成都七中2020届高一上半期数学试题

合集下载

成都七中高2020届高三上期入学考试试题数学(理科)

成都七中高2020届高三上期入学考试试题数学(理科)

1成都七中高2020届高三上期入学考试题数学(理科)考试时间:120分钟 满分:150分一.选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.把答案凃在答题卷上.)1. 已知集合{}1A x x =<,{}20B x x x =-<,则( ) A. A B ⊆ B. B A ⊆ C.{}1A B x x ⋂=< D. {}0A B x x ⋃=> 2. 已知a R ∈,i 为虚数单位,若a i i+为实数,a 则的值为( ) A. 1 B. 2 C. 3 D. 43. 《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问: 五人各得几何?”其意思为: 有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少个橘子.这个问题中,得到橘子最多的人所得的橘子个数是( )A. 15B. 16C. 18D. 214. 函数()()2x x f x x e e -=-的大致图象为( )A.B.C.D.5. 5(2x +的展开式中,4x 的系数是( )A. 40B. 60C. 80D. 100 6. 按照如图的程序框图执行,若输出结果为15,则M 处条件为( )A. 16k ≥B. 8k <C. 16k <D. 8k ≥7. 已知锐角△ABC 的内角A,B,C 的对边分别为,,a b c ,满足23cos 2A +cos 2A =0,7,6a c ==,则b 等于( )A. 10B. 9C. 8D. 5 8. 曲线4y x =与直线5y x =-围成的平面图形的面积为( ) A.152 B. 154 C. 154ln 24- D. 158ln 22-三.解答题(17-21每小题12分,22题10分,共70分.在答题卷上解答,解答应写出文字说明,证明过程或演算步骤.)17. 已知等差数列{}n a 的前n 项和为n S ,且39S =,又12a =,(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足2n a n b -=,求证:数列{}n b 的前n 项和12n T <.18. 如图1,在正方形ABCD 中,E 是AB 的中点,点F 在线段BC 上,且14BF BC =.沿EF 将BEF ∆裁掉,并将AED ∆, CFD ∆分别沿,ED FD 折起,使,A C 两点重合于点M ,如图2.(1)求证:EF ⊥平面MED ;(2)求直线EM 与平面MFD 所成角的正弦值.19. 某市政府出台了“2020年创建全国文明城市(简称创文)”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分,[)60,80内认定为满意,80分及以上认定为非常满意;③市民对公交站点布局的满意率不低于60%即可进行验收;④用样本的频率代替概率.(1)求被调查者满意或非常满意该项目的频率;(2)若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;(3)已知在评分低于60分的被调查者中,老年人占13,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记ξ为群众督查员中老年人的人数,求随机变量ξ的分布列及其数学期望E ξ.20. 已知椭圆2222:x y C a b+=()10a b >>的焦点坐标分別为()11,0F -,()21,0F ,P 为椭圆C 上一点,满足1235PF PF =,且123cos 5F PF ∠=. (1) 求椭圆C 的标准方程;(2) 设直线:l y kx m =+与椭圆C 交于,A B 两点,点1,04Q ⎛⎫ ⎪⎝⎭,若AQ BQ =,求k 的取值范围.21. 已知函数23(),()2x f x xe g x x x ==+-. (1)求证:2()15()022f xg x x x -+->对(0,)x ∈+∞恒成立; (2)若()()(0)3()2f x F x xg x x =>-+,若12120,2x x x x <<+≤,求证:12()()F x F x >.22. 在直角坐标系xOy 中,圆C 的参数方程1cos sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是(sin )ρθθ+=11:(0)2OM πθθθ=<<与圆C 的交点为O P 、,与直线l 的交点为Q ,求OP OQ ⋅的范围.。

2020-2021学年四川成都武侯区成都市第七中学高一上学期期中考试数学试卷 PDF版

2020-2021学年四川成都武侯区成都市第七中学高一上学期期中考试数学试卷 PDF版

2020~2021学年四川成都武侯区成都市第七中学高一上学期期中数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1. A.B.C.D.已知集合,,则().3. A.B.C.D.下列函数是偶函数的为( ).4. A.B.C.D.若函数(,且)的图象恒过一定点,则的坐标为( ).5. A.B.C.D.已知,,,则( ).6. A.B.C.D.下列结论正确的是( ).7. A.B.C.D.若幂函数在单调递减,则( ).8. A.B.C.D.已知,则( ).2. A.B.C.D.函数的定义域为( ).9.A.B.C. D.函数的大致图象为( ).10.A.B.C. D.关于的方程的两个不等根,都在之内,则实数的取值范围为( ).11.A.B.C.D.若函数,则的单调递增区间为( ).12.A.①②B.②③C.①③D.①②③已知定义在上的函数,满足当时,.当时,满足,(为常数),则下列叙述中正确的为( ).①当时,;②时,函数的图象与直线,在上的交点个数为;③当时,在上恒成立.二、填空题(本大题共4小题,每小题5分,共20分)13.已知,则等于 .14.已知函数,则 .15.函数,的最大值为 .16.已知函数,,若在区间上的最大值为,则 .三、解答题(本大题共6小题,共70分)17.(1)(2)已知集合,.若,求实数的值.若,求实数的取值范围.18.(1)(2)计算下列各式的值...19.(1)(2)已知函数,,设.求函数的定义域及值域.判断函数的奇偶性,并说明理由.20.(1)(2)已知函数是定义在上的偶函数,当时,,.求的函数解析式.当时,求满足不等式的实数的取值范围.21.(1)(2)(3)已知函数为偶函数,为奇函数,且.求函数和的解析式.若在恒成立,求实数的取值范围.记,若,,且,求的值.22.(1)(2)(3)已知函数若是定义在上的奇函数.求的值.判断函数的单调性,并给出证明,若在上有解,求实数的取值范围.若函数,判断函数在区间上的零点个数,并说明理由.2020~2021学年四川成都武侯区成都市第七中学高一上学期期中数学试卷(详解)(本大题共12小题,每小题5分,共60分)1. A.B.C.D.【答案】【解析】已知集合,,则().C由题知,集合,故集合,则集合.故选.2. A.B.C.D.【答案】【解析】函数的定义域为( ).B由题知:函数的定义域,应满足条件,解得.故选.3. A.B.C.D.【答案】A 选项:【解析】下列函数是偶函数的为( ).A当时,,则,一、选择题B 选项:C 选项:D 选项:故满足,即为偶函数,符合题意,故选;由,由奇偶性可知,为奇函数,故不符合题意;由,由此可知,为奇函数,故不符合题意;由,由此可知,为奇函数,故不符合题意.故选 A .4. A.B.C.D.【答案】【解析】若函数(,且)的图象恒过一定点,则的坐标为( ).D由题知:函数(,且)的图象恒过定点,则,即,此时,故点.故选.5. A.B.C.D.【答案】【解析】已知,,,则( ).C由题知:,,,故.故选.6. A.B.C.D.【答案】下列结论正确的是( ).C【解析】由题知:对选项,,故错误;对选项,,故错误;对选项,,故正确;对选项,,故错误.故选.7. A.B.C.D.【答案】【解析】若幂函数在单调递减,则( ).D由题设知:函数为幂函数,且在上单调递减,则根据幂函数定义知:,解得或,当时,在上单调递增,不符合题意,故舍去;当时,在上单调递减,符合题意;故,则.故选.8. A.B.C.D.【答案】【解析】已知,则( ).A由题设可知:,则令,,故,则,故.故选.9.A.B.函数的大致图象为( ).C. D.【答案】【解析】A 由题知:,故在定义域上为奇函数,排除选项;又由,故排除选项.故选.10.A.B.C. D.【答案】【解析】关于的方程的两个不等根,都在之内,则实数的取值范围为( ).D 由题知:方程的两根分别为,,且,故,,又由两个根均在内,故或.故选.11.A.B.C.D.【答案】若函数,则的单调递增区间为( ).A函数的定义域为,又根据复合函数单调性同增异减,在定义域上单调递减,在上单调递增,在上单调递减.故符合的单调区间为.故选.12.A.①② B.②③C.①③D.①②③【答案】【解析】已知定义在上的函数,满足当时,.当时,满足,(为常数),则下列叙述中正确的为( ).①当时,;②时,函数的图象与直线,在上的交点个数为;③当时,在上恒成立.D ,,,对于①,,,∴,①正确;对于②,由题意得:函数的图象是将在到范围内的图象乘以系数后向右依次平移,每次平移长度为所得到的,当时,图象是变矮平移得到的,当时,,因此时,与有且只有一个交点,当时,由于,导致后面的图象一定比前面的图象矮,即,,,,,,所以中与交点的个数为,即总个数为,故②正确;对于③,,我们知道在,范围上最大值为:,即:,,,所以最大值表示成函数可以写成:,,,∴的最大值为:,,,若不等式恒成立,则恒成立,将代入,当且仅当,时取等,所以③正确,故正确的为①②③.故选.二、填空题(本大题共4小题,每小题5分,共20分)13.【答案】【解析】已知,则等于 .∵,则.故答案为.14.【答案】【解析】已知函数,则 .由分段函数可知,,.故答案为:.15.【答案】【解析】函数,的最大值为 .由题知:函数,的对称轴为,故的最大值为.16.已知函数,,若在区间上的最大值为,则 .【答案】方法一:方法二:【解析】由题知,函数的对称轴为,①当时,在区间上单调递增,则此时,,解得,满足条件,故符合题意;②当时,即,在区间上单调递减,在区间上单调递增,且,故,解得,不符合题意;③当时,即时,在区间上单调递减,在区间上单调递增,且,故,记得,故舍去;④当时,即时,在区间上单调递减,则,解得,不符合题意.故综上所述,.由函数的对称轴为,区间的对称轴为,故①当时,即,在处取得最大值,即,代入解得,符合题意;②当时,即,在处取得最大值,即,代入解得,不符合题意.故综上所述,.三、解答题(本大题共6小题,共70分)17.(1)(2)(1)(2)【答案】(1)【解析】已知集合,.若,求实数的值.若,求实数的取值范围...由题知:集合(2),集合,又由,故,解得:.由,则,由此可知:,故实数的取值范围为.或18.(1)(2)(1)(2)【答案】(1)(2)【解析】计算下列各式的值.....由.由.19.(1)(2)(1)(2)【答案】(1)【解析】已知函数,,设.求函数的定义域及值域.判断函数的奇偶性,并说明理由.定义域,值域为.偶函数,证明见解析.由题知:,则的定义域为,解得,又由,则,根据在上单调递增,(2)故的取值范围为.即的值域为.由()知:函数的定义域为,关于原点对称,又由,故为偶函数.20.(1)(2)(1)(2)【答案】(1)(2)【解析】已知函数是定义在上的偶函数,当时,,.求的函数解析式.当时,求满足不等式的实数的取值范围...由题知:函数的定义域为上的偶函数,且当时,,则当时,,即,又由,故.当时,函数的解析式为:,则不等式,结合的单调性可知:,当时,由,即,解得或.当时,由,即,解得或,综上所述,实数的取值范围为:.21.(1)(2)(3)已知函数为偶函数,为奇函数,且.求函数和的解析式.若在恒成立,求实数的取值范围.记,若,,且,求的值.(1)(2)(3)【答案】(1)方法一:方法二:(2)【解析】,...由题知:函数为偶函数,函数为奇函数,且,①则,又由,,故②,则由①②式,解得,.由在上恒成立,即在上恒成立,即在上恒成立,则在上恒成立,令,易知在上单调递增;故,即在上恒成立.由,即,又由在上单调递增,且,故在上的最小值为,故.由的对称轴为,则①当时,即,此时在处取得最小值,即,解得,故.②当时,即时,由即可满足条件,故,解得,易知,(3)故综上①②可知,.由,令,又由,且,故,,故.22.(1)(2)(3)(1)(2)(3)【答案】(1)方法一:方法二:(2)【解析】已知函数若是定义在上的奇函数.求的值.判断函数的单调性,并给出证明,若在上有解,求实数的取值范围.若函数,判断函数在区间上的零点个数,并说明理由..在定义域上单调递减,证明见解析,.个,证明见解析.由题知:函数是定义在上的奇函数,则,即,解得.由()知,则且为定义域上的奇函数,,,故在定义域上单调递减.由,则,(3),即,结合函数单调性定义知:为减函数,故在定义域上为减函数,又由在上有解,即在上有解,即在上有解,令,,则的对称轴为,故在区间上单调递增,则,故.由,即,故,则由,解得或,,解得或,故函数在上的解析式为:,故的函数图象如下:又由的图象如上图所示,由图象可知的交点个数为,即在上的零点个数为.。

2020~2021四川省成都七中高一上学期1月月考数学试题及答案

2020~2021四川省成都七中高一上学期1月月考数学试题及答案

成都七中高2023届高一上期1月数学考试一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.将分针拨快10分钟,则分针转过的弧度数是( )A .3πB .3π-C .6πD .6π-2.已知全集{}1,2,3,4,5,6,7U =,集合{}3,4,5A =,{}1,3,6B =,则()UA B =( )A .{}4,5B .{}2,4,5,7C .{}1,6D .{}33.若角α的终边与直线1y x =-+相交,则角α的集合为( )A .5{,}44k Z ππαπαπ<<∈∣2k +2k +B .37{,}44k Z ππαπαπ<<∈∣2k +2k +C .3{,}44k Z ππαπαπ-<<∈∣2k 2k +D .3{,}44k Z ππαπαπ-<<∈∣2k 2k +4.函数()()2cos 22x f x x x π=-+的部分图象可能是( )A .B .C .D .5.下列函数是偶函数且在(0,)+∞上具有单调性的函数是( ) A.()f x =B .2(),f x x x x R =+∈C .()1,f x x x R =-∈D .1,()0,x f x x ⎧=⎨⎩当为有理数时当为无理数时6.已知321()x f x x x+=+,若(2021)f a =,则(2021)f -=( ) A .a -B .2a -C .4a-D .1a-7.已知1133log log a b <,则下列不等式一定成立的是( )A .11a b>B .1120222021a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .()ln 0a b ->D .12020a b <-8. 已知2lg(2)lg lg x y x y -=+,则x y的值为( )A .1B .4C .1或4D .14或4 9.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”如下:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数.例如[]2.63-=-,[]2.32=,已知函数()21x f x x =+,若函数()y f x ⎡⎤=⎣⎦的值域集合为Q ,则下列集合不是Q 的子集的是( ) A .[)0,+∞B .{}0,2C .{}1,2D .{}1,2,310. 关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数; ②f (x )在区间(2π,π)单调递增; ③f (x )在[,]-ππ有4个零点; ④f (x )的最大值为2 其中所有正确结论的编号是( ) A .①②④B .②④C .①④D .①③11. “喊泉”是一种地下水的毛细现象,人们在泉口吼叫或发出其他声音时,声波传入泉洞内的储水池,进而产生“共鸣”等物理声学作用,激起水波,形成涌泉.声音越大,涌起的泉水越高.已知听到的声强m 与标准声调0m (0m 约为1210-,单位:2W m )之比的常用对数称作声强的声强级,记作L (贝尔),即0lg mL m =,取贝尔的10倍作为响度的常用单位,简称为分贝.已知某处“喊泉”的声音响度y (分贝)与喷出的泉水高度x (米)满足关系式2y x =,现知A 同学大喝一声激起的涌泉最高高度为50米,若A 同学大喝一声的声强大约相当于10个B 同学同时大喝一声的声强,则B 同学大喝一声激起的涌泉最高高度约为( )米 A .5B .10C .45D .4812. 已知函数12log ,02()cos ,21663x x f x x x ππ⎧<<⎪⎪=⎨⎛⎫⎪-≤≤ ⎪⎪⎝⎭⎩,若函数()y f x a =-恰有5个零点1x ,2x ,3x ,4x ,5,x 且12345x x x x x <<<<,a 为实数,则3445123428x x x x x x x x ++-+的取值范围为( ) A .94,3555⎛⎫⎪⎝⎭B .107,2⎛⎫⎪⎝⎭C .57,33⎡⎫⎪⎢⎣⎭ D .105,73⎛⎤⎥⎝⎦二、填空题:本大题共4小题,每小题5分,共20分. 把答案填在答题卡上. 13. 函数(26)1f x x =-+在[-2,-1]上的值域是________. 14. 已知函数223,1()=lg(1),1x x f x xx x ⎧+-≥⎪⎨⎪+<⎩,则((3))f f -= . 15. 若函数()sin 23cos 2f x m x x =+的图象关于直线38x π=对称,则实数m =________. 16.设函数()f x =,a R e ∈为自然对数的底数),若曲线cos y x =上存在点()00,x y 使得00(())f f y y =,则a 的取值范围是________.三、解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17. 设集合2{20}A x x x =--≤∣,集合{21}B x m x =<<∣,且.B ≠∅ (1)若A B B =,求实数m 的取值范围;(2)若()RB A 中只有一个整数,求实数m 的取值范围.18. 已知函数1(),,,0,0,(1)2x f x a b R a b f ax b =∈≠≠=+,且方程()f x x =有且仅有一个实数解; (1)求a 、b 的值;(2)当11,42x ⎛⎤∈ ⎥⎝⎦时,不等式()()()11x f x m m x +⋅>--恒成立,求实数m 的范围.19. 已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭部分图象如图所示.(1)求函数()f x 的解析式,并求出()f x 的单调递增区间;(2)将函数()f x 的图象上各个点的横坐标变为原来的2倍,再将图象向右平移6π个单位,得到()g x 的图象,若存在20,3x π⎡⎤∈⎢⎥⎣⎦使得等式222()3()1a g x g x =-++成立,求实数a 的取值范围.20. 已知函数()()()sin 0,0f x A x B A ωϕω=++>>的一系列对应值如下表:(1)根据表格提供的数据求函数()f x 的一个解析式; (2)根据(1)的结果,若函数()()0y f kx k =>周期为23π,当[0,]3x π∈时,方程()f kx m = 恰有两个不同的解,求实数m 的取值范围. 21.2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生活造成严重影响.为降低疫情影响,某厂家拟尽快加大力度促进生产. 已知该厂家生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()202C x x x =+(万元). 当年产量不小于80千件时,10000()51600C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?最大利润是多少?22. 已知函数1()h x x x =+. (1)直接写出()h x 在1[,2]2上的单调区间(无需证明);(2)求()h x 在11[,]()22a a >上的最大值;(3)设函数()f x 的定义域为I ,若存在区间A I ⊆,满足:1x A ∀∈,2I x A ∃∈,使得12()()f x f x =,则称区间A 为()f x 的“Γ区间”.已知1()f x x x =+(1[,2]2x ∈),若1[,)2A b =是函数()f x 的“Γ区间”,求实数b 的最大值.成都七中高2023届高一上期1月数学考试参考答案一、选择题:1-5 BADAC 6-10 CBBAC 11-12 CD 二、填空题: 13. []2,6 14. 015.3- 16. []1,2e +三、解答题:17. 解:(1)由220x x --≤,得12x -≤≤,则{12}A x x =-≤≤∣.2⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分 因为AB B =,所以B A ⊆,3⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分又{21}B x m x =<<∣,且.B ≠∅ 则1112122m m -≤<⇒-≤<, 所以,m 的取值范围是211,2⎡⎫-⎪⎢⎣⎭.5⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分(2){12}A x x =-≤≤∣,{ 1 R A xx ∴=<-∣或2}x >,7⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分 又{21}B x m x =<<∣,且.B ≠∅ 若()R A B ⋂中只有一个整数,则322m -≤<-,得312m -≤<-; 所以,m 的取值范围是3,12⎡⎫--⎪⎢⎣⎭.10⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分 18. 解:(1)()x f x ax b =+,且1(1)2f =;∴112a b =+,即2a b +=;2⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分 又xx ax b=+只有一个实数解;∴10ax b x ax b --⎛⎫=⎪+⎝⎭有且仅有一个实数解为0;1,1b a ∴==;4⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分()(1)1xf x x x ∴=≠-+.6⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分 (2)11,42x ⎛⎤∴∈⎥⎝⎦;10x ∴+>; (1)()()1x f x m m x ∴+>--恒成立2(1)1m x m ⇔+>-;8⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分当10m +>时,即1m >﹣时,有1m x ﹣<恒成立11min m x m x ⇔+⇔+<<(),514m ∴-<;10⋅⋅⋅⋅分当10<m +,即1m <﹣时,同理可得3(1)2max m x >+=;∴此时m 不存在. 11⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分综上,m 的取值范围是51,4⎛⎤- ⎥⎝⎦.12⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分19. (1)由图象可知:22362T πππ=-=,所以T π=,则22Tπω==,2⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分 又22,62k k Z ππϕπ⨯+=+∈得26k πϕπ=+,又2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭,4⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分由222,262k x k k Z πππππ-≤+≤+∈得,,36k x k k Z ππππ-≤≤+∈,所以()f x 的单调递增区间为(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;6⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分(2)由图象变换得()sin g x x =,所以存在20,3x π⎡⎤∈⎢⎥⎣⎦使得等式222sin 3sin 1a x x =-++成立, 即222sin 3sin 1a x x =-++在20,3x π⎡⎤∈⎢⎥⎣⎦上有解,8⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分 令[]sin 0,1t x =∈,则223171723121,488y t t t ⎛⎫⎡⎤=-++=--+∈ ⎪⎢⎥⎝⎭⎣⎦,10⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分所以17128a ≤≤,即117216a ≤≤.12⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分20. 解:(1)绘制函数图象如图所示:设()f x 的最小正周期为T ,得11()266T πππ=--=.由2T πω=得1ω=.2⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分又31B A B A +=⎧⎨-=-⎩解得21A B =⎧⎨=⎩,4⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分 令5262k ππωϕπ⋅+=+,即5262k ππϕπ+=+,k Z ∈, 据此可得:23k πϕπ=-,又2πϕ<,令0k=可得3πϕ=-.所以函数的解析式为()213f x sin x π⎛⎫=-+ ⎪⎝⎭.6⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分(2)因为函数()213y f kx sin kx π⎛⎫==-+ ⎪⎝⎭的周期为23π, 又0k>,所以3k =.8⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分令33t x π=-,因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,33t ππ⎡⎤∈-⎢⎥⎣⎦. sint s =在2,33ππ⎡⎤⎢⎥⎣⎦-上有两个不同的解,等价于函数sin y t =与y s =的图象有两个不同的交点,s ⎫∴∈⎪⎪⎣⎭,10⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分所以方程()f kx m =在0,3x π⎡⎤∈⎢⎥⎣⎦时恰好有两个不同的解的条件是)1,3m ∈, 即实数m的取值范围是)1,3.12⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分21.解:(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,1⋅⋅⋅⋅⋅⋅⋅分依题意得:当080x <<时,2211()(0.051000)(20)2003020022L x x x x x x =⨯-+-=-+-,3⋅⋅⋅⋅⋅⋅⋅分当80x ≥时,1000010000()(0.051000)(51600)200400()L x x x x x x=⨯-+--=-+,5⋅⋅⋅⋅⋅⋅⋅分所以2130200,0802()10000400(),80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪-+≥⎪⎩;6⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分(2)当080x <<时,21()(30)2502L x x =--+,此时,当30x =时,即()(30)250L x L ≤=万元. 8⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分当80x ≥时,10000()400()400400200200L x x x =-+≤-=-=, 此时10000,100x x x==,即()(100)200L x L ≤=万元,11⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分由于250200>,所以当年产量为30千件时,该厂在这一商品生产中所获利润最大,最大利润为250万元12⋅⋅⋅⋅⋅⋅⋅⋅⋅分22.(1)()h x 在1[,1]2上单调递减,在[1,2]上单调递增; 2⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分(2)由题意知,15()(2)22h h ==,①若112a <≤,则()h x 在1[,]2a 上单调递减,所以()h x 的最大值为15()22h =3⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分②若12a <≤,则()h x 在1[,1]2上单调递减,在[1,]a 上单调递增,此时15()(2)()22h a h h ≤==,所以()h x 的最大值为15()22h =;4⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分③若2a >,则()h x 在1[,1]2上单调递减,在[1,]a 上单调递增,此时1()(2)()2h a h h ≥=,所以()h x 的最大值为1()h a a a =+6⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分综上知:若122a <≤,则()h x 的最大值为52;若2a >,则()h x 的最大值为1a a +.7⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分(3)由(1)(2)知: ①当112b <≤时,()f x 在1[,)2b 上的值域为15(,]2b b +,()f x 在[,2]b 上的值域为5[2,]2,∵12b b+≥,有155(,][2,]22b b +⊆,满足11[,)2x b ∀∈,2[,2]x b ∃∈,使得12()()f x f x =,∴此时1[,)2b 是()f x 的“Γ区间”, 9⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分②当12b <≤时,()f x 在1[,)2b 上的值域为5[2,]2,()f x 在[,2]b 上的值域为15[,]2b b +,∵当1[1,)x b ∈时,11()()f x f b b b<=+, ∴1[1,)x b ∃∈,使得115()(,]2f x b b ∉+,即1[1,)x b ∃∈,2[,2]x b ∀∈,12()()f x f x ≠∴此时1[,)2b 不是()f x 的“Γ区间”, 11⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分综上,实数b 的最大值为1.12⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分。

成都七中2020年~2020年年度高一上期中考试数学试卷(有答案)-(人教版)

成都七中2020年~2020年年度高一上期中考试数学试卷(有答案)-(人教版)

成都七中2020年~2020年学年度上期高中一年级期中考试数学试卷考试时间:120分钟 总分:150分命题人 张世永 审题人 曹杨可一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的答案填在后面的括号内).1.已知全集U={1,2,3,4,5,6,7,8},A={1,4,6},B={4,5,7},则(C U A )∩(C U B )等于( )A .{2,3,4,8}B .{2,3,8}C .{2,4,8}D .{3,4,8} 2.以下集合为有限集的是( )A .由大于10的所有自然数组成的集合B .平面内到一个定点O 的距离等于定长l (l >0)的所有点P 组成的集合C .由24与30的所有公约数组成的集合D .由24与30的所有公倍数组成的集合 3.已知A={642+-=x y y },B={35-=x y y },则A∩B 等于( )A .⎭⎬⎫⎩⎨⎧-2,457B .⎭⎬⎫⎩⎨⎧--)457,49(),2,1(C .⎭⎬⎫⎩⎨⎧≤≤-2457y yD .{}6≤y y4.不等式025215≥+-x x的解集为( )A .⎭⎬⎫⎩⎨⎧≤<-21552x xB .⎭⎬⎫⎩⎨⎧≥-<21552x x x 或C .⎭⎬⎫⎩⎨⎧≤≤-21552x xD .⎭⎬⎫⎩⎨⎧≥-≤21552x x x 或 5.以下命题是假命题的是( )A .命题“若022=+y x ,则x ,y 全为0”的逆命题. B .命题“若m >0,则02=-+m x x 有实数根”的逆否命题. C .命题“全等三角形是相似三角形”的否命题. D .命题“若a +5是无理数,则a 是无理数”. 6.设a <b ,函数)()(2b x a x y --=的图像可能是( )7.函数2+=x y (x ≥0)的反函数是( )A .2)2(x y -=(x ≥2) B .2)2(-=x y (x ≥0) C . 2)2(-=x yD .2)2(x y -=(x ≤2)8.设x ∈R ,则“x ≠0”是“x 3≠x ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件9.若函数⎩⎨⎧<+≥+-=)0(8)0(84)(2x x x x x x f ,则不等式f (x)>f (1)的解集为( )A .(3-,1)∪(3,+∞)B .(3-,1)∪(2,+∞)C .(1-,1)∪(3,+∞)D .(∞-,3-)∪(1,3)10.用min{a ,b ,c}表示a ,b ,c 三个数中的最小值,设{}x x x x f -+=10,2,m in )(2(x ≥0),则f (x )的最大值为( ) A .4B .5C .6D .711.函数131)(-++-=x x x f 的值域是( )A .[-3,1]B .[1- ,+∞)C .[2,22]D .[1,212-]12.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足)21()12(f x f <-的x 的取值范围是( )A .(41,43) B .[41,43) C .(31,43) D .[31,43) 二、填空题(每小题4分,共16分)13.求值:23332)10()8(27-+--= 14.已知A={}4<-a x x ,B=⎭⎬⎫⎩⎨⎧≥-+051x x x,且A∪B=R,则a 的范围是15.已知函数f (x )在R 上满足88)2(2)(2-+--=x x x f x f ,则函数f (x )解析式为16.若关于x 的不等式22)12(ax x <-的解集中的整数恰有3个,则实数a 的取值范围是成都七中高2020年级高一上期期中考试数学试卷(答题卷)命题人 张世永 审题人 曹杨可二、填空题(每小题4分,共16分)13. 14. 15. 16. 三、解答题(本大题共6小题,共74分)17.(12分)若A={}01922=-+-a ax x x ,B={}0652=+-x x x ,C={}0822=-+x x x .(1)若A=B ,求a 的值; (2)若A∩B≠φ,A∩C=φ,求a 的值.18. (12分)已知函数2-a ax ax )(++=x f ,()12=f .(1)求a 的值; (2) 求证:函数)(x f 在()0,∞-内是减函数.19.(12分)已知命题p :022=-++m x x 有一正一负两根,命题q :01)2(442=+-+x m x 无实根,若命题p 与命题q 有且只有一个为真,求实数m 的取值范围.20.(12分)已知函数b ax x x f ++=2)(,)(x f 为偶函数,且)(x f y =过点(2,5)。

成都七中高三上期文科数学上学期半期考试试卷【附答案】

成都七中高三上期文科数学上学期半期考试试卷【附答案】

(1)证明:平面 ECD 定平中面 EAD ;
(2)求直线 BD 与州直康线 EC 所成角的余弦值.




图①
图②



第 3页 共5页
19.2019 年电商“双十一”大战即将开始.某电商为了尽快占领市场,抢占今年“双十 一”的先机,对成都地区年龄在 15 到 75 岁的人群“是否网上购物”的情况进行了调查,随 机抽取了 100 人,其年龄频率分布表和使用网上购物的人数如下所示:(年龄单位:岁)
A. (0, 2]
B. (1, 2)
C. (1, )
2.已知 i 为虚数单位,若复数 z 3 i ,则| z | ( ) 1 i
A.1
B.2
C. 2
3.若 a b ,则下列不等式恒成立的是( )
A. 2a 2b
B. ln(a b) 0
1
1
C. a 3 b3
D. 5
ex cos x sin xex ex 2

cos
x ex
sin
x
,
x



,
2

.………….2

当 f ' x 0,即 cos x sin x 0 时, 3 x 或 5 x 2 .
4
44
当 f ' x 0,即 cos x sin x 0时, x 3 或 x 5 .


32 7

由参数的几何意义得
AM BM = t1 t2
32 . 7
………….10 分
23.解:(1) 2x 1 2 x m 2 恒成立,即 x 1 x m 1 , 2

四川省成都市第七中学2019-2020学年高一上半期期中数学试题Word版含解析

四川省成都市第七中学2019-2020学年高一上半期期中数学试题Word版含解析

四川省成都市第七中学2019-2020学年上半期期中高一数学试题一.选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.)1. 已知集合则A. B. C. D.【答案】C【解析】∵∴故选:C点睛:在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2. 函数的定义域为A. B. C. D.【答案】A【解析】由题意得:,解得:∴函数的定义域为故选:A3. 下列函数为上的偶函数的是A. B. C. D.【答案】B【解析】是非奇非偶函数,是偶函数,是奇函数,是奇函数,故选:B4. 集合集合则集合之间的关系为A. B. C. D.【答案】D【解析】由,得:,即,而∴故选:D5. 下列结论正确的是A. B.C. D.【答案】C【解析】对于A,,错误;对于B,,错误;对于C,,正确;对于D,,错误.故选:C6. 下列各组函数中,表示同一组函数的是A. B.C. D.【答案】D【解析】,两个函数的定义域不同,故A中两个函数不是同一个函数;,两个函数的定义域不同,故B中两个函数不是同一个函数;,两个函数的对应法则不同,故C中两个函数不是同一个函数;两个函数的定义域与对应法则都相同,故D中两个函数是同一个函数;故选D7. 大西洋鲑鱼每年都要逆流而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数,单位是,其中O表示鱼的耗氧量的单位数.则一条鲑鱼静止时耗氧量的单位数为()A. B. C. D.【答案】A【解析】v=0,即=0,得O=100,∴一条鲑鱼静止时耗氧量是100个单位;故选:A8. 设A. B. C. D.【答案】B【解析】由指数函数的图象与性质可知:,由对数函数的图象与性质可知:∴故选:B9. 函数的图象可能为A. B. C.D.【答案】C【解析】由题意易知:函数为偶函数,且,排除A,B当a时,在上单调递增,图象应该是下凸,排除D∴选C点睛:识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.10. 方程的一根在区间内,另一根在区间内,则的取值范围是A. B. C. D.【答案】B【解析】设,又方程的一根在区间内,另一根在区间内,∴即解得:故选:B11. 函数在的最大值为,则的值为A. B. C. D.【答案】D【解析】,对称轴为时,在上单调递减,最大值为不适合题意;②时,最大值为,解得不适合题意;综上,的值为故选:D12. 已知函数,函数有四个不同的零点且满足:,则的取值范围为A. B. C. D.【解析】作出函数的图象:由图象易知:,,∴,∴,∴,令t=,则在上单调递增,∴故选:A点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题:本大题共4小题,每题5分,共20分,把答案填在题中的横线上13. 已知:则__________.【答案】2【解析】∵∴故答案为:214. 若幂函数的函数图象经过原点则__________.【答案】2【解析】∵幂函数的函数图象经过原点∴,∴.....................【答案】(-1,1)【解析】令,则,在上单调递增,在上单调递减,在上单调递增,根据同增异减,可得的单调递增区间为故答案为:16. 已知为上的偶函数,当时,.对于结论(1)当时,;(2)函数的零点个数可以为4,5,7;(3)若,关于的方程有5个不同的实根,则;(4)若函数在区间上恒为正,则实数的范围是.说法正确的序号是__________.【答案】(2)(3)【解析】对于(1),∵为上的偶函数,当时,.∴时,;所以(1)错误;对于(2),,令,则,解得:,从而,若,则可得到,,五个零点;若,同上也是五个根;若,则可得到,或0,进而得到,七个零点;若等于其它值,只有四个零点;∴(2)正确;对于(3),由代入,解得:,经检验适合题意;对于(4),当时,,解得:,即,或,由特例不难发现不适合题意,故(4)错误综上:正确的序号是(2)(3)点睛:解决复合函数零点问题的一般方法为:利用函数图象由外向内依次求解,此外,还需要认真画图动态观察,一些重要数据还需认真求解.三.解答题(17题10分其余每小题12分,共70分.解答应写出文字说明,证明过程或演算步骤.)17. 计算下列各式的值:【答案】(1) (2)4【解析】试题分析:分别根据指数幂和对数的运算法则进行计算即可.试题解析:18. 已知函数(1)解不等式(2)求证:函数在上为增函数.【答案】(1) {x|}.(2)见解析【解析】试题分析:(1)分成两段解不等式组即可;(2)利用单调性定义加以证明.试题解析:解:(1)当时,由,得解得又,当时,由,得解得综上所述,原不等式的解集为{x|}.(2)证明:设任意,且.则由,得,由,得所以,即.所以函数在上为增函数.点睛:证明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差:,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性.19. 已知集合(1)求集合(2)已知集合若集合,求实数的取值范围.【答案】(1) ,(2)【解析】试题分析:(1)利用指对函数的图象与性质化简两个集合;(2)集合,分两种情况进行考虑.试题解析:(1)(2)点睛:(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.20. 《中华人民共和国个人所得税法》规定,公民全月工资所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额。

四川省成都市第七中学2020届高三数学上学期入学考试试题理含解析

四川省成都市第七中学2020届高三数学上学期入学考试试题理含解析

四川省成都市第七中学2020届高三数学上学期入学考试试题 理(含解析)一、选择题(本大题共12小题)1.已知集合{}1M x x =<,{}20N x x x =-<,则( ) A. {}1MN x x =<B. {}0MN x x =>C. M N ⊆D. N M ⊆【答案】D 【解析】 【分析】求解不等式20x x -<可得{}|01N x x =<<,据此结合交集、并集、子集的定义考查所给的选项是否正确即可.【详解】求解不等式20x x -<可得{}|01N x x =<<, 则:{}|01MN x x =<<,选项A 错误;{}|1M N x x ⋃=<,选项B 错误; N M ⊆,选项C 错误,选项D 正确;故选D .【点睛】本题主要考查集合的表示方法,交集、并集、子集的定义及其应用等知识,意在考查学生的转化能力和计算求解能力. 2.已知a R ∈,i 为虚数单位,若ai i+为实数,则a 值为 () A. 1 B. 2C. 3D. 4【答案】A 【解析】 【分析】利用复数代数形式的乘除运算化简,再由虚部为0求解可得答案. 【详解】解:()21a aii i a i i i+=+=-为实数, 10a ∴-=,即1a =.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问: 五人各得几何?”其意思为: 有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少个橘子.这个问题中,得到橘子最多的人所得的橘子个数是( ) A. 15 B. 16C. 18D. 21【答案】C 【解析】分析:首先根据题意,先确定其为一个等差数列的问题,已知公差、项数与和,求某项的问题,在求解的过程中,经分析,先确定首项,之后根据其和建立等量关系式,最后再利用通项公式求得第五项,从而求得结果. 详解:设第一个人分到的橘子个数为1a , 由题意得515453602S a ⨯=+⨯=,解得16a =, 则51(51)361218a a =+-⨯=+=,故选C.点睛:该题所考查的是有关等差数列的有关问题,在求解的过程中,注意分析题的条件,已知的量为公差、项数与和、而对于等差数列中,1,,,,n n a d n a S 这五个量是知三求二的,所以应用相应的公式求得对应的量即可. 4.函数()()2xx f x xee -=-的大致图象为( )A. B.C. D.【答案】A 【解析】利用函数的奇偶性排除,B D ,利用函数的单调性排除C ,从而可得结果. 【详解】()()2x x f x x e e -=-,()()()()22()x x x x f x x e e x e e f x --∴-=--=--=-,()f x ∴为奇函数,其图象关于原点对称,故排除,B D ,2y x =在()0,+∞上是增函数且0y >, x x y e e -=-在()0,+∞上是增函数且0y >,所以()()2xx f x xee -=-在()0,+∞是增函数,排除C ,故选A .【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.5.5(2x +的展开式中,4x 的系数是( )A. 40B. 60C. 80D. 100【答案】C 【解析】 【分析】先写出二项展开式的通项,然后令x 的指数为4,解出相应参数的值,代入通项即可得出结果.【详解】5(2x +二项展开式的通项为5552155(2)2k k kkk kk T C x C x---+=⋅⋅=⋅⋅.令542k-=,得2k =. 因此,二项展开式中4x 的系数为235280C ⋅=,故选C .【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.6.按照如图的程序框图执行,若输出结果为15,则M 处条件为A. 16k ≥B. 8k <C. 16k <D. 8k ≥【答案】A 【解析】【详解】运行程序: S=0,k=1; S=1,k=2; S=3,k=4; S=7,k=8;S=15,k=16,此时退出循环,所以16k ≥,故选A.点睛:该题考查的是有关程序框图的问题,该题属于补充条件的问题,在求解的过程中,注意数列的项的大小,以及项之间的关系,从而求得正确结果.7.已知锐角△ABC 的内角A,B,C 的对边分别为a,b,c,23cos 2A+cos 2A=0,a=7,c=6,则b 等于( ) A. 10 B. 9C. 8D. 5【答案】D 【解析】【详解】由题意知,23cos 2A+2cos 2A-1=0, 即cos 2A=125, 又因△ABC 为锐角三角形,所以cosA=15. △ABC 中由余弦定理知72=b 2+62-2b×6×15, 即b 2-125b-13=0, 即b=5或b=-135(舍去),故选D.8.曲线4y x=与直线5y x =-围成的平面图形的面积为( ) A.152B.154C.154ln 24- D.158ln 22- 【答案】D 【解析】 【分析】先作出直线与曲线围成的平面图形的简图,联立直线与曲线方程,求出交点横坐标,根据定积分即可求出结果. 【详解】作出曲线4y x=与直线5y x =-围成的平面图形如下:由45y x y x⎧=⎪⎨⎪=-⎩解得:1x =或4x =, 所以曲线4y x=与直线5y x =-围成的平面图形的面积为 ()421441115S 5542084458ln21222x dx x x lnx ln x ⎛⎫⎛⎫⎛⎫=--=--=----=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰故选D【点睛】本题主要考查定积分的应用,求围成图形的面积只需转化为对应的定积分问题求解即可,属于常考题型.9.已知函数()ln f x x x =,若直线l 过点()0,e -,且与曲线()y f x =相切,则直线l 的斜率为( ) A. 2- B. 2C. e -D. e【答案】B 【解析】 【分析】求得()f x 的导数,设出切点(),m n ,可得切线的斜率,结合两点的斜率公式,解方程可得m ,从而可得结果.【详解】函数()ln f x x x =的导数为()'ln 1f x x =+, 设切点为(),m n ,则n mlnm =, 可得切线的斜率为1ln k m =+, 所以ln 1ln n e m m em m m+++==, 解得m e =,1ln 2k e =+=,故选B .【点睛】本题主要考查利用导数求切线斜率,属于中档题. 应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点()()00,A x f x 求斜率k ,即求该点处的导数()0k f x '=;(2) 己知斜率k 求切点()()11,,A x f x 即解方程()1f x k '=;(3) 巳知切线过某点()()11,M x f x (不是切点) 求切点, 设出切点()()00,,A x f x 利用()()()10010f x f x k f x x x -'==-求解.10.巳知将函数()sin(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象向左平移ϕ个単位长度后.得到函数()g x 的图象.若()g x 是偶函数.则3f π⎛⎫⎪⎝⎭=( ) A .12B.2C.2D. 1【答案】A 【解析】 【分析】先由题意写出()()sin 23g x x ϕ=+,根据()g x 是偶函数求出ϕ,即可得出结果. 【详解】由题意可得:()()sin 23g x x ϕ=+, 因为()g x 是偶函数,所以()32k k Z πϕπ=+∈,即()63k k Z ππϕ=+∈, 又02πϕ<<,所以0632k πππ<+<,解得112k -<<,所以0k =,故6πϕ=; 所以1sin 23362f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.故选A【点睛】本题主要考查三角函数的图像变换与三角函数的性质,熟记性质即可,属于常考题型.11.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则,A C 区域涂色不相同的概率为( )A.17B.27C.37D.47【答案】D 【解析】 【分析】利用分步计数原理求出不同涂色方案有420种,其中,,A C 区域涂色不相同的情况有120种,由此根据古典概型概率公式能求出,A C 区域涂色不相同的概率.【详解】提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,根据题意,如图,设5个区域依次为,,,,A B C D E,分4步进行分析:①,对于区域A,有5种颜色可选;②,对于区域B与A区域相邻,有4种颜色可选;③,对于区域E,与,A B区域相邻,有3种颜色可选;④,对于区域,D C,若D与B颜色相同,C区域有3种颜色可选,若D与B颜色不相同,D区域有2种颜色可选,C区域有2种颜色可选,则区域,D C有3227+⨯=种选择,则不同的涂色方案有5437420⨯⨯⨯=种,其中,,A C区域涂色不相同的情况有:①,对于区域A,有5种颜色可选;②,对于区域B与A区域相邻,有4种颜色可选;③,对于区域E与,,A B C区域相邻,有2种颜色可选;④,对于区域,D C,若D与B颜色相同,C区域有2种颜色可选,若D与B颜色不相同,D区域有2种颜色可选,C区域有1种颜色可选,则区域,D C有2214+⨯=种选择,不同的涂色方案有5434240⨯⨯⨯=种,,A C∴区域涂色不相同的概率为24044207p== ,故选D.【点睛】本题考查古典概型概率公式的应用,考查分步计数原理等基础知识,考查运算求解能力,是中档题.在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n,其次求出概率事件中含有多少个基本事件m,然后根据公式mPn=求得概率.12.如图,将边长为1的正方形ABCD 沿x 轴正向滚动,先以A 为中心顺时针旋转,当B 落在x 轴时,又以B 为中心顺时针旋转,如此下去,设顶点C 滚动时的曲线方程为()y f x =,则下列说法不正确的是 ()A. ()0f x ≥恒成立B. ()()8f x f x =+C. ()243(23)f x x x x =-+-<≤D. ()20190f =【答案】C 【解析】 【分析】根据正方形的运动关系,分别求出当0x =,1,2,3,4时对应的函数值()f x ,得到()f x 具备周期性,周期为4,结合图象,当23x <≤时,C 的轨迹为以()2,0为圆心,1为半径的14圆,即可判断所求结论. 【详解】解:正方形的边长为1,∴正方形的对角线2AC =,则由正方形的滚动轨迹得到0x =时,C 位于()0,1点,即()01f =, 当1x =时,C 位于(2点,即()12f =当2x =时,C 位于()2,1点,即()21f =, 当3x =时,C 位于()3,0点,即()30f =, 当4x =时,C 位于()4,1点,即()41f =,则()()4f x f x +=,即()f x 具备周期性,周期为4,由图可得()0f x ≥恒成立;()()8f x f x +=; 当23x <≤时,C 的轨迹为以()2,0为圆心,1为半径的14圆,方程为22(2)1(23,0)x y x y -+=<≤≥;()()()20195044330f f f =⨯+==,综上可得A ,B ,D 正确;C 错误. 故选:C .【点睛】本题主要考查函数值的计算和函数的解析式和性质,结合正方形的运动轨迹,计算出对应函数值,得到周期性是解决本题的关键. 二、填空题(本大题共4小题)13.已知等差数列{}n a ,且48a =,则数列{}n a 的前7项和7S =______ 【答案】56 【解析】 【分析】由等差数列的性质可得:1742.a a a +=利用求和公式即可得出数列{}n a 的前7项和7S . 【详解】解:由等差数列的性质可得:174216a a a +==.∴数列{}n a 的前7项和()177778562a a S +==⨯=.故答案为:56.【点睛】本题考查了等差数列的通项公式的性质及其求和公式,考查了推理能力与计算能力,属于中档题.14.若x ,y 满足约束条件202020x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩______.【解析】 【分析】作出不等式组对应的平面区域,根据点到直线的距离公式进行求解即可.【详解】解:作出不等式组对应的平面区域如图:22x y +的几何意义是平面区域内的点到原点的距离,由图象得O 到直线20x y ++=的距离最小, 此时最小值22d ==, 则22x y +的最小值是2,故答案为:2.【点睛】本题主要考查线性规划的应用,利用点到直线的距离公式结合数形结合是解决本题的关键.15.已知向量AB 与AC 的夹角为120︒,且32AB AC ==,,若AP AB AC λ=+,且AP BC ⊥则实数λ的值为__________.【答案】712【解析】 ∵⊥,∴·=(λ+)·(-)=-λ2+2+(λ-1)·=0,即-λ×9+4+(λ-1)×3×2×=0,解得λ=.点睛:平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a ·b =|a ||b |cos θ;二是坐标公式a ·b =x 1x 2+y 1y 2;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.16.若过抛物线24y x =上一点()4,4P ,作两条直线PA ,PB 分别与抛物线交于1122(,),(,)A x y B x y 两点,若它们的斜率之和为0,则直线AB 斜率为______.【答案】12- 【解析】 【分析】根据斜率公式可得121244044y y x x --+=--,利用221212,44y y x x ==化简可得128y y +=-,再根据斜率公式可得12AB k =-. 【详解】解:依题意有121244044y y x x --+=--, 又221212,44y y x x ==, 所以1222124404444y y y y --+=--, 所以1211044y y +=++, 所以128y y +=-, 所以12122212121241244AB y y y y k y y x x y y --====--+-, 【点睛】本题考查直线与抛物线的位置关系的综合应用,斜率公式的应用,考查了计算能力.属于基础题.三、解答题(本大题共6小题)17.已知等差数列{}n a 的前n 项和为n S ,且39S =,又12a =.()1求数列{}n a 的通项公式;()2若数列{}n b 满足n b 2na-=,求证:数列{}n b 的前n 项和12n T <. 【答案】(1)1n a n =+(2)证明见解析 【解析】 【分析】()1直接利用等差数列前n 项和公式求出数列的公差,进一步求出数列的通项公式.()2利用等比数列的求和公式和放缩法的应用求出数列的和.【详解】解:()1设{}n a 的公差为d ,因为39S =,又12a =. 所以3132392S a d ⨯=+=,解得1d =. 故()211n a n n =+-=+.()2证明:由于1n a n =+,所以11()2n n b +=,所以22111111111424()()()112222122n n n T +⎛⎫-⎪⎝⎭=++⋯+=<=-.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,等比数列的前n 项和的应用,放缩法的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 18.如图1,在正方形ABCD 中,E 是AB 的中点,点F 在线段BC 上,且14BF BC =.若将,AED CFD ∆∆ 分别沿,ED FD 折起,使,A C 两点重合于点M ,如图2.图1 图2(1)求证:EF ⊥平面MED ;(2)求直线EM 与平面MFD 所成角的正弦值.【答案】(1)证明见解析;(2)5. 【解析】 【分析】(1)设正方形ABCD 的边长为4,由222DE EF DF +=,可得EF ED ⊥,结合MD EF ⊥,利用线面垂直的判定定理,即可得到EF ⊥平面MED .(2)建立空间直角坐标系,过点M 作MN ED ⊥,垂足为N ,求出向量EM 和平面MFD 的一个法向量,利用向量的夹角公式,即可求解. 【详解】(1)证明:设正方形的边长为4,由图1知,,,,,,即 由题意知,在图2中,,,平面,平面,且,平面,平面,. 又平面,平面,且,平面(2)由(1)知平面,则建立如图所示空间直角坐标系,过点作,垂足为,在中,,,从而,,,,,.设平面的一个法向量为,则,令,则,,.设直线与平面所成角为,则,.直线与平面所成角的正弦值为..【点睛】该题考查的是有关立体几何的有关问题,一是线面垂直的判定,一定要把握好线面垂直的判定定理的条件,注意勾股定理也是证明线线垂直的好方法,二是求线面角,利用空间向量来求解,即直线的方向向量和平面的法向量所成角的余弦值的绝对值等于线面角的正弦值,求得结果.19.2016年某市政府出台了“2020年创建全国文明城市(简称创文)”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:①调60,80内认定为满意,查对象为本市市民,被调查者各自独立评分;②采用百分制评分,[)80分及以上认定为非常满意;③市民对公交站点布局的满意率不低于60%即可进行验收;④用样本的频率代替概率.()1求被调查者满意或非常满意该项目的频率;()2若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;()3已知在评分低于60分的被调查者中,老年人占1,现从评分低于60分的被调查者中按年3龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记ξ为群众督查员中老年人的人数,求随机变量ξ的分布列及其数学期望E ξ. 【答案】(1)0.78;(2)12125;(3)23. 【解析】试题分析:(1)根据直方图的意义,求出后四个小矩形的面积和即可求得被调查者满意或非常满意该项目的频率;(2)根据频率分布直方图,被调查者非常满意的频率是()10.0160.004100.25+⨯==,根据独立重复试验n 次发生k 次的概率公式可得结果;(3)随机变量ξ的所有可能取值为0,1,2,利用组合知识根据古典概型概率公式分别求出各随机变量的概率,即可得分布列,根据期望公式可得结果.试题解析:(1)根据题意:60分或以上被认定为满意或非常满意,在频率分布直方图中, 评分在[]60,100的频率为:()0.0280.030.0160.004100.78+++⨯=;(2)根据频率分布直方图,被调查者非常满意的频率是()10.0160.004100.25+⨯==, 用样本的频率代替概率,从该市的全体市民中随机抽取1人, 该人非常满意该项目的概率为15, 现从中抽取3人恰有2人非常满意该项目的概率为:223141255125P C ⎛⎫=⋅⋅=⎪⎝⎭;(3)∵评分低于60分的被调查者中,老年人占13, 又从被调查者中按年龄分层抽取9人, ∴这9人中,老年人有3人,非老年人6人, 随机变量ξ的所有可能取值为0,1,2,()02362915036C C P C ξ⋅===()1136291811362C C P C ξ⋅====()2036293123612C C P C ξ⋅====ξ的分布列为:ξ的数学期望E ξ 15112012362123=⨯+⨯+⨯=. 20.已知椭圆2222:x y C a b+= ()10a b >>的焦点坐标分別为()11,0F -,()21,0F ,P 为椭圆C 上一点,满足1235PF PF =且123cos 5F PF ∠= (1) 求椭圆C 的标准方程:(2) 设直线:l y kx m =+与椭圆C 交于,A B 两点,点1,04Q ⎛⎫⎪⎝⎭,若AQ BQ =,求k 的取值范围.【答案】(1)22143x y +=;(2)11,,22k ⎛⎫⎛⎫∈-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭【解析】分析:第一问首先根据题中条件将涉及到的量设出来,之后结合椭圆的定义以及对应的线段的倍数关系,求得对应的边长,利用余弦定理借用余弦值建立边之间的等量关系式,从而求得,a c 的值,借用椭圆中,,a b c 的关系,求得b 的值,从而求得椭圆的方程,第二问将直线的方程与椭圆的方程联立,求得两根和与两根积,从而求得线段的中点,利用条件可得垂直关系,建立等量关系式,借用判别式大于零找到其所满足的不等关系,求得k 的取值范围.详解:(1)由题意设11PF r =,22PF r =则1235r r =,又122r r a +=,154r a ∴=,234r a = 在 12PF F ∆中,由余弦定理得,12cos F PF ∠=2221212122r r F F r r +- = 2225324453244a a a a ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭⨯⨯35=, 解得2a =,1c =,2223b a c ∴=-=,∴所求椭圆方程为22143x y +=(2)联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得()2234k x ++ 284120kmx m +-=, 则12x x += 2834km k -+,212241234m x x k-=+,且()2248340k m ∆=+->…① 设AB 的中心为()00,M x y ,则1202x x x +== 2434km k -+,002334my kx m k =+=+, AQ BQ =,AB QM ∴⊥,即,QM k k ⋅= 22334141344mk k km k +⋅=---+,解得2344k m k +=-…②把②代入①得22234344k k k ⎛⎫++>- ⎪⎝⎭,整理得4216830k k +->,即()()2241430k k -+>解得11,,22k ⎛⎫⎛⎫∈-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭点睛:该题考查的是有关直线与椭圆的综合题,涉及的知识点有椭圆的定义、余弦定理、椭圆的标准方程,以及直线与椭圆相交的有关问题,要会将题中条件加以转化,再者要会找对应的不等关系.21.已知函数()xf x xe =,()232g x x x =+-. ()1求证:()()215022f xg x x x-+->对()0,x ∞∈+恒成立;()2若()()()(0)32f x F x xg x x =>-+,若120x x <<,122x x +≤,求证:()()12.F x F x >【答案】(1)证明见解析(2)证明见解析 【解析】 【分析】(1)先对不等式左边进行化简整理,然后将整理后的表达式设为函数()h x ,对函数()h x 进行一阶导数和二阶导数的分析,得到()h x 在()0,∞+上单调递增,则当0x >时,()()0010.h x h e >=-=命题得证.(2)先对整理后的()F x 进行一阶导数的分析,画出函数()F x 大致图象,可知()10F x >,()20.F x >然后采用先取对数然后作差的方法比较大小,关键是构造对数平均数,利用对数平均不等式即可证明.【详解】证明:()1由题意,可知()()22221531511222222x x f x g x x e x x x e x x x-+-=--++-=---. 令()2112xh x e x x =---,0.x >则 ()'1x h x e x =--,()0.1x x h x e >"=-,当0x >时,()10xh x e "=->,()'h x ∴在()0,∞+上单调递增.∴当0x >时,()()''00h x h >=,()h x ∴在()0,∞+上单调递增.∴当0x >时,()()0010h x h e >=-=.故命题得证.()2由题意,()xe F x x =,0x >.()()21'x x e F x x-=,0x >.①令()'0F x =,解得1x =;②令()'0F x <,解得01x <<; ③令()'0F x >,解得1x >.()F x ∴在()0,1上单调递减,在()1,+∞上单调递增,在1x =处取得极小值()1F e =.()F x 大致图象如下:根据图,可知()10F x >,()20F x >.()()()()12121122121212.x x e e lnF x lnF x ln ln x lnx x lnx x x lnx lnx x x ∴-=-=---=---120x x <<,122x x +≤, ∴根据对数平均不等式,有12121212x x x xlnx lnx -+<≤-,()()121212121110lnF x lnF x lnx lnx x x x x --∴=-<-=--.120x x -<,()()120lnF x lnF x ∴->. ()()12.F x F x ∴>故得证.【点睛】本题主要考查函数的一阶导数和二阶导数对函数单调性分析的能力,数形结合法的应用,构造函数,构造对数平均数,利用对数平均不等式的技巧,本题属偏难题.22.在直角坐标系xOy 中,圆C 的参数方程为1cos sin x y ϕϕ=+⎧⎨=⎩(ϕ参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为()sin 3cos 33ρθθ=- 21 - (1)求C 的极坐标方程;(2)若射线11π:02OM θθθ⎛⎫=<< ⎪⎝⎭与圆C 的交点为,O P ,与直线l 的交点为Q ,求OP OQ ⋅的取值范围.【答案】(1)2cos ρθ=;(2)06OP OQ <<.【解析】试题分析:(1)圆C 的参数方程消去参数φ,能求出圆C 的普通方程,再由x=ρcosθ,y=ρsinθ,能求出圆C 的极坐标方程.(2)设P (ρ1,θ1),则有ρ1=cosθ1,Q (ρ2,θ1),则2ρ=,OP OQ =ρ1ρ2,结合tanθ1>0,能求出OP OQ 的范围.试题解析:(1)圆C 的普通方程是()2211x y -+=,又cos ,sin x y ρθρθ==,所以圆C 的极坐标方程是2cos ρθ=.(2)设()11,P ρθ,则有 11cos ρθ=,设()21,Q ρθ,且直线l的方程是()sin ρθθ=2ρ=所以12102OP OQ πρρθ⎫=⋅==<<⎪⎭ 因为1tan 0θ>,所以06OP OQ <<.。

2023届高一上半期考试数学(成都七中)参考解答 (1)

2023届高一上半期考试数学(成都七中)参考解答 (1)

4
4
易知:两个函数图象之间有四个公共点.
函数y f f ( x) g( x)在0,1上有且只有四个零点.
12分
第4页
x2 x1
1),
x22 1 x12 1
x2 x1,( x2 x1) 0,又 x22 1 x2 , x12 1 x1 ,
x2 x1
x2 x1
1,
x2 x1
1 0.
x22 1 x12 1 x22 1 x12 1
x22 1 x12 1
(
x22
x2 1
x1 x12
1
1)(
x2
bx2 2x 1有解.
即b
2 x
1 x2
有解, 令
1 x
t可知t
1 3
,
1 2
.
b
2t t 2
max
,t
1 3
,
1 2
,b
3 4
.
9分
(3)易知g(x) lg(
x2 1 x),
f (x) 1 2
x1 2
2
2
2x, x, x
x
1 2
1 2
.
,
f ( f ( x)) 1 2
6分 12分
19.解(1) 航天飞机发射时的最大声强是10000W / m2 ,
据题意此时I 10000W / m2 .
I
104
L1 10 lg(1012 ), L1 10 lg 1012 160.
其声强级为160dB.
2分 6分
第1页
(2)由题意可知0 L1 120,
f (x) 1 2
2
2
2 f
f (x ( x),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中2017-2018学年度上期 2017级半期考试数学试卷考试时间:120分钟 总分:150分一.选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.) 1.已知集合{}{}01023,,,,,M N ==则()NM ={}2()A {}1()B {}0()C {}01(),D2.函数1()lg()f x x =+的定义域为()(]12(),A - []12(),B - [)2(),C +∞ 1()(,)D -∞-3.下列函数为R 上的偶函数的是()2()A y x x =+ 133()x x B y =+1()C y x x=+ 11()D y x x =--+4.集合{}0(,),C x y y x =-=集合11222(,),y x D x y y x ⎧⎫⎧=+⎪⎪⎪=⎨⎨⎬⎪⎪⎪=-⎩⎩⎭则集合,C D 之间的关系为()()A D C ∈ ()B C D ∈ ()C C D ⊆ ()D D C ⊆5.下列结论正确的是()2(A =- 3553()lg()lg lg B +=+2313()()C -= 2255ln ()log ln D =6.下列各组函数中,表示同一组函数的是()21231()(),()x A f x x g x x -=-=--2()(),()B f x x g x ==()()()C f x g x x == 11111,()(),(),x x D f t t g x x x -≥⎧=-=⎨-+⎩< 7.大西洋鲑鱼每年都要逆流而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数312100=log Ov ,单位是/m s ,其中O 表示鱼的耗氧量的单位数.则一条鲑鱼静止时耗氧量的单位数为( )100()A 300()B 3()C 1()D8.设330993309933099....,.,log .,a b c ===则 ()()A c b a << ()B c a b << ()C a b c << ()D a c b <<9.函数101(),xy a a a =+≠且>[]0,,x k k k ∈->的图象可能为()()A 10.方程24250+-+-=()x m x m 的一根在区间10-(,)内,另一根在区间02(,)内,则m 的取值范围是() 553()(,)A 753-()(,)B 553-∞+∞()(,)(,)C 53-∞()(,)D11.函数22(),(f x x mx m =-+>0)在[]02,x ∈的最大值为9,则m 的值为()13()A 或 1334()B 或3()C 134()D 12.已知函数22220log (),(),x x f x x x x ⎧-⎪=⎨-+≥⎪⎩<,函数()()F x f x a =-有四个不同的零点1234,,,x x x x 且满足:1234x x x x <<<,则223141212x x x x x x ++的取值范围为()17257416(),A ⎛⎤ ⎥⎝⎦ [)2(),B +∞ 1724(),C ⎛⎤⎥⎝⎦2()(,)D +∞kO-kk-k O kO -k二、填空题:本大题共4小题,每题5分,共20分,把答案填在题中的横线上13.已知:12-+=a a 则22-+=a a .14.若幂函数21()m y m m x =--⋅的函数图象经过原点则m = .15.设函数2232()log ()f x x x =+-,则()f x 的单调递增区间为 . 16.已知()f x 为R 上的偶函数,当0>x 时,2=()log f x x .对于结论(1)当0<x 时,2=--()log ()f x x ;(2)函数[]()f f x 的零点个数可以为4,5,7;(3)若02=()f ,关于x 的方程220+-=()()f x mf x 有5个不同的实根,则1=-m ;(4)若函数212=-+()y f ax x 在区间[]12,上恒为正,则实数a 的范围是12⎛⎫+∞⎪⎝⎭,. 说法正确的序号是 .三.解答题(17题10分其余每小题12分,共70分.解答应写出文字说明,证明过程或演算步骤.)17.计算下列各式的值:1132100082()(.)-+52222525225545log ()lg lg lg lg log log +++⨯+18.已知函数()222,0,2,0.x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩(1)解不等式3>();f x(2)求证:函数()f x 在()0-∞,上为增函数.19.已知集合{}24,x A x R =∈<{}4lg().B x R y x =∈=- (1)求集合,;A B(2)已知集合{}11,C x m x m =-≤≤-若集合()C A B ⊆,求实数m 的取值范围.20. 《中华人民共和国个人所得税法》规定,公民全月工资所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额。

此项税款按下表分段累计计算:(1) 某人10月份应交此项税款为350元,则他10月份的工资收入是多少? (2) 假设某人的月收入为x 元,012500≤≤x ,记他应纳税为()f x 元,求()f x 的函数解析式.21.已知定义域为R 的函数1231=-++()x a f x 是奇函数. (1)求a 的值;(2)判断函数()f x 的单调性并证明;(3)若对任意的12(,)t ∈,不等式222120()()f t t f t mt -+++-≤有解,求m 的取值范围.22. 已知函数()f x 的定义域为()11-,,对任意实数11∈-,(,)x y ,都有1++=+()()()x yf x f y f xy. (1)若21+=+()m n f mn ,11-=-()m nf mn,且11∈-,(,)m n ,求()f m ,()f n 的值;(2)若a 为常数,函数21=-+()lg()xg x a x 是奇函数, ①验证函数()g x 满足题中的条件;②若函数()(),11,1,11,g x x h x k x x x -<<⎧⎪=⎨+≤-≥⎪⎩或求函数[]()2y h h x =-的零点个数.成都七中学年上期级半期考试数学试卷(参考答案)考试时间:120分钟总分:150分一.选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.)CABDC DABCB DA二、填空题:本大题共4小题,每题5分,共20分,把答案填在题中的横线上132. 142.15 . (-1,1) 注:(]11-,也对16 . (2) (3)三.解答题(17-21每小题12分,22题14分,共74分.解答应写出文字说明,证明过程或演算步骤.)17解:113210008254110ππ-+=+-+=-()(.) ……………5分522225252255455225322252124223+++⨯++++⨯+=+++=log()lg lg lg lg log log=lg lg(lg lg)lg lglg lglg lg…………10分18.解:(1)当0≥x时,由223=+>()f x x x,得2230+->,x x解得13><-,x x或又0≥x,1∴>.x……………3分当0<x时,由223=-+>()f x x x,得2230-+<,x x解得∈∅.x综上所述,原不等式的解集为{x|1>x}.……………6分(2)证明:设任意()12∈-∞,,x x,且12<x x.则2212112222-=-+--+()()()()f x f x x x x x2221122121222=-+--+-())=)()x x x xx x((x x由12<x x,得21->xx,由()12∈-∞,,x x,得2120+-<.xx所以12-<()()f x f x,即12<()()f x f x.所以函数()f x在()0-∞,上为增函数.……………12分19解:(1)222x < 2(,)A ∴=-∞……………3分44lg()y x x =-又可知> 4(,)B ∴=+∞…………………6分 (2)24()(,)(,)()A B C A B =-∞+∞⊆又1111(),()i C m m m C A B m =∅--⊆∴若即解得满足:符合条件>< <……………8分[)114121213≠∅-≤-≥⊆--∈(),(),ii C m m m C A B m m m m m 若即解得要保证:或解得舍或 解得11-><<-3()<……11分3m m 综上:的取值范围为< ……………12分201500015000034550008000300001300300453453508000800002525⨯=⨯=+===.()().,;().,;(),.i ii iii x x x 解:易知工资纳税是一个分段计费方式:若该人的收入刚达到元则其应纳税所得额为元 易知:其收入超过元若该人的收入刚达到元则元 易知:其应纳税所得额为:故其收入超过元设其收入超过元的部分为元易知元解得 < 108025则其月份的工资收入是元.…………………………6分20035000033500350050000150004550008000028000345800012500≤≤⎧⎪⨯-≤⎪=⎨⨯-+≤⎪⎪⨯-+≤⎩()(),.(),().(),.(),易知他应交此项税款为是一个分段函数,,,,f x x x x f x x x x x < << 003500003105350050000145550008000021255800012500≤≤⎧⎪-≤⎪=⎨-≤⎪⎪-≤⎩,.,:().,.,.,,整理可得,x x x f x x x x x <<<……………12分211001==.()():(),.f x f a 解:由为奇函数可知解得 ……………3分111212313111231=-++++∴=-++()(),()x x x x f x f x 易知3为单调递增函数为单调递减函数,单调递减的函数.12211212121211112231311133631313131-=-+--+++-=-=++++,()()()....................()()x x x x x x x x x x f x f x 证明:设分> 12212131103110330++∴-,,,x x x x x x 同理>>>><<21123303131-∴++,()()x x x x <120∴-()(),f x f x <12∴()(),f x f x <()f x R ∴在上单调递减……………8分2222222231221202122212211112111102121122∈-+++-≤-++≤--=--++≥-∴≤++≤++∴++⋯⋯⋯⋯⋯⋯⋯⋯∈⋯⋯-()(,),()()()()()(,)t f t t f t mt f t t f t mt f mt t t t mt t mt t t m t t t t m m 任意的可得由单调性易知:可得有解易知:故解得分分---<< 22.解:(1)对题中条件取0==x y ,得00=()f ,……………1分 再取=-y x ,得00+-==()()()f x f x f ,则-=-()()f x f x ,即函数()f x 在()11-,内为奇函数. ……………3分 所以11-=+-=-=-()()()()()m nf f m f n f m f n mn,又21+=+=+()()()m nf f m f n mn,解得32=()f m ,12=()f n .……………5分 (2)由函数21=-+()lg()xg x a x 是奇函数,得001===()lg lg g a ,则1=.a 此时21111-=-=++()lg()lg x xg x x x ,满足函数()g x 是奇函数,且00=()g 有意义. ……………7分 ①由101->+xx ,得11-<<x ,则对任意实数11∈-,(,)x y ,有1111111111------++=+=⋅=+++++++()()lglg lg()lg x y x y x y xyg x g y x y x y x y xy, 11111+-++==++++()lg x yx y xy g x y xy xy11--++++lg x y xy x y xy ,所以1++=+()()()x yg x g y g xy.……………9分 ②由[]()20y h h x =-=,得[]()2h h x =,令(),t h x =则() 2.h t = 作出图像由图可知,当0≤k 时,只有一个10-<<t ,对应有3个零点; 当1>k 时,只有一个t ,对应只有一个零点;当01<≤k 时,112<+≤k ,此时11<-t ,210-<<t ,311=≥t k, 由211115511+-+-+-==(k k k k k k k k 得在5112<≤k 时,11+>k k,三个t 分别对应一个零点,共3个, 在5102<≤k 时,11+≤k k,三个t 分别对应1个,1个,3个零点,共5个. 综上所述,当1>k 时,函数[]()2y h h x =-只有1零点;当 0≤k 或112<≤k 时,函数[]()2y h h x =-有3零点;当102<≤k 时,函数[]()2y h h x =-有5点. ……………12分。

相关文档
最新文档