重庆市重庆一中2016-2017学年高一上学期期中考试试题_数学_Word版含答案
重庆市第一中学2016-2017学年高一上学期期中考试化学试题 Word版含答案

秘密★启用前2016年重庆一中高2019级高一上期半期考试化学试题卷2016.12化学试题共7页。
满分150分。
时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 Al 27 S 32 Fe 56 Ba 137Ⅰ卷(选择题,共69分)选择题(本题包括23个小题,每小题只有一个选项符合题意,每小题3分,共69分)1.下列仪器可用于加热且不必垫石棉网的是①试管②烧杯③坩埚④蒸发皿⑤锥形瓶⑥蒸馏烧瓶A. ②④⑤B. ①③④C.①②③D. ②⑤⑥2.如果家里炒菜的食用油混了大量水,采用的简单分离方法为A.过滤B.萃取C.分液D.蒸馏3.下列各项中,符合实验安全操作要求的是A.金属钠着火,立即用水浇灭B.将使用剩余的金属钠放回原瓶C.给试管中的液体加热过程中加入碎瓷片D.皮肤上不慎沾上NaOH溶液,立即用盐酸冲洗4.歌乐山森林公园是重庆主城的肺叶之一,素有“天然氧吧”之称,其原因是森林空气中富含被称为“空气维生素”的负氧离子,O2-就是其中一种,其摩尔质量为A.33B.32C.33 g·molˉ1D.32 g·molˉ15.分类法在化学学科发展中起到了非常重要的作用,下列分类标准合理的是A.根据是否含氧元素,将物质分为氧化剂和还原剂B.根据是否具有丁达尔效应,将分散系分为溶液、浊液和胶体C.根据水溶液是否能够导电,将物质分为电解质和非电解质D.根据反应中是否有电子转移,将化学反应分为氧化还原反应和非氧化还原反应6.下列分散系中,分散质微粒半径最小的是A.霾B.KCl溶液C.蛋白质胶体D.新制Cu(OH)2悬浊液7.下列叙述正确的是A.将植物油倒入水中用力搅拌形成油水混合物属于胶体B.向氢氧化钠溶液中逐滴加入FeCl3饱和溶液制备氢氧化铁胶体C.一束平行光线射入稀豆浆里,可以看到一条光亮的通路D.可用过滤方法除去氢氧化铁胶体中的NaCl杂质8.下列有关实验操作正确的是A.图①:配制0.2 mol·L-1的NaOH 溶液B.图②:除去NaCl溶液中的KNO3杂质C.图③:用CCl4萃取碘水中的碘后的分液操作D.图④:蒸馏工业酒精获取无水酒精9.下列有关物质的类别正确的是A.盐:碳酸氢钠氯化铵纯碱B.电解质:H2SO4 Ba(OH)2CO2C.氧化物:H2O CO HNO3D.混合物:空气玻璃水银10.若N A表示阿伏加德罗常数的值,下列说法正确的是A.16g O2和O3的混合气体中含N A个氧原子B.0.5 mol·L-1硫酸钠溶液中含有N A个Na+C.在0 ℃、101 kPa时,22.4 L CCl4中含有N A个碳原子D.在H2O2 + Cl2 =2HCl + O2反应中,每生成32g氧气,则转移4N A个电子11.己知在标准状况下4.48L 某气体质量为8.8g,则该气体可能为A.CH4B.NOC.NH3D.CO212.铁、铝两种金属分别和等体积、等浓度的稀硫酸反应,消耗两种金属的物质的量相等,则下列叙述一定正确的是A.生成氢气的体积相等B.消耗的硫酸的物质的量相等C.两反应转移电子的数目之比为2:3D.加入的两种金属质量相等13.同温同压下,相同体积的SO2和O3气体,下列叙述中错误的是A.质量比4∶3B.电子数比1∶1C.密度比4∶3D.氧原子数比2∶314.下列有关钠的叙述中,错误的是A.少量金属钠可保存在煤油中B.金属钠的密度比水小,比煤油大C.金属钠可以置换出硫酸铜溶液中的铜D.钠元素在自然界中只能以化合态存在15.下列叙述正确的是A.溶于水后能电离出H+的化合物都是酸B.NaCl溶液在电流作用下电离成Na+与Cl-C.硫酸溶液的导电性一定比醋酸溶液导电性强D.氯化氢溶于水能导电,但液态氯化氢不能导电16.下列反应的离子方程式错误的是A.氢氧化钡溶液中加入硫酸镁溶液Mg2+ + 2OH- = Mg(OH)2↓B.稀硫酸溶液中加入氧化铜CuO+2H+= Cu2++H2OC.碳酸钙与稀盐酸制二氧化碳CaCO3+2H+=Ca2++CO2↑+H2OD.碳酸氢钙溶液中加入少量氢氧化钾溶液Ca2++HCO3-+OH-=CaCO3↓+H2O17.某无色透明的强酸性溶液中能大量共存的离子组是A.Mg2+、K+、SO42-、OH-B.Ca2+、K+、CO32-、C1-C.K+、Na+ 、Cl-、NO3-D.Cu2+、K+、NO3-、Cl-18.已知某溶液中Na+、Cl-、K+、SO42-物质的量之比为1:1:2:1,则其溶质可能是A.KCl、Na2SO4B.KCl、Na2SO4、NaClC.NaCl、Na2SO4、K2SO4D.KCl、K2SO4、Na2SO419.下列反应不属于四种基本反应类型,但属于氧化还原反应的是A.CaO+H2O=Ca(OH)2B.Fe+CuSO4=FeSO4+CuC.6FeBr2+3Cl2=2FeCl3+4FeBr3D.AgNO3+KCl=AgCl↓+KNO320.下图是某燃煤发电厂处理废气的装置示意图。
重庆一中高一数学上学期期中试题

重庆一中2014-2015学年高一数学上学期期中试题一、选择题(每题5分,共50分。
每题只有一个正确答案)1. 以下表示正确的是( )A. 0∅=B. {0}∅=C. {0}∅∈D. {0}∅⊆2.函数()ln(2)f x x =-的定义域为( )A. [1,2)-B. (1,)-+∞C. (1,2)-D. (2,)+∞3.函数41()2x x f x +=的图像( ) A. 关于原点对称 B.关于x 轴对称 C. 关于y 轴对称 D. 关于直线y x =轴对称4. 已知a =132-,b =21log 3,c =121log 3,则( ) A. a b c >> B. a c b >> C. c a b >> D. c b a >>5. 已知幂函数()f x 的图像经过点(4,2),则()f x 的增区间为( )A. (,)-∞+∞B. (,0)-∞C. (0,)+∞D. (1,)+∞6. (原创)1x >的充分不必要条件是( )A. 0x >B. 1x ≥C. 0x =D. 2x =7.已知1)()3,f x f a =+=且则实数a 的值是( )A. 2±B. 2C. 2-D. 48.(原创) 函数241,(0)()2,(0)x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数123,,x x x 满足123()()()f x f x f x ==,则123x x x ++的取值范围为( )A. (]5,4-B. (5,3)-C. (1,4)-D. (]1,3-9. 已知函数()22lg 12(1)3y a x a x ⎡⎤=---+⎣⎦的值域为R ,则实数a 的取值范围是( ) A. [2,1]- B. [2,1]-- C. (2,1)- D. (,2)[1,)-∞-+∞U10.已知定义在R 上的函数()f x 满足[()]()1f f x xf x =+,则方程()0f x =的实根个数为( )A. 0B. 1C. 2D. 4二、填空题(每小题5分,共25分)11. 函数21,[1,2]y x x =+∈-的值域为 ;12. 已知函数1()31x f x a =++为奇函数,则常数a = ; 13. 函数22log (4)y x x =-的增区间为 ;14. 已知不等式20ax bx c ++>的解集为1(,2)2-,对于系数,,a b c 有如下结论:①0a >;②0b >;③0c >;④0a b c ++>;⑤0a b c -+>。
重庆市2016—2017学年高一上学期期末数学 试卷 Word版含解析

重庆市2016—2017学年年高一上学期期末数学试卷一.选择题.(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设集合A={x|x+2=0},集合B={x|x2﹣4=0},则A∩B=()A.{﹣2} B.{2} C.{﹣2,2} D.∅2.(5分)已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.2 3.(5分)已知α是第四象限的角,若cosα=,则tanα=()A.B.﹣C.D.﹣4.(5分)如图,在正六边形ABCDEF中,++等于()A.0 B.C.D.5.(5分)函数f(x)=3x+x﹣3在区间(0,1)内的零点个数是()A.3 B.2 C.1 D.0 6.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<)的部分图象如图所示,则f(x)的解析式是()A.f(x)=2sin(2x+)B.f(x)=2sin(x+)C.f(x)=2sin(2x+)D.f(x)=2sin(x+)7.(5分)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cosx B.y=ln|x| C.y=D.y=tan2x8.(5分)设a=tan35°,b=cos55°,c=sin23°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b9.(5分)定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈B.C.D.二.填空题.(本大题共5小题,每小题5分,共25分.)11.(5分)tan=.12.(5分)如图所示,平行四边形ABCD的对角线AC与BD相交于点O,点M是线段OD的中点,设=,=,则=.(结果用,表示)13.(5分)(lg25﹣lg)÷100=.14.(5分)求值:=.15.(5分)设g(x)=x﹣1,已知f(x)=,若关于x的方程f(x)=m恰有三个互不相等的实根x1,x2,x3,则x12+x22+x32的取值范围是.三.解答题.(本大题共6小题,共75分.解答须写出文字说明、证明过程和演算步骤.)16.(13分)已知<α<π,tanα﹣=﹣.(Ⅰ)求tana的值;(Ⅱ)求的值.17.(13分)平面内给定三个向量=(3,2),=(﹣1,2),=(4,1).(Ⅰ)设向量=+,且||=,求向量的坐标;(Ⅱ)若(+k)∥(2﹣),求实数k的值.18.(13分)已知函数f(x)=a x(a>0,a≠1)在区间上的最大值是最小值的8倍.(Ⅰ)求a的值;(Ⅱ)当a>1时,解不等式log a(2a+2x)<log a(x2+1).19.(12分)已知函数g(x)=4sin(ωx+),h(x)=cos(ωx+π)(ω>0).(Ⅰ)当ω=2时,把y=g(x)的图象向右平移个单位得到函数y=p(x)的图象,求函数y=p(x)的图象的对称中心坐标;(Ⅱ)设f(x)=g(x)h(x),若f(x)的图象与直线y=2﹣的相邻两个交点之间的距离为π,求ω的值,并求函数f(x)的单调递增区间.20.(12分)已知函数f(x)=log2(4x+1)+mx.(Ⅰ)若f(x)是偶函数,求实数m的值;(Ⅱ)当m>0时,关于x的方程f(8(log4x)2+2log2+﹣4)=1在区间上恰有两个不同的实数解,求m的范围.21.(12分)已知定义在(﹣∞,﹣1)∪(1,+∞)函数满足:①f(4)=1;②对任意x >2均有f(x)>0;③对任意x>1,y>1,均有f(x)+f(y)=f(xy﹣x﹣y+2).(Ⅰ)求f(2)的值;(Ⅱ)证明:f(x)在(1,+∞)上为增函数;(Ⅲ)是否存在实数k,使得f(sin2θ﹣(k﹣4)(sinθ+cosθ)+k)<2对任意的θ∈恒成立?若存在,求出k的范围;若不存在说明理由.重庆市2016—2017学年年高一上学期期末数学试卷参考答案与试题解析一.选择题.(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设集合A={x|x+2=0},集合B={x|x2﹣4=0},则A∩B=()A.{﹣2} B.{2} C.{﹣2,2} D.∅考点:交集及其运算.专题:计算题.分析:分别求出两集合中方程的解,确定出A与B,找出A与B的公共元素即可求出交集.解答:解:由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.故选A点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.2考点:函数的值.专题:函数的性质及应用.分析:利用奇函数的性质,f(﹣1)=﹣f(1),即可求得答案.解答:解:∵函数f(x)为奇函数,x>0时,f(x)=x2+,∴f(﹣1)=﹣f(1)=﹣2,故选A.点评:本题考查奇函数的性质,考查函数的求值,属于基础题.3.(5分)已知α是第四象限的角,若cosα=,则tanα=()A.B.﹣C.D.﹣考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:由α为第四象限角,以及cosα的值,利用同角三角函数间的基本关系求出s inα的值,即可确定出tanα的值.解答:解:∵α是第四象限的角,若cosα=,∴sinα=﹣=﹣,则tanα==﹣,故选:D.点评:此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.4.(5分)如图,在正六边形ABCDEF中,++等于()A.0 B.C.D.考点:向量的加法及其几何意义.专题:平面向量及应用.分析:利用正六边形ABCDEF的性质,对边平行且相等得到向量相等或者相反,得到所求为0向量.解答:解:因为正六边形ABCDEF中,CD∥AF,CD=AF,所以++=++=;故选A.点评:本题考查了向量相等以及向量加法的三角形法则,属于基础题.5.(5分)函数f(x)=3x+x﹣3在区间(0,1)内的零点个数是()A.3 B.2 C.1 D.0考点:函数零点的判定定理.专题:计算题;函数的性质及应用.分析:函数f(x)=3x+x﹣3在区间(0,1)上连续且单调递增,利用函数零点的判定定理求解即可.解答:解:函数f(x)=3x+x﹣3在区间(0,1)上连续且单调递增,又∵f(0)=1+0﹣3=﹣2<0,f(1)=3+1﹣3=1>0;∴f(0)•f(1)<0;故函数f(x)=3x+x﹣3在区间(0,1)内有一个零点,故选C.点评:本题考查了函数零点的判定定理的应用及函数的单调性的应用,属于基础题.6.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<)的部分图象如图所示,则f(x)的解析式是()A.f(x)=2sin(2x+)B.f(x)=2sin(x+)C.f(x)=2sin(2x+)D.f(x)=2sin(x+)考点:正弦函数的图象.专题:三角函数的图像与性质.分析:根据图象确定A,ω和φ的值即可求函数的解析式解答:解:由图象知函数的最大值为2,即A=2,函数的周期T=4()=2,解得ω=1,即f(x)=2sin(x+φ),由五点对应法知+φ=π,解得φ=,故f(x)=2sin(x+),故选:B点评:本题主要考查函数解析式的求解,根据条件确定A,ω和φ的值是解决本题的关键.要要求熟练掌握五点对应法.7.(5分)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cosx B.y=ln|x| C.y=D.y=tan2x考点:函数单调性的判断与证明;函数奇偶性的判断.专题:函数的性质及应用.分析:根据余弦函数的单调性,对数函数的单调性,偶函数、奇函数的定义即可判断每个选项的正误.解答:解:A.y=cosx在(1,2)是减函数,所以A错误;B.显然y=ln|x|是偶函数,且在(1,2)内是增函数,所以B正确;C.显然函数是奇函数,所以该选项错误;D.tan﹣2x=﹣tan2x,所以该函数是奇函数,所以该选项错误.故选B.点评:考查余弦函数的单调性,对数函数的单调性,以及奇函数、偶函数的定义.8.(5分)设a=tan35°,b=cos55°,c=sin23°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b考点:正弦函数的图象.专题:三角函数的求值.分析:利用三角函数的诱导公式结合三角函数的单调性即可得到结论.解答:解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知sin35°>sin23°,即b>c,而a=tan35°=>sin35°=b,∴a>b>c,故选:A点评:本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题.9.(5分)定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈B. C.D.考点:函数的值域.专题:函数的性质及应用.分析:化简得出令=m,则1+sinx=2m﹣mcosx,sinx+mcosx=2m﹣1,φ)=2m﹣1得sin(x+φ)=,由≤1,解得0,利用函数性质求解f(m)=单增,解答:解:f(x)==﹣==﹣=令=m,则1+sinx=2m﹣mcosx,sinx+mcosx=2m﹣1,φ)=2m﹣1得sin(x+φ)=,由≤1,解得0,f(m)=单增,值域为点评:本题考察了函数的性质,换元法求解问题,属于难题,计算量较大.二.填空题.(本大题共5小题,每小题5分,共25分.)11.(5分)tan=﹣.考点:运用诱导公式化简求值.专题:三角函数的求值.分析:原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.解答:解:tan=tan(π﹣)=﹣tan=﹣.故答案为:﹣点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.12.(5分)如图所示,平行四边形ABCD的对角线AC与BD相交于点O,点M是线段OD的中点,设=,=,则=.(结果用,表示)考点:向量的三角形法则.专题:平面向量及应用.分析:利用向量的三角形法则、向量共线定理可得+==,即可得出.解答:解:+===.故答案为:.点评:本题考查了向量的三角形法则、向量共线定理,属于基础题.13.(5分)(lg25﹣lg)÷100=20.考点:有理数指数幂的化简求值.专题:函数的性质及应用.分析:根据对数的运算法则和有理数的公式进行化简即可.解答:解:(lg25﹣lg)÷100=(lg100)×=2×10=20,故答案为:20.点评:本题主要考查有理数的化简,比较基础.14.(5分)求值:=1.考点:三角函数的恒等变换及化简求值.专题:计算题.分析:先把原式中切转化成弦,利用两角和公式和整理后,运用诱导公式和二倍角公式化简整理求得答案.解答:解:原式=sin50°•=cos40°===1故答案为:1点评:本题主要考查了三角函数的恒等变换及其化简求值,以及两角和公式,诱导公式和二倍角公式的化简求值.考查了学生对三角函数基础知识的综合运用.15.(5分)设g(x)=x﹣1,已知f(x)=,若关于x的方程f(x)=m恰有三个互不相等的实根x1,x2,x3,则x12+x22+x32的取值范围是(,1).考点:根的存在性及根的个数判断;分段函数的应用.专题:计算题;作图题;函数的性质及应用.分析:化简f(x)=,从而作出其图象,结合图象可得0<m<,从而分别讨论x1,x2,x3,再令y=x12+x22+x32=+1﹣2m,化简并利用换元法求取值范围即可.解答:解:∵g(x)=x﹣1,f(x)=,f(x)=;即f(x)=;作出其图象如下,若方程f(x)=m有三个根,则0<m<,且当x>0时,方程可化为﹣x2+x﹣m=0,易知,x2+x3=1,x2x3=m;当x≤0时,方程可化为x2﹣x﹣m=0,可解得x1=;记y=x12+x22+x32=+1﹣2m=﹣m﹣+;令t=∈(1,),则y=﹣t2﹣t+,解得,y∈(,1).故答案为:(,1).点评:本题考查了分段函数的应用及数形结合的思想应用,同时考查了换元法的应用及方程的根与函数的图象的交点的关系应用,属于中档题.三.解答题.(本大题共6小题,共75分.解答须写出文字说明、证明过程和演算步骤.)16.(13分)已知<α<π,tanα﹣=﹣.(Ⅰ)求tana的值;(Ⅱ)求的值.考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:(Ⅰ)设tanα=x,已知等式变形后求出方程的解确定出x的值,即可求出tana 的值;(Ⅱ)原式利用诱导公式化简,再利用同角三角函数间基本关系变形,将tanα的值代入计算即可求出值.解答:解:(Ⅰ)令tanα=x,则x﹣=﹣,即2x2+3x﹣2=0,解得:x=或x=﹣2,∵<α<π,∴tanα<0,则tanα=﹣2;(Ⅱ)原式==tanα+1=﹣2+1=﹣1.点评:此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.17.(13分)平面内给定三个向量=(3,2),=(﹣1,2),=(4,1).(Ⅰ)设向量=+,且||=,求向量的坐标;(Ⅱ)若(+k)∥(2﹣),求实数k的值.考点:平面向量共线(平行)的坐标表示;平面向量的坐标运算.专题:平面向量及应用.分析:(Ⅰ)根据向量的坐标运算以及模长公式,求出λ的值即可;(Ⅱ)根据向量平行的坐标表示,列出方程,即可求出k的值.解答:解:(Ⅰ)∵向量=(3,2),=(﹣1,2),∴=+=(,)+(﹣,)=(λ,3λ);又||=,∴=,解得λ=±1,∴=(1,3)或=(﹣1,﹣3);(Ⅱ)∵+k=(3,2)+k(4,1)=(3+4k,2+k),2﹣=2(﹣1,2)﹣(3,2)=(﹣5,2);且(+k)∥(2﹣),∴2×(3+4k)﹣(﹣5)×(2+k)=0,解得k=﹣.点评:本题考查了平面向量的坐标运算问题,也考查了向量平行与求向量模长的问题,是基础题目.18.(13分)已知函数f(x)=a x(a>0,a≠1)在区间上的最大值是最小值的8倍.(Ⅰ)求a的值;(Ⅱ)当a>1时,解不等式log a(2a+2x)<log a(x2+1).考点:指数函数的图像与性质.专题:函数的性质及应用.分析:(Ⅰ)分类讨论当a>1时,当0<a<1时,求出最大值,最小值,即可求解答案.(Ⅱ)转化log2(4+2x)<log2(x2+1)得出得出不等式组,求解即可解答:解:f(x)max=a2,f(x)min=a﹣1,则=a2=8,解得a=2;当0<a<1时,f(x)=max=a﹣1,f(x)min=a2,则=a﹣3=8,解得a=;故a=2或a=(Ⅱ)当a>1时,由前知a=2,不等式log a(2a+2x)<log a(x2+1)即得解集为(﹣2,﹣1)∪(3,+∞).点评:本题考察了指数函数的性质,分类讨论的思想,属于中档题,关键是分类得出方程,不等式组.19.(12分)已知函数g(x)=4sin(ωx+),h(x)=cos(ωx+π)(ω>0).(Ⅰ)当ω=2时,把y=g(x)的图象向右平移个单位得到函数y=p(x)的图象,求函数y=p(x)的图象的对称中心坐标;(Ⅱ)设f(x)=g(x)h(x),若f(x)的图象与直线y=2﹣的相邻两个交点之间的距离为π,求ω的值,并求函数f(x)的单调递增区间.考点:函数y=Asin(ωx+φ)的图象变换;正弦函数的图象;余弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)由题意,先求得:p(x)=4sin(2x+),令2x+=kπ,即可求得函数y=p(x)的图象的对称中心坐标;(Ⅱ)先求得解析式f(x)=2sin(2ωx﹣)﹣,由题意T=π,可解得ω的值,令t=2x﹣是x的增函数,则需y=2sint﹣是t的增函数,由2k≤2x﹣≤2k,可解得函数f(x)的单增区间.解答:解:(Ⅰ)当ω=2时,g(x)=4sin(2x+),g(x﹣)=4sin(2x﹣+)=4sin(2x+),p(x)=4sin(2x+),令2x+=kπ,得x=﹣+,中心为(﹣+,0)(k∈Z);(Ⅱ)f(x)=4sin(ωx+)(﹣cosωx)=﹣4cosωx=2sinωxcosωx﹣2cos2ωx=sin2ωx﹣(1+cos2ωx)=2sin(2ωx﹣)﹣由题意,T=π,∴=π,ω=1令t=2x﹣是x的增函数,则需y=2sint﹣是t的增函数故2k≤2x﹣≤2k,2k≤2x≤2kπ+,k≤x≤kπ+函数f(x)的单增区间是(k∈Z).点评:本题主要考查了函数y=Asin(ωx+φ)的图象变换,三角函数的图象和性质,属于基础题.20.(12分)已知函数f(x)=log2(4x+1)+mx.(Ⅰ)若f(x)是偶函数,求实数m的值;(Ⅱ)当m>0时,关于x的方程f(8(log4x)2+2log2+﹣4)=1在区间上恰有两个不同的实数解,求m的范围.考点:对数函数的图像与性质;指数函数综合题.专题:函数的性质及应用.分析:(Ⅰ)根据f(x)是偶函数,建立方程关系即可求实数m的值;(Ⅱ)利用对数函数的性质,利用换元法,转化为两个函数的交点问题即可得到结论.解答:解:(Ⅰ)若f(x)是偶函数,则有f(﹣x)=f(x)恒成立,即:log2(4﹣x+1)﹣mx=log2(4x+1)+mx.于是2mx=log2(4﹣x+1)﹣log2(4x+1)=log2()﹣log2(4x+1)=﹣2x,即是2mx=﹣2x对x∈R恒成立,故m=﹣1.(Ⅱ)当m>0时,y=log2(4x+1),在R上单增,y=mx在R上也单增所以f(x)=log2(4x+1)+mx在R上单增,且f(0)=1,则f(8(log4x)2+2log2+﹣4)=1可化为f(8(log4x)2+2log2+﹣4)=f(0),又f(x)单增,得8(log4x)2+2log2+﹣4=0,换底得8()2﹣2log2x+﹣4=0,即2(log2x)2﹣2log2x+﹣4=0,令t=log2x,则t∈,问题转换化为2t2﹣2t+﹣4=0在t∈,有两解,即=﹣2t2+2t+4,令y=﹣2t2+2t+4,则y=﹣2t2+2t+4=﹣2(t﹣)2+,∴当t=时,函数取得最大值,当t=0时,函数y=4,当t=时,函数取得最小值,若方程f(8(log4x)2+2log2+﹣4)=1在区间上恰有两个不同的实数解,则等价为4≤<,解得<m≤1,故求m的范围为<m≤1.点评:本题主要考查函数奇偶性的应用,以及对数函数的应用,利用方程和函数之间的关系,转化为两个函数的交点问题是解决本题的关键.21.(12分)已知定义在(﹣∞,﹣1)∪(1,+∞)函数满足:①f(4)=1;②对任意x >2均有f(x)>0;③对任意x>1,y>1,均有f(x)+f(y)=f(xy﹣x﹣y+2).(Ⅰ)求f(2)的值;(Ⅱ)证明:f(x)在(1,+∞)上为增函数;(Ⅲ)是否存在实数k,使得f(sin2θ﹣(k﹣4)(sinθ+cosθ)+k)<2对任意的θ∈恒成立?若存在,求出k的范围;若不存在说明理由.考点:函数恒成立问题;抽象函数及其应用.专题:函数的性质及应用;三角函数的图像与性质.分析:(Ⅰ)将条件③变形得到f(m+1)+f(n+1)=f(mn+1)对任意m,n>0均成立,其中m=x﹣1,n=y﹣1,令m=n=1,即可解得f(2)=0;(Ⅱ)由(Ⅰ),将f(m+1)+f(n+1)=f(mn+1)变形得f(mn+1)﹣f(n+1)=f(m+1),则要证明f(x)在(1,+∞)上为增函数,只需m>1即可.显然当m>1即m+1>2时f(m+1)>0;(Ⅲ)利用条件①②将问题转化为是否存在实数k使得sin2θ﹣(k﹣4)(sinθ+cosθ)+k<或1<sin2θ﹣(k﹣4)(sinθ+cosθ)+k<10对任意的θ∈恒成立.再令t=sinθ+cosθ,,则问题等价于t2﹣(k﹣4)t+k﹣1<或1<t2﹣(k﹣4)t+k﹣1<10对恒成立.分情况讨论,利用二次函数的性质即可解题.解答:解:(Ⅰ)由条件③可知f(x)+f(y)=f(xy﹣x﹣y+2)=f=f,令m=x﹣1,n=y﹣1,则由x>1,y>1知m,n>0,并且f(m+1)+f(n+1)=f(mn+1)对任意m,n>0均成立.令m=n=1,即有f(2)+f(2)=f(2),故得f(2)=0.(Ⅱ)由(Ⅰ),将f(m+1)+f(n+1)=f(mn+1)变形得:f(mn+1)﹣f(n+1)=f(m+1),要证明f(x)在(1,+∞)上为增函数,只需m>1即可.设x2=mn+1,x1=n+1,其中m,n>0,m>1,则x2﹣x1=n(m﹣1)>0,故x2>x1,则f(x2)﹣f(x1)=f(mn+1)﹣f(n+1)=f(m+1),m>1,m+1>2,所以f(m+1)>0,即f(x2)﹣f(x1)>0,所以f(x2)>f(x1),即f(x)在(1,+∞)上为增函数;(Ⅲ)∵由f(m+1)+f(n+1)=f(mn+1)对任意m,n>0均成立,及f(4)=1∴令m=n=3,有f(4)+f(4)=f(10),即f(10)=2.令m=9,n=,则f(9+1)+f(+1)=f(9×+1)=f(2),故f()=f(2)﹣f(10)=﹣2,由奇偶性得f(﹣)=﹣2,则f(x)<2的解集是.于是问题等价于是否存在实数k使得sin2θ﹣(k﹣4)(sinθ+cosθ)+k<或1<sin2θ﹣(k﹣4)(sinθ+cosθ)+k<10对任意的θ∈恒成立.令t=sinθ+cosθ,,问题等价于t2﹣(k﹣4)t+k﹣1<或1<t2﹣(k﹣4)t+k﹣1<10对恒成立.令g(t)=t2﹣(k﹣4)t+k﹣1,则g(t)对恒成立的必要条件是,即解得,此时无解;同理1<g(t)<10恒成立的必要条件是,即解得,即;当时,g(t)=t2﹣(k﹣4)t+k﹣1的对称轴.下面分两种情况讨论:(1)当时,对称轴在区间的右侧,此时g(t)=t2﹣(k﹣4)t+k﹣1在区间上单调递减,1<g(t)<10恒成立等价于恒成立,故当时,1<g(t)<10恒成立;(2)当时,对称轴在区间内,此时g(t)=t2﹣(k﹣4)t+k﹣1在区间上先单调递减后单调递增,1<g(t)<10恒成立还需,即,化简为k2﹣12k+24<0,解得,从而,解得;综上所述,存在,使得f(sin2θ﹣(k﹣4)(sinθ+cosθ)+k)<2对任意的θ∈恒成立.点评:本题考查了抽象函数的运算,单调性,以及函数恒成立问题,需要较强的分析、计算能力,属于难题.。
重庆一中2017届高三上学期期中数学试卷(文科) 含解析

2016—2017学年重庆一中高三(上)期中数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i2.设全集I是实数集R,M={x|x≥3}与N={x|≤0}都是I的子集(如图所示),则阴影部分所表示的集合为()A.{x|1<x<3} B.{x|1≤x<3} C.{x|1<x≤3}D.{x|1≤x≤3}3.已知直线方程为cos300°x+sin300°y=3,则直线的倾斜角为()A.60°B.60°或300°C.30°D.30°或330°4.函数f(x)=x2+xsinx的图象关于()A.坐标原点对称 B.直线y=﹣x对称C.y轴对称D.直线y=x对称5.点(﹣1,﹣2)关于直线x+y=1对称的点坐标是()A.(3,2)B.(﹣3,﹣2) C.(﹣1,﹣2)D.(2,3)6.已知某棱锥的三视图如图所示,则该棱锥的表面积为()A.2+B.3+C.2+D.3+7.已知函数f(x)=3x+x,g(x)=log3x+x,h(x)=log3x﹣3的零点依次为a,b,c,则()A.c<b<a B.a<b<c C.c<a<b D.b<a<c8.重庆市乘坐出租车的收费办法如下:(1)不超过3千米的里程收费10元(2)超过3千米的里程2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费),当车程超过3千米时,另收燃油附加费1元.相应系统收费的程序框图如图所示,其中x(单位:千米)为行驶里程,用[x]表示不大于x的最大整数,则图中①处应填()A.y=2[x+]+4 B.y=2[x+]+5 C.y=2[x﹣]+4 D.y=2[x﹣]+59.若不等式组表示的平面区域经过所有四个象限,则实数λ的取值范围是()A.(﹣∞,4)B.[1,2]C.[2,4]D.(2,+∞)10.已知在△ABC中,∠ACB=90°,BC=6,AC=8,P是线段AB上的点,则P到AC,BC 的距离的乘积的最大值为()A.12 B.8 C. D.3611.当曲线y=与直线kx﹣y﹣2k+4=0有两个相异的交点时,实数k的取值范围是()A.(0,) B.(,]C.(,1]D.(,+∞]12.已知函数f(x)=ax2+bx﹣2lnx(a>0,b∈R),若对任意x>0都有f(x)≥f(2)成立,则()A.lna>﹣b﹣1 B.lna≥﹣b﹣1 C.lna<﹣b﹣1 D.lna≤﹣b﹣1二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知某长方体的长宽高分别为2,1,2,则该长方体外接球的体积为.14.若函数y=()x在R上是减函数,则实数a取值集合是.15.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.16.已知函数f(x)=如果对任意的n∈N*,定义f n(x)=,例如:f2(x)=f(f(x)),那么f2016(2)的值为.三、解答题(本大题共5小题,共70分。
重庆市第一中学高一数学上学期期中试题

2018年重庆一中高2021级高一上期期中考试数学测试试题卷注意事项:1. 答卷前,考生务必将自己的姓名、准考证号码填写在答卷上。
2. 作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效。
3. 考试结束后,将答题卡交回.一、 选择题:本题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知幂函数()y f x =的图像经过点(2,4),则f 的值为( )A . 1B .2C .3D . 4 2.函数()1log (2)a f x x =+-的图像经过定点( )A .(3, 1)B .(2, 0)C . (2, 2)D .(3, 0) 3.已知集合{}|2,1xA y y x ==<,则集合R C A =( )A .(0,2)B . [2,)+∞C .(,0]-∞D .(,0][2,)-∞+∞ 4.已知函数2()48f x x kx =--在(,5]-∞上具有单调性,则实数k 的取值范围是( )A .(24,40)-B .[24,40]-C .(,24]-∞-D .[40,)+∞5.命题“0x ∃<,使2310x x -+≥"的否定是( )A .0x ∃<,使2310x x -+<B .0x ∃≥,使2310x x -+<C .0x ∀<,使2310x x -+<D .0x ∀≥,使2310x x -+<6.在数学史上,一般认为对数的发明者是苏格兰数学家—-纳皮尔(Napier ,1550-1617年)。
在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。
重庆市第一中学2016-2017学年高一10月月考数学试题 含解析

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1。
设全集{0,1,2,3,4}U =,集合{0,1,2,3}A =,{2,3,4}B =,则()()u U C A C B 等于( )A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4} 【答案】C 【解析】试题分析:{}{}4,0,1U U C A C B ==,所以{}()()0,1,4U U C A C B =。
考点:集合交集,并集,补集.2.下列有关集合的写法正确的是( )A .{0}{0,1,2}∈B .{0}∅=C .0∈∅D .{}∅∈∅ 【答案】D 【解析】试题分析:元素和集合是属于或不属于的关系,空集是没有元素的集合,所以D 选项正确. 考点:元素和集合的关系.3。
满足{1,2}{1,2,3,4,5}A ⊂⊆≠的集合A 的个数是( )A .3个B .5个C .7个D .8个【解析】试题分析:列举得{}{}{}{}{}{}{}1,2,1,2,3,1,2,4,1,2,5,1,2,3,4,1,2,3,5,1,2,4,5共7种. 考点:子集与真子集.4.下列函数中,在区间(1,1)-上是单调减函数的函数为( )A .23y x =-B .1y x= C 。
y =D .23y x x =- 【答案】D 【解析】试题分析:A 是增函数,B 定义域没有零,C 的定义域是12x ⎧⎫≤⎨⎬⎩⎭,都不符合题意。
所以只有D 正确.考点:函数的单调性.5.以下从M 到N 的对应关系表示函数的是( ) A .{|0}:||M R N y y f x y x ==>→=,,B .*{|2,}M x x x N =≥∈,*{|0,}N y y y N =≥∈,2:22f x y x x →=-+C 。
{|0}M x x =>,N R =,:f x y →=D .M R =,N R =,1:f x y x→= 【答案】B 【解析】试题分析:A ,D 选项0没有对应,所以不是函数;C 选项不是一一对应,不是函数;故选B . 考点:函数的定义.6。
【全国百强校】重庆市第一中学2015-2016学年高一上学期期中考试数学试题(原卷版)

重庆市第一中学2015-2016学年高一上学期期中考试数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1、已知集合{}15,M x x x N =<<∈,{}1,2,3S =,那么M S =( ) A 、{}1,2,3,4 B 、{}1,2,3,4,5 C 、{}2,3 D 、{}2,3,42、式子32log 2log 27的值为( )A 、2B 、3C 、13D 、-3 3、下列函数为奇函数的是( ) AB 、31x - CD 、21x -4、已知():lg 30p x -<,2:04x q x -<-,那么p 是q 的()条件 A 、充分不必要 B 、充要 C 、必要不充分 D 、既不充分也不必要5、已知幂函数()222a y a a x =--在实数集R 上单调,那么实数a =( )A 、一切实数B 、3或-1C 、-1D 、36、(原创)定义在实数集R 上的函数()y f x =满足121212()()0()f x f x x x x x ->≠-,若(5)1f =-,(7)0f =,那么(3)f -的值可以为( )A 、5B 、-5C 、0D 、-17、对于任意的1,1a b >>,以下不等式一定不成立的是( )A 、log 0a b >B 、1b a >C 、111ba ⎛⎫> ⎪⎝⎭ D 、log log 2ab b a +≥ 8、以下关于函数21()(3)3x f x x x -=≠-的叙述正确的是( ) A 、函数()f x 在定义域内有最值B 、函数()f x 在定义域内单调递增C 、函数()f x 的图象关于点()3,1对称D 、函数5y x=的图象朝右平移3个单位再朝上平移2个单位即得函数()f x 9、(原创)函数()f x 满足()(2),f x f x x R =-∈,且当1x ≤时,32()44f x x x x =--+,则方程()0f x =的所有实数根之和为( )A 、2B 、3C 、4D 、110、已知关于x 的方程2222320x ax a a -+-+=有两个不等的实数根12,x x ,那么()212x x -的取值范围是( )A 、()0,+∞B 、[]0,1C 、(]0,1D 、()0,1 11、(原创)已知函数2()log 32a f x x x ⎛⎫=+- ⎪⎝⎭在区间[)1,+∞上单调递增,那么实数a 的取值范围是( ) A 、()1,3- B 、(]1,3- C 、[]0,3 D 、[)0,3 12、对于任意x R ∈,函数2()2124f x x x x a x =------+的值非负,则实数a 的最小值为()A 、118-B 、-5C 、-3D 、-2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13、将函数()2()log 321f x x =+-的图象向上平移1个单位,再向右平移2个单位后得到函数()g x ,那么()g x 的表达式为__________.14、(原创)已知[]{}21,562x R x x a ⊆∈-≤+,那么实数a 的最小值为_________. 15、函数32()f x ax bx cx d =+++是实数集R 上的偶函数,并且()0f x <的解为()2,2-,则d b 的值为__________.16、(原创)函数()2x f x =,25()22g x x kx =-+,若对于任意的[]1,2s ∈-,都存在[],21t k k ∈+,使得()()f s g t =成立,则实数k 的取值范围是__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17、(12分)(原创)集合()1302A x x x ⎧⎫⎛⎫=--=⎨⎬ ⎪⎝⎭⎩⎭,29ln 04B x x ax a ⎧⎫⎛⎫=+++=⎨⎬ ⎪⎝⎭⎩⎭. (1)若集合B 只有一个元素,求实数a 的值;(2)若B 是A 的真子集,求实数a 的取值范围.18、(12分)函数22()()22x xx x f x x R ---=∈+. (1)判断并证明函数()f x 的奇偶性;(2)求不等式315()517f x ≤≤的解集. 19、(12分)如图,定义在[]1,2-上的函数()f x 的图象为折线段ACB .(1)求函数()f x 的解析式;(2)请用数形结合的方法求不等式()2()log 1f x x ≥+的解集,不需要证明.20、(12分)集合{}930,x x A x p q x R =+⋅+=∈,{}9310,x x B x q p x R =⋅+⋅+=∈,且实数0pq ≠.(1)证明:若0x A ∈,则0x B -∈;(2)是否存在实数p ,q 满足A B ≠∅且{}1R A B =ð?若存在,求出p ,q 的值,不存在说明理由.21、(12分)(原创)函数()()233()log 1log 32(0,)f x x a x a x a R =+-+->∈.(1)若函数()f x 的值域是[)2,+∞,求a 的值;(2)若3(3)log (9)0f x x +≤对于任意[]3,9x ∈恒成立,求a 的取值范围.22、(10分)已知函数(0)a y x a x =+>在区间(上单调递减,在区间)+∞上单调递增;函数3322111(),22h x x x x x x ⎛⎫⎛⎫⎛⎫⎡⎤=+++∈ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎝⎭. (1)请写出函数22()(0)a f x x a x =+>与函数()(0,,3)n n a g x x a n N n x=+>∈≥在()0,+∞的单调区间(只写结论,不证明);(2)求函数()h x 的最值;(3)讨论方程22()3()20(030)h x mh x m m -+=<≤实根的个数.:。
重庆市重庆一中高一数学上学期期中试题湘教版

秘密★启用前2013年重庆一中高2016级高一上期半期考试数 学 试 题 卷 2013.11一、选择题.( 本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知映射()():,3,3f x y x y x y →-+,在映射f 下()3,1-的原象是 ( ) (A) ()3,1- (B) ()5,7- (C) ()1,5 (D) 1,23⎛⎫- ⎪⎝⎭2.设集合{|,101},{|,||5}A x x Z x B x x Z x =∈-≤≤-=∈≤且且,则A B U 中的元素个数是 ( ) (A ) 15 (B ) 16 (C ) 10 (D ) 113.“12x -<成立”是“(3)0x x -<成立”的 ( ) (A)必要不充分条件 (B)充分不必要条件(C)充分必要条件 (D)既不充分也不必要条件4.下列函数中是奇函数的是 ( ) (A)2()f x x = (B)3()-f x x = (C)()=f x x (D)()+1f x x = 5.已知1,(1)()3,(1)x x f x x x +≤⎧=⎨-+>⎩,那么5[()]2f f 的值是( )(A )32 (B ) 52 (C ) 92 (D ) 12- 6. 函数()()ln 11f x x x =+-+在下列区间内一定有零点的是 ( )(A)[0,1] (B)[2,3] (C)[1,2] (D)[3,4]7.已知不等式|3||4|x x m -+-≥的解集为R ,则实数m 的取值范围( ) (A ) 1m < (B ) 1m ≤ (C ) 110m ≤(D ) 110m < 8.已知定义在R 上的函数()f x 的图象关于y 轴对称,且满足3()()2f x f x =-+,(1)1,(0)2f f -==-,则(1)(2)...(2015)f f f +++的值为 ( )(A )1 (B )2 (C ) 1- (D )2-9(原创).已知函数lg ,010y ()16,102x x f x x x ⎧<≤⎪==⎨-+>⎪⎩若a,b,c 互不相等,且)()()(c f b f a f ==,则abc 的取值范围是 ( ) (A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24) 10. (原创)若关于x 的方程24xkx x =+有四个不同的实数解,则k 的取值范围为 (A )(0,1) (B )(14,1) (C )(14,+∞) (D )(1, +∞)二.填空题(每小题5分,共25分)11.已知{1,2,3,4,5,6},{1,3,4}I A ==,则I C A = . 12.函数22()2x x f x -+=的单调递增区间为 .13.函数()f x =R ,那么a 的取值范围是________ 14.已知53()8f x ax bx cx =++-,且(2)20f -=,则(2)f =15.(原创)设定义在[],(4)a b a ≥-上的单调函数()f x,若函数())g x f m =与()f x 的定义域与值域都相同,则实数m 的取值范围为_________三.解答题.( 本大题共6小题,共75分.) 16.(13分) 计算: (1)3log 5333322log 2log log 839-+- (2)()04130.7533642162---⎛⎡⎤--+-+ ⎣⎦⎝⎭17.(13分)已知集合222{|560},{|180},{|280}A x x x B x x ax C x x x =-+==-+==+-=,若A B ≠∅I ,B C =∅I ,(1)用列举法表示集合A 和集合C (2)试求a 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
秘密★启用前2016年重庆一中高2019级高一上期半期考试数 学 试 题 卷2016.12数学试题共4页,满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
第I 卷(选择题,共60分)一、选择题:(本大题共12个小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符合题目要求的;各题答案必须答在答题卡上相应的位置.1. 设全集{}4,3,2,1=U ,集合{}{}4,2,4,3,1==B A ,则()U C A B ⋂=( ) A .{}2B .{}4,2C .{}4,2,1 D .φ2. 函数()()1011≠>-=-a a a x f x 且的图象必经过定点( )A .()1,0-B .()1,1-C .()0,1-D .()0,13. 在0到π2范围内,与角34π-终边相同的角是( ) A .6π B .3π C .32π D .34π4. 函数()()2lg 231++-=x xx f 的定义域是( )A .⎪⎭⎫ ⎝⎛-232, B .⎥⎦⎤ ⎝⎛-232, C .()∞+-,2 D .⎪⎭⎫ ⎝⎛∞+,23 5. 已知3.0log 24.053.01.2===c b a ,,,则( ) A .b a c << B .c b a << C .a b c << D .bc a <<6. 函数()xx x f 1ln -=的零点所在的大致区间是( ) A .⎪⎭⎫ ⎝⎛1,1eB .()e ,1C .()2,e e D .()32,e e7. 已知函数()(),03)0(log 2⎩⎨⎧≤>=x x x x f x则⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛81f f 的值是( ) A .27-B .271-C .27D .2718. 函数xx y xe ⋅=的图像的大致形状是( )A B C D9. 已知函数()()53log 221+-=ax x x f 在[)∞+-,1上是减函数,则实数a 的取值范围是( )A .(]6,-∞-B .[)68,- C .(]68--,D .[)+∞-,8 10. (原创)已知关于x 的方程12=-m x 有两个不等实根,则实数m 的取值范围是( )A . (]1,-∞-B .()1,-∞-C .[)∞+,1 D .()∞+,1 11.(原创)已知函数()()()1011ln 2≠>-+++=a a a a x x x f xx且,若()()313log lg 2=f ,则()()=2log lg 3f ( ) A .0B .31C .32D . 1 12. 设函数()a x e x f x-+=2(e R a ,∈为自然对数的底数),若存在实数[]1,0∈b 使()()b b f f =成立,则实数a 的取值范围是( )A .[]e ,0B .[]e 1,1+C . []e +2,1D .[]1,0第II 卷(非选择题,共90分)二、填空题:(本大题共4个小题,每小题5分,共20分)各题答案必须填写在答题卡相应的位置上.13. 幂函数()()3221-+--=m mx m m x f 在()∞+,0上为增函数,则实数m =______. 14. 扇形的周长为8cm ,圆心角为2弧度,则该扇形的面积为____2cm .15. 已知函数()x f 是定义在R 上的奇函数,且当0≥x 时,()x x x f 22+=,则当0<x 时,()x f =__________.16. 已知函数()3||log )(31+-=x x f 的定义域是[]b a ,()Z b a ∈,,值域是[]0,1-,则满足条件的整数对()b a ,有________对.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)(原创)化简:(1))7112log 423112log 743π⎛⎫-++ ⎪⎝⎭;(2)()5262512lg 20lg 5lg 2--+++⋅.18.(12分)(原创)已知集合A 为函数()[]2,1,122∈-+=x x x x f 的值域,集合⎭⎬⎫⎩⎨⎧≤--=014x x x B ,则(1)求AB ;(2)若集合{}1+<<=a x a x C ,C C A =⋂,求实数a 的取值范围.19. (12分)(原创)已知函数()x f y =为二次函数,()40=f ,且关于x 的不等式()02<-x f 解集为{}21<<x x , (1)求函数()x f 的解析式;(2)若关于x 的方程()0=-a x f 有一实根大于1,一实根小于1,求实数a 的取值范围.20. (12分)(原创)已知函数()xx xx a x f --+⋅-=2222是定义在R 上的奇函数. (1)求实数a 的值,并求函数()x f 的值域;(2)判断函数()x f y =的单调性(不需要说明理由),并解关于x 的不等式()03125≥-+x f .21. (12分)(原创)已知函数()⎪⎪⎩⎪⎪⎨⎧>+-≤⎪⎭⎫⎝⎛-=0,1210,2122x x x x x f x,(1)画出函数()x f 的草图并由图像写出该函数的单调区间; (2)若()a x g xx-=-23,对于任意的[]1,11-∈x ,存在[]1,12-∈x ,使得()()21x g x f ≤成立,求实数a 的取值范围.22. (12分)对于在区间],[n m 上有意义的函数)(x f ,若满足对任意的21,x x ],[n m ∈,有|)()(|21x f x f -1≤恒成立,则称)(x f 在],[n m 上是“友好”的,否则就称)(x f 在],[n m 上是“不友好”的.现有函数()xaxx f +=1log 3, (1)若函数)(x f 在区间]1,[+m m ()21≤≤m 上是 “友好”的,求实数a 的取值范围; (2)若关于x 的方程()[]1423log )(3=-+-a x a x f 的解集中有且只有一个元素,求实数a 的取值范围.命题人:苏华丽审题人:黄勇庆2016年重庆一中高2019级高一上期半期考试数 学 答 案2016.12一、选择题:(本大题共12个小题,每小题5分,共60分)ADCAA BDBCD CB二、填空题:(本大题共4个小题,每小题5分,共20分)13. 2 14. 4 15. x x 22+- 16.5 三、解答题:解答应写出文字说明、证明过程或演算步骤。
17. (10分)解:(1)原式=2321123=+--(2)原式= ()()()2215252lg 5lg 2lg 10lg ---+++()012lg 5lg 2lg 5lg =-+⋅+=18. (12分)[](]41721:,,,)(解==B A ,A B []4,2= (2)由题意可知 A C ⊆,则⎩⎨⎧≤+≥712a a 解得62≤≤a综上,a 的取值范围为[]6,219. (12分)解:(Ⅰ)∵设函数()()02≠++=a c bx ax x f ,则()40==c f()0222<++<bx ax x f 即 故aa b 221,21=⨯-=+3,1-==b a∴()432+-=x x x f(2)()a x x x g -+-=432 则()024311<-=-+-=a a g 故2>a20. (12分)解:(1)由题意易知 ()0000222-200+⋅==a f 故1=a 所以()122112122222222+-=+-=+-=--x x x x xx x x f ()R x ∈ 0122211210112022222<+-<-∴<+<∴>+∴>x x x x 112211-2<+-<∴x 故函数()x f 的值域为()1,1- (2)由(1)知()12212+-=xx f易知()x f 在R 上单调递增 且()5314211=+-=f故112≥+x 0≥∴x所以不等式()03125≥-+x f 的解集为[)∞+,0 21. (12分)解:(1)如下图所示,易知函数()x f 的单调递减区间为()1,0,单调递增区间为()()∞+∞,,,10-(2)由题意可得()[]()[]max 2max 1x g x f ≤ 其中()()10max ==f x f ()()a g x -=-=91g max ,即a -≤91 故8≤a综上所述:(]8,∞-∈a 22. (12分)解:(1)由题意可得()⎪⎭⎫⎝⎛+=+=a x x ax x f 1log 1log 33在]1,[+m m 上单调递减,故()(),1log 3max ⎪⎭⎫ ⎝⎛+==a m m f x f ()(),11log 13in ⎪⎭⎫⎝⎛++=+=a m m f x f m ∴()()111log 1log 33min max ≤⎪⎭⎫⎝⎛++-⎪⎭⎫ ⎝⎛+=-a m a m x f x f即3111⋅⎪⎭⎫⎝⎛++≤+a m a m ∴()max11221⎪⎪⎭⎫ ⎝⎛+-⋅-≥m m m a 令)31(12≤≤-=t m t ,则21+=t m ,则()1434134423211122++=++=+⋅+=+-=tt t t t t t t m m m y 当31或=t 时,21min =y 41-≥∴a又对于任意的]1,[+∈m m x ,011>+=+a x x ax ,故31111max-≥+-=⎪⎭⎫⎝⎛->m x a 综上,a 的取值范围是⎭⎬⎫⎩⎨⎧-≥41a a(2)()[]1423log )(3=-+-a x a x f ,即()04231>-+-=+a x a a x,且()1423≠-+-a x a (1)()()01432=--+-∴x a x a ,即()[]()0113=+--x x a (2)当3=a 时,方程(2)的解为1-=x ,代入(1),成立 当2=a 时,方程(2)的解为1-=x ,代入(1),不成立当32≠≠a a 且时,方程(2)的解为1-=x 或31-=a x将1-=x 代入(1),则()01423>-=-+-a a x a ,且11≠-a 所以21≠>a a 且将31-=a x 代入(1),则()032423>-=-+-a a x a ,且132≠-a所以223≠>a a 且则要使方程有且仅有一个解,则231≤<a 综上,若方程()[]1423log )(3=-+-a x a x f 的解集中有且仅有一个元素,则a 的取值范围为⎭⎬⎫⎩⎨⎧=≤<3231a a a 或。