2,(),2,x ax a x f x a x ⎧-++>⎪=…()0f x <(,1)-∞-(,2)(6,)-∞-+∞(,6)(1,)-∞--+∞(,1)(6,)-∞-+∞ 1144-=2=±23(8)4-=23184-=3a b c ->a c >2b c >-2a c >b c >-2a c >b c>-3a c >2b c>()f x (2)4y f x =+-(4)4y f x x =++(2)4f =(6)12f =-()f x (8)(4)824f x f x x -+-=-30,()()1,0,x f x g x x x x ==-<⎪⎩…((1))g f -=()m f x x =3(3,33[(2)]f =()x (0.2)0-=[]x 0.21[]-=-()(2)[3]f x x x =⋅4|(),23A y y f x x ⎧⎫==-<-⎨⎬⎩⎭…()af x b x=+(0,)+∞24a =(1)1f =()f x 2()2()[()]g x f x f x =+[1,4]x ∈(4,29]A m =+{|2233}B x m x m =-+……12B ∈(1)当时,求实数m 的取值范围;(2)设;,若p 是q 的必要不充分条件,求实数m 的取值范围.17.(15分)已知定义在R 上的奇函数与偶函数满足,若.(1)求的解析式;(2)求关于x 的不等式的解集.18.(17分)某糕点连锁店现有五家分店,出售A ,B 两款糕点,A 为特价糕点,为吸引顾客,按进价销售.已知用16000元购进A 糕点与用22000元购进B 糕点的重量相同,且B 糕点每斤的进价比A 糕点每斤的进价多6元.(1)求A ,B 两种糕点每斤的进价;(2)经市场调查发现,B 糕点每斤售价30元时,每月可售出3120斤,售价每提高1元,则每月少售出120斤,售价每降低1元,则每月多售出120斤,糕点店不会低于进价销售.则B 糕点每斤定价为多少元时,糕点店通过卖B 糕点获得的月利润最大?最大是多少?(3)因为使用进价销售的A 糕点物美价廉,所以深受顾客青睐,五个分店每月的总销量为10000斤.今年年初该连锁店用50万购进一批设备,用于生产A 糕点.已知每斤糕点的原材料价格为8元,若生产A 糕点n 个月()所用的原材料之外的各种费用总计为万元,若只考虑A 糕点,记该连锁店前n 个月的月平均利润为z 万元,求z 的最大值.19.(17分)对非空数集A 及实数k ,定义,,已知.(1)当时,若集合A 为单元素集,求A ;(2)当时,若集合,求ab 的所有取值构成的集合;(3)若A 中有3个元素,求实数k 的取值范围.16A ∉:p t A ∈:q t B ∈()f x ()g x ()()2||2f x g x x x +=++()()()h x f x g x =⋅()h x 2(3)(3)0h x tx h x t -+-<*n ∈N 211324n n +2{|,}A k x x a k a A ==-∈ {|,}A k x x k a a A ⊗==-∈A k A k =⊗ 1k =3k ={,}A a b =江西省2024—2025学年上学期第一次模拟选科联考高一数学参考答案及评分细则1.【答案】A【解析】,故选A.2.【答案】D【解析】根据存在量词命题的否定是全称量词命题,得,.故选D.3.【答案】B【解析】因为为定义在R 上的奇函数,所以.故选B.4.【答案】C【解析】因为是幂函数,所以,得,故时,.故选C.5.【答案】C【解析】当时,.故选C.6.【答案】D【解析】由题意得函数在上单调递减,在上单调递增.对选项A ,,A 错误;对选项B ,因为函数在上单调递减,所以,B 错误;对选项C ,因为函数在上单调递增,所以,C 错误;对选项D ,因为,函数在上单调递减,故,D 正确.故选D.7.【答案】B【解析】因为关于x 的不等式的解集为,所以关于x 的方程有两个不相等的实数根,所以,解得,且,,所以,解得.故选B.8.【答案】D【解析】当时,,即,因为,所以,故有解,{3,4,5}{2,3,4}{2,3,4,5}()U M N == ð:1p x ⌝∀>320x -…()f x 311(1)(1)1112f f ⎛⎫-=-=--= ⎪+⎝⎭92()(4)m f x m x-=-41m -=5m =12()f x x ==2=4a =1a <-10a +<3(1)a =--3(1)a =+=336(1)(1)(1)a a a --+=-+()f x (,5)-∞(5,)+∞(5.5)(50.5)f f =+=(50.5)(4.5)f f -=()f x (,5)-∞(2.7)(3.2)f f <()f x (5,)+∞(7.3)(7.9)f f >(5.2)(5f f =+0.2)(50.2)(4.8)f f =-=()f x (,5)-∞(2.7)(4.8)(5.2)f f f >=220()21x m x m m +-+-<12(,)x x 220()21x m x m m +-+-=12,x x 22[2(1)]41()440m m m m ∆=--⨯⋅-=-+>1m <122(1)x x m +=--212x x m m =-1221212112(1)2x x m x x x x m m+--+===-1m =-2x >230x ax a -++<23(1)x a x +<-2x >11x ->231x a x +>-即,因为,当且仅当,即时等号成立,故;当时,有解,即有解,也即,因为单调递增,故时,取最大值-1,故.综上,实数a的取值范围为.故选D.9.【答案】ACD (每选对1个得2分)【解析】对于A ,,A 正确;对于B,B 错误;对于C ,,C 正确;对于D ,,D 正确.故选ACD.10.【答案】AC (每选对1个得3分)【解析】充分性成立,即选项能推出,对于A ,,又,同向不等式相加得,A 成立;对于B ,令,,,满足且,但,B 不成立;对于C ,,又,同向不等式相加得,,C 成立;对于D ,令,,,满足且,但,D 不成立.故选AC.11.【答案】ABD (每选对1个得2分)【解析】A 选项,的定义域为R ,因为的图象关于原点对称,所以为奇函数,所以,故,令,得,A 正确;B 选项,由的图象关于y 轴对称,得为偶函数,所以,即,令,得,得,B 正确;C 选项,因为,C 错误;D 选项,因为,所以,因为,令,得,即,故,,D 正确.故选ABD.12.【答案】-8【解析】,.13.【答案】64【解析】由,所以.14.【答案】67【解析】当时,;当时,,,2min31x ax ⎛⎫+>⎪-⎝⎭223(11)341226111x x x x x x +-++==-+++=--- (4)11x x -=-3x =6a >2x …0a +<a <max (a <y =2x =y =1a <-(,1)(6,)-∞-+∞ 1144-=2=23(8)4-==232311848-===3a b c ->22b c b c <-⇒->a c >3a b c ->3a =7b =1c =-2a c >b c >-433a b c -=-<-=b c b c <-⇒->2a c >3a b c ->5a =8b =1c =-3a c >2b c >33a b c -=-=()f x (2)4y f x =+-(2)4y f x =+-(2)4(2)40f x f x --++-=(2)(2)8f x f x -++=0x =(2)4f =(4)4y f x x =++(4)4y f x x =++(4)4(4)4f x x f x x --=++(4)(4)8f x f x x -=++2x =4(2)(6)16f f ==+(6)12f =-(2)(6)f f >(2)(2)8f x f x -++=()8(4)f x f x =--(4)(4)8f x f x x -=++4x t -=()(8)328f t f t t =-+-()(8)328f x f x x =-+-8(4)(8)328f x f x x --=-+-(8)(4)824f x f x x -+-=-(1)112f -=--=-3((1))(2)(2)8g f g -=-=-=-333m =3m =-3()f x x =333(3(36[(2)](22264f ⨯====2x =-()(4)[6](4)(6)24f x =-⋅-=-⨯-=523x -<<-10423x -<<-(2)3x =-,,;当时,,,,,;当时,,,,,.综上,,集合A 中所有元素的和为67.15.解:(1)由得,(2分)因为函数在上单调递减,所以,故.(5分)由得,所以.(7分)(2),(10分)当时,,,,所以函数,的值域为.(13分)【评分细则】值域写成集合或区间形式均给分.16.解:(1)因为,所以,得,(2分)又因为,所以,即,(5分)故当时,m 的取值范围是.(7分)(2)因为,所以,,若p 是q 的必要不充分条件,则B 是A 的真子集,(10分)故(12分)解得.故实数m 的取值范围是.(15分)【评分细则】结果写成集合或区间或不等式形式均给分.17.解:(1)因为,即,又,得,,(4分)635x -<<-[3]6x =-()(2)[3](3)(6)18f x x x =⋅=-⨯-=5332x -- (10)233x --……(2)3x =-9532x --……[3]5x =-()(2)[3](3)(5)15f x x x =⋅=-⨯-=3423x -<<-8323x -<<-(2)2x =-9342x -<<-[3]5x =-()(2)[3](2)(5)10f x x x =⋅=-⨯-={24,18,15,10}A =24a =2a =±()af x b x=+(0,)+∞0a >2a =(1)21f b =+=1b =-2()1f x x=-222424()2()[()]211g x f x f x x x x ⎛⎫=+=-+-=- ⎪⎝⎭[1,4]x ∈2[1,16]x ∈241,44x ⎡⎤∈⎢⎥⎣⎦2131,34x ⎡⎤-∈-⎢⎥⎣⎦2()2()[()]g x f x f x =+[1,4]x ∈3,34⎡⎤-⎢⎥⎣⎦12B ∈221233m m -+……37m ……16A ∉2916m +<72m <16A ∉73,2⎡⎫⎪⎢⎣⎭37m ……A O ≠B O ≠224,3329,m m m ->⎧⎨++⎩…36m <…(3,6]()()2||2f x g x x x -+-=-+-+()()2||2f x g x x x -+=-++()()2||2f x g x x x +=++()2f x x =()||2g x x =+所以.(5分)(2)因为,所以为奇函数,(7分)又当时,单调递增,故函数在R 上单调递增.(9分)则不等式,可化为,即,即,(11分)①若,即时,;②若,即时,不等式无解;③若,即时,,综上,当时,解集为,当时,解集为,当时,解集为.(15分)【评分细则】1.第一问求出和的解析式分别给2分;2.第一问结果写成分段函数形式不扣分;3.第二间结果不写成集合或区间形式扣1分,未总结,但结果正确均给满分,三种情况每少一种情况扣1分.18.解:(1)设A 糕点每斤的进价为a 元,B 糕点每斤的进价为元,所以,解得,所以A 糕点每斤的进价为16元,B 糕点每斤的进价为22元.(4分)(2)设B 糕点每斤涨价元,蛋糕店通过B 糕点获得的月利润为y 元.由题意,(6分)当时,y 有最大值.(8分)所以B 糕点每斤定价为39元时,月利润最大,最大为34680元.(9分)(3)设前n 个月的总利润为w ,因为A 糕点每斤售价为16元,每月可售出10000斤,故每月可收入16万元,其中原材料为8万元,则,(12分)月平均利润万元,(15分)()()()2(||2)h x f x g x x x =⋅=+()2()(||2)2(||2)()h x x x x x h x -=--+=-+=-()h x 0x …2()24h x x x =+()h x 2(3)(3)0h x tx h x t -+-<2(3)(3)(3)h x tx h x t h t x -<--=-23(3)0x t x t +--<(3)(1)0x t x -+<13t <-3t <-13tx <<-13t=-3t =-13t >-3t >-13t x -<<3t <-|13t x x ⎧⎫<<-⎨⎬⎩⎭3t =-∅3t >-|13t x x ⎧⎫-<<⎨⎬⎩⎭()f x ()g x (6)a +16000220006a a =+16a =(8)x x -…22(3022)(3120120)120216024960120(9)34680y x x x x x =+--=-++=--+9x =22*111311685050()324324w n n n n n n n ⎛⎫=--+-=-+-∈ ⎪⎝⎭N 503131215.2532444w n z n n ==--+-+==…当且仅当,即时等号成立,(16分)所以z 的最大值为5.25.(17分)【评分细则】1.第二问未配方,只要结果正确,就给分;2.第三问未说明等号成立条件扣1分.19.解:(1)时,设,由,得,所以,即,得或1,故或.(4分)(2)时,,由,得,得或即或(5分)当时,是方程的两根,故,(6分)当时,两式相减得,由集合中元素的互异性得,所以,故,即,同理,故是方程的两根,所以,(7分)故ab 的所有取值构成的集合为.(8分)(3)设,由,得,①若故是方程的三个不等的实数根,而此方程最多有两个实数根,不可能有三个实数根,故不成立;(11分)②若,当时,,令,得,(12分)对,,两式相减得,因为,所以,代入,得,同理,5032n n=40n =1k ={}A a =11A A =⊗ 2{1}{1}a a -=-211a a -=-220a a +-=2a =-{2}A =-1}{A =3k ={,}A a b =33A A =⊗ 22{3,3}{3,3}a b a b --=--2233,33a a b b ⎧-=-⎨-=-⎩2233,33,a b b a ⎧-=-⎨-=-⎩2260,60a a b b ⎧+-=⎨+-=⎩226,6,a b b a ⎧=-⎨=-⎩2260,60a ab b ⎧+-=⎨+-=⎩,a b 260x x +-=6ab =-226,6a b b a⎧=-⎨=-⎩22a b a b -=-a b ≠1a b +=266(1)5a b a a =-=--=+250a a --=250b b --=,a b 250x x --=5ab =-{6,5}--{,,}A a b c =A k A k =⊗ 222{,,}{,,}a k b k c k k a k b k c ---=---222,,,a k k a b k k b c k k c ⎧-=-⎪-=-⎨⎪-=-⎩,,a b c 220x x k +-=222,,,a k kb b k k ac k k c ⎧-=-⎪-=-⎨⎪-=-⎩2c k k c -=-220c c k +-=180k ∆=+ (1)8k -…2a k k b -=-2b k k a -=-22a b a b -=-a b ≠1a b +=2a k k b -=-2120a a k -+-=2120b b k -+-=故为方程的两个不相等的实根,令,得,(13分)当时,与均有两个不相等的实根,且这两个方程的根不完全相同,故符合题意;(14分)③若则,根据集合中元素的互异性,两两不相等,不妨设,(ⅰ)当时,,又,所以,这与矛盾,故不成立;(ⅱ)当时,,又,所以,这与矛盾,故不成立;(ⅲ)当时,,又,所以,这与矛盾,故不成立;(ⅳ)当时,,又,所以,这与矛盾,故不成立.(16分)综上,实数k 的取值范围是.(17分)【评分细则】1.第一问只得出一种情况,扣2分;结果不写成集合形式,扣1分;2.第二问求出ab 的一个值,给2分,最后结果不写成集合形式,扣1分;3.第三问结果写成不等式、集合或区间形式,结果正确即给满分.,a b 2120x x k -+-=14(12)0k '∆=-->38k >38k >2120x x k -+-=220x x k +-=222,,,a k k b b k k c c k k a ⎧-=-⎪-=-⎨⎪-=-⎩2222a b b c c a k +=+=+=,,a b c a b c >>0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=3,8⎛⎫+∞ ⎪⎝⎭。
2023-2024学年四川省绵阳市高一上学期期中数学试题+答案解析(附后)

2023-2024学年四川省绵阳市高一上学期期中数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,则( )A. B. C. D.2.若,则下列选项正确的是( )A. B. C. D.3.命题:“”为真命题,则实数a的取值范围为( )A. B. C. D.4.下列幂函数中,在定义域内是偶函数且在上是单调递减的是( )A. B. C. D.5.已知集合,若,则实数a的取值范围是( )A. B. C. D.6.函数的图象大致形状是( )A. B.C. D.7.红星幼儿园要建一个长方形露天活动区,活动区的一面利用房屋边墙墙长,其它三面用某种环保材料围建,但要开一扇宽的进出口不需材料,共用该种环保材料12m,则可围成该活动区的最大面积为( )A. B. C. D.8.若对任意恒成立,其中是整数,则的可能取值为( )A. B. C. D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知函数,则( )A. B. 若,则或C. 函数在上单调递减D. 函数在上的值域为10.下列叙述中正确的是( )A.设,则“且”是“”的必要不充分条件B. “”是“关于x的一元二次方程有两个不等实数根”的充分不必要条件C. 命题“”的否定是:“”D. 函数的定义域A为R的子集,值域,则满足条件的有3个11.关于函数的相关性质,下列正确的是( )A. 函数的图象关于y轴对称B. 函数在上单调递减C. 函数在上单调递减D. 函数的最小值为0,无最大值12.已知函数,若存在实数m,使得对于任意的,都有,则称函数有下界,m为其一个下界;类似的,若存在实数M,使得对于任意的,都有,则称函数有上界,M为其一个上界.若函数既有上界,又有下界,则称该函数为有界函数.以下四个选项中正确的是( )A. “函数有下界”是“函数有最小值”的必要不充分条件B. 若定义在R上的奇函数有上界,则该函数是有界函数C. 若函数的定义域为闭区间,则该函数是有界函数D. 若函数且在区间上为有界函数,且一个上界为2,则三、填空题:本题共4小题,每小题5分,共20分。
高一数学上学期半期考试试题含解析 试题

智才艺州攀枝花市创界学校一中办学一共同体二零二零—二零二壹高一数学上学期半期考试试题〔含解析〕一、选择题〔一共60分,每一小题5分,每个小题有且仅有一个正确之答案〕,,那么等于〔)A. B. C. D.【答案】D【解析】【分析】根据集合交集的定义,找到集合A、B的公一共元素即可.【详解】那么应选D【点睛】此题考察集合运算,对于A,B两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集,记作A∩B.所以找出A、B的公一共元素是求交集的关键.,,那么满足条件的集合的个数为〔〕A.4B.8C.9D.16【答案】B【解析】根据集合A、B、C的关系,集合C中必然包含集合A中的元素,集合B一共有五个元素,只需要确定集合的子集个数,即为集合C的所有可能,所以集合C有种可能.【详解】集合C为:,,,,,,应选B【点睛】此题考察集合之间的关系以及集合子集个数的求法,首先需要确定集合中的元素,然后根据集合的特点确定集合子集个数,一般一个集合里有N个元素〔可以是数〕,那么它所有子集的数目是,所有真子集数目(子集除去本身),所有非空子集数目是〔子集除去空集〕,所有非空真子集数目〔子集除去本身和空集〕.3.集合A=[0,8],集合B=[0,4],那么以下对应关系中,不能看作从A到B的映射的是A.f:x→y=xB.f:x→y=xC.f:x→y=xD.f:x→y=x【答案】D【解析】试题分析:D选项里面的映射不能使集合A中的每一个元素都在集合B中找到一个元素与之对应,例如集合A 中的元素6就不能在集合B中找到一个元素与之对应.考点:运用映定义判断对应关系是否为映射.4.以下各组函数表示同一函数的是〔〕A. B.C. D.【答案】C试题分析:A中两函数定义域不同;B中两函数定义域不同;C中两函数定义域一样,对应关系一样,是同一函数;D中两函数定义域不同考点:判断两函数是否同一函数5.那么等于(〕A.π+1B.0C.2D.【答案】A【解析】【分析】此题可以根据分段函数解析式,由内到外,依次求解函数值,即可求得答案.【详解】f(-2)=0,f(0)=,应选A【点睛】此题主要考察了函数值的求解问题,解答题目的过程中要准确把握分段函数的分段条件,正确选择相应的解析式计算求值是解答的关键,着重考察了推理与运算才能.6.以下函数中,既是奇函数又是增函数的是()A. B. C. D.【答案】B【解析】【分析】根据奇函数定义先判断出奇偶性,然后根据单调性定义判断单调性即可.【详解】A.非奇非偶函数;B.奇函数且是单调递增函数;C.奇函数但在定义域上不是增函数;D.奇函数,单调递减函数;【点睛】此题主要考察函数的奇偶性和单调性,结合初等函数的奇偶性和单调性判断出原函数的性质,主要考察了推理才能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一上期半期考试数学试卷
一、选择题:
1.已知集合M ={x |x <3},N ={x |22x >},则M ∩N = ( )
A .∅
B .{x |0<x <3}
C .{x |1<x <3}
D .{x |2<x <3} 2. 有五个关系式:①∅≠
⊂}0{;②}0{=∅;③∅=0;④}0{0∈;⑤
∅∈0
其中正确的有 ( ) A.1个. B.2个. C.3个. D.4个. 3.下列各组函数中表示同一函数的是( ) A . 与 B . 与
C . 与
D . 与
4. 下列各图形中,是函数的图象的是( )
5.设,)31
(,)31(,)32(31
3231===c b a 则c b a ,,的大小关系是( )
A.b c a >>
B.c b a >>
C.b a c >>
D.a c b >>
6.下列函数为偶函数且在[)+∞,0上为增函数的是( ) A .y x = B .2y x = C .2x y = D .2x y -=
7.已知函数⎩⎨⎧>-≤=2
),1(log 2
,2)(2x x x x f x ,则))5((f f 的值为( )
A .1
B .2
C .3
D .4 8.
下
列
函
数
中
值
域
为
)
,0(+∞的是
( ) A. y =-5x
B.y =(31
)1-x C.y =1)2
1(-x
D.y =x 21-
9.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则
)2
5
2()23(2++-a a f f 与的大小关系是( )
()f x x =()2
g x x =
()f x x =()3
3g x x =
()f x x x =()()()2200x x g x x x ⎧ >⎪=⎨- <⎪⎩
()211x f x x -=-()()11g x x x =+ ≠O
x
y
O x y
O
x
y
O x
y
A B C D
A .)23(-f >)252(2++a a f
B .)23(-f <)25
2(2++a a f
C .)23(-f ≥)252(2++a a f
D .)23(-f ≤)2
5
2(2++a a f
{}{}
[][][)[][]
2,0.1,0.,21,0.)
,2(1,0.B A ,0,,2A .
)()(B A .1022D C B x y y B x y x B A x B A x x B A x
x +∞+∞⨯>==⎭
⎬⎫⎩⎨⎧-==⋂∉⋃∈=⨯ A等于()则已知且是非空集合,定义、设 二、填空题 11.
函数y =
的定义域是 ;
12.函数)10(1)(1≠>+=-a a a x f x 且恒过定点 ; 13.
300)32(10])2[(])3
7
(2[25
.0131
3202
1--+-⨯⨯----=___________;
14. 设{}{}25,121A x x B x m x m =-≤≤=+≤≤-,若A B B ⋂=,则实数m 的取值范围是 ;
15. 设定义在R 的函数)(x f 同时满足以下条件:①0)()(=-+x f x f ; ②
)
2()(+=x f x f ;③当10<≤x 时,12)(-=x x f 。
则
=++++)2
5
()2()23()1()21(f f f f f _____________. 三、解答题
16.(12分)设全集U=R ,集合A={x |x <4}, B={x |0342>+-x x }。
求A ∩B ,A ∪B ,A ∩(C U B )。
[]的值域。
求的值;求的值;求且已知)(),()3()2()2()2(),2()1()(2)(),1(11)(.172
x g x f g f g f R x x g x R x x
x f x ∈+=-≠∈+=
18.已知函数y=2x -ax-3(55≤≤-x )。
(1)若a=2,求函数的最大最小值 ;(2)若函数在定义域内是单调函数,求a 取值的范围。
19.定义在R 上的奇函数()f x ,当0x >时,()2f x x =-,(1)用分段函数写出()f x 在R 上的解析式;(2)求不等式1()2
f x <的解集。
20.函数()2
1x b ax x f ++=
是定义在(-1,1)上的奇函数,且5
2
21=⎪⎭⎫ ⎝⎛f (1)求函数()x f 的解析式;(2)判断并证明函数在(-1,1)上的单调性; (3)求满足()()01<+-t f t f 的t 的范围.
21. 已知函数f (x )=log 4(ax 2+2x +3).
(1)若f (1)=1,求f (x )的单调区间;
(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.
高一数学(上期)半期考试参考答案
一、选择题(本大题共12小题,每小题5分,满分50分。
)
二、填空题(本大题共5小题,每小题5分,满分25分。
)
11、 ),2(+∞- 12、 (1,2) 13、 30 14、 (]3,∞- 15三、解答题(本大题共6小题,满分75分,解答题写出必要的文字说明、推演步
16.解:由已知得A={x |-4<x <4} B={x |x <1或x >3} ……4分
B A ∴={x |-4<x <1或3<x <4} ……7分 B A =R ……9分
A )(
B
C U ={x |13≤≤x } ……12分
17.(1)f(2)=1/3,g(2)=6; (2)f[g(2)]=1/7 (3)()()+∞∞-,00, [)+∞,2
18. (本小题满分8分)(1)最大值是32,最小值是-4; ……4分
(2)10≥a 或10-≤a ;……8分
19.(1)⎪⎩
⎪
⎨⎧<+=>-=)
0(2)0(0)
0(2)(x x x x x x f (2)⎪⎭⎫⎢⎣⎡--∞25,0)23,(
20. 解:(1)
()f x 是定义在(-1,1)上的奇函数
()00=∴f 解得0=b , ………………………………………………………1分
则()21x ax x f +=∴524
112121=+=⎪
⎭⎫ ⎝⎛a
f 1=∴a ……………………3分 学校_____________班级_________________姓名__________________ 试场号 座位号_________ ----------------------------------------装------------------------------------------------订----------------------------------------------------线-----------------------------------------------------------------
函数的解析式为:()()1112
<<-+=x x x
x f ……………………………4分 (2)证明单调性(略)
()()10f t f t -+< ()()t f t f -<-∴1 ………………………………9分 ()()f t f t -=-()()t f t f -<-∴1 ………………………………10分
又
()f x 在(-1,1)上是增函数111<-<-<-∴t t 2
1
0<
<∴t .....12分 解:(1)∵f (x )=log 4(ax 2+2x+3)且f (1)=1,
∴log 4(a ●12+2×1+3)=1
a+5=4
a=﹣1
可得函数f (x )=log 4(﹣x 2+2x+3) ∵真数为﹣x 2+2x+3>0
﹣1<x <3
∴函数定义域为(﹣1,3)
令t=﹣x 2+2x+3=﹣(x ﹣1)2+4 可得: 当x ∈(﹣1,1)时,t 为关于x 的增函数; 当x ∈(1,3)时,t 为关于x 的减函数. ∵底数为4>1
∴函数f (x )=log 4(﹣x 2+2x+3)的单调增区间为(﹣1,1),单调减区间为(1,3) (2)设存在实数a ,使f (x )的最小值为0,由于底数为4>1, 可得真数t=ax 2+2x+3≥1恒成立,且真数t 的最小值恰好是1, 即a 为正数,且当x=﹣
=﹣时,t 值为1.
所以a=
所以a=,使f (x )的最小值为0.。