线路覆冰的成因危害防范措施
电力线路冰冻灾害分析及防治对策

通过对覆冰的形成机制和影响因素进行分析,发现气候变化、地形和线路设计是主要的因 素。其中,气候变化是影响覆冰形成和分布的重要因素,地形则会影响气候变化和覆冰的 分布,而线路设计不合理则会加重覆冰的危害。
防治对策在实践中的应用与效果
防治对策
针对电力线路冰冻灾害的原因,提出了相应的防治对策。包括优化线路设计、加强巡查和监测、开展除冰和融冰 工作等。
气象与地质灾害预警联动机制
1 2 3
气象与地质灾害联合监测
通过联合监测手段,获取更加全面和准确的气象 和地质灾害信息,为预警联动提供数据支持。
信息共享与沟通机制
建立信息共享和沟通机制,及时交换和分享有关 气象和地质灾害的监测数据和预警信息,提高预 警联动的效率和准确性。
预警信号互通机制
建立预警信号互通机制,确保气象和地质灾害预 警信号能够及时传递给相关人员,以便采取应对 措施,减少灾害损失。
防冰冻灾害的重要性
电力线路的冰冻灾害不仅影响电力供应和安全,还对经济和社会发展产生严重 影响。因此,研究电力线路冰冻灾害的防治对策具有重要意义。
研究目的和方法
研究目的
本研究旨在通过对电力线路冰冻灾害的分析,探讨防治对策 ,提高电力线路的抗冰冻灾害能力,保障电力供应和安全。
研究方法
本研究将采用文献综述、案例分析、实地调查等方法,对电 力线路冰冻灾害进行深入分析,并提出相应的防治对策。
解决潜在的安全隐患。
冰冻灾害预警系统
Hale Waihona Puke 预警信息发布通过电视、广播、手机短信等多种渠道,及时将冰冻灾害预警信 息传递给相关人员,以便采取应对措施。
预警级别设定
根据冰冻灾害可能造成的影响程度,设定不同的预警级别,以便有 针对性地采取应对措施。
如何预防架空输电线路覆冰危害 谢思明

如何预防架空输电线路覆冰危害谢思明摘要:架空高压输电线路的覆冰问题是一种严重影响电力系统供电安全的问题,应充分了解和认识覆冰发生的各种类型以及造成的不同线路事故,及早做好预防措施,可通过制定防覆冰的相关规章制度,提高架空高压输电线路的工程质量,使用相关装置和涂料减少导线舞动和覆冰,以及加强日常保护和管理等方式做好防冰工作;同时,一旦出现覆冰问题,应选用合适的除冰方法,及早予以解决,保证线路的正常运行。
关键词:架空高压输电线路;覆冰问题;防治措施1 线路覆冰的原因分析架空高压输电线路覆冰问题的出现,主要由于大气温度、风力、空气湿度等影响因素,既要具备低温条件,又要保持一定的空气湿度及风速。
当具备形成覆冰的温度与湿度条件之后,风力就会将水滴吹向高压输电线路,一旦碰触导线,就会逐渐形成大面积的覆冰;因此覆冰往往在导线的迎风面最先形成,如果迎风面的覆冰已经达到一定厚度,那么在不平衡力的作用下,导线就会出现扭转现象,进而产生新的迎风面,继续覆冰,如此反复多次,就会在导线中形成圆形或者椭圆形的覆冰。
2 覆冰类型2.1湿雪。
指自然降雪粘附在电线上形成的一种覆冰,主要呈现灰白色或者乳白色,一般密度较小且粘附力较弱。
湿雪粘结在到导线中,如果气温持续下降,将变成冰冻体。
2.2雨凇。
在冬季前后,大陆上的干冷空气吸收了来自海洋的湿暖气团,遇到水汽后变得十分潮湿。
这种情况下,如果遇到北方的冷气团上升,雨水降落到温度等于或低于0℃的导线上时,形成的玻璃状的冰层,这种覆冰因密度大且粘附力很强,且不容易脱落,因而对输电线路的危害很大。
2.3雾凇。
有两种存在形式,一种是晶状雾凇,由冷却雾凝华而成,密度大,结构松散,吸附力不强。
由于晶状雾凇主要由于气温的骤然下降,造成饱和状态空气中的水汽升华,因此即使在晴天、无雾的情况下,也可能产生;另一种是冷却雾冻结后在电线表面形成的冰状雾凇,密度较大,对电线的吸附力强,危害较大。
2.4混合淞。
架空输电线路导地线、杆塔覆冰危害及防治

架空输电线路导地线、杆塔覆冰危害及防治摘要:自2008年冰灾后,输电线路设备覆冰情况日益频发,恶劣环境下的架空输电线路大面积覆冰,导致杆塔、绝缘子倒塌,严重影响输电网的正常运行。
2016年3月、2017年1月、2017年12月,新疆部分地区均爆发出大面积覆冰事件,造成新疆电网输电线路设备受损、电网稳定收到严重威胁。
因此,架空输电线路在冬季的运维工作中,防治覆冰隐患已作为重中之重。
关键词:输电线路;导地线;杆塔;覆冰;运维0 引言覆冰输电线路容易发生多种事故,是影响电网安全稳定运行的重要因素。
输电线路覆冰,会导致杆塔荷载过大,导线弧垂变大,脱冰时导地线发生跳跃等现象。
近几年来,大面积覆冰事故在全国各地时有发生,输电线路覆冰导致跳闸及倒塔的事故越来越严重。
线路覆冰直接的危害就是导线、金具和支架负载,随着覆冰厚度的增加输电线路的水平负荷也在增加,严重的覆冰会导致导线、地线断裂,杆塔倒塌和金具损坏;不均匀的覆冰或者不同期脱冰会引起张力差,容易造成导线舞动,会造成导线断裂、杆塔横杆扭曲变形、绝缘子损伤和破裂。
绝缘子覆冰或被冰凌桥接后,绝缘强度下降,泄漏距离缩短,容易引起绝缘子闪络;融冰过程中冰体表面的水膜会溶解污秽物中的电解质,提高融冰水或冰面水膜的导电率,引起绝缘子串电压分布的畸变,从而降低了覆冰绝缘子串的闪络电压,形成绝缘子闪络。
导线舞动时还可能造成相间短路故障。
1 输电线路覆冰危害的特点线路覆冰倒杆(塔)断线的特点:一是由于覆冰时杆(塔)两侧的张力不平衡造成的。
在一些地形起伏较大的地区,两相邻的杆(塔)在高度和距离上存在很大的差距,在还未覆冰时两侧就形成了较大的不平衡张力,当线路上出现大密度的覆冰时,杆(塔)两侧的不平衡张力加剧,当张力不断加大,直至到达杆(塔)、导线所能承受的极限时,就出现了导线断落或杆(塔)倒塌的现象。
因此,在灾后恢复和未来的设计改造中,应尽量避免大高度差、大距离和大转角。
二是线路上有大密度的雨凇覆冰时,因为雨凇覆冰是“湿”度增长过程,其粘附能力强,不易掉落。
输电线路覆冰原因分析及对策研究

输电线路覆冰原因分析及对策研究摘要:近年来,由于输电线路上覆冰引起的线路断线频繁发生,对电力系统的安全运行以及经济损失造成了巨大的影响。
本文主要从输电线路发生覆冰的原因以及影响覆冰的不同因素等角度出发,提出了些许防止冰害事故的技术措施。
关键词:输电线路;覆冰;原因;防治引言在许多地区因雨凇、雾凇覆冰而使输电线路的荷重增加,严重覆冰会导致输电线路机械和电气性能急剧下降,从而导致覆冰事故的发生。
输电线路覆冰是一种严重的自然灾害,可引发输电线路导线舞动、绝缘子串闪络等事故,严重危害电力系统的安全运行。
美国、日本、英国、德国等多国都曾因输电线路覆冰而引发安全事故,造成了巨大的经济损失。
我国是高压输电线路覆冰较严重的国家之一。
高压输电线路具有档距较大、铁塔较高等特点,线路覆冰对其影响比较严重,同时,输电线路的电压等级较高,载流量较大,线路破坏造成的经济损失巨大。
为此,本文研究了输电线路的覆冰特性及防治措施。
1输电线路覆冰的种类与性质按照覆冰形成的物理过程和气象条件,可将输电线路覆冰分为三类:第一类是由降水产生的覆冰雪,即降水覆冰,包括由冻雨而形成的雨凇和覆雪;第二类是处在过冷却状态下的液体云粒或水滴碰到地面物体上,经过冻结后而产生的覆冰,此类覆冰称为云中覆冰;第三类是大气中的水蒸汽直接冻结或经过凝华而在地面物体上形成的一种霜,是经过凝华而产生的,称为凝华覆冰,也称这种覆冰为晶状雾凇。
在三类覆冰中,云中覆冰发生的概率最大,引起的输电线路事故也最多。
根据水滴半径、空气中液态水含量、空气温度、风速四个参量,输电线路绝缘子覆冰分为干增长和湿增长过程,这主要取决于冰面的温度。
在干增长过程中,冰面和环境温度低于0℃,而在湿增长过程中,冰面及环境温度等于0℃。
研究表明对于不同类型的覆冰,雾凇和干雪是干增长过程,雨凇和湿雪则是湿增长过程,而混合凇湿是介于干、湿增长之间的一种覆冰过程。
2覆冰地区的分布华中的湖北、湖南、河南、江西等省及三峡地区,西南的云南、贵州、四川,华北的河北、山西、内蒙及京津唐地区,西北的青海,东北的辽宁等省(区)都发生过输电线路覆冰事故。
输电线路覆冰舞动原因与预防措施分析

输电线路覆冰舞动原因与预防措施分析摘要:在输电线路施工过程中,覆冰舞动会带来损坏杆塔,线路跳闸等危害。
很多输电线路的舞动都与导线表面覆冰有关,往往是覆冰不均匀导致的,降雪或冻雨会在输电线路上造成覆冰,覆冰导线在风力作用下就会舞动,会给输电线路的安全运行带来很大隐患,甚至造成经济损失。
笔者分析了输电线路覆冰舞动的常见因素及危害,提出了治理对策,希望能给相关工作人员一些启发。
关键词:输电线路;覆冰舞动;措施引言高负荷电能输送载体是电力系统安全运行的重要生命线工程。
输电线路具备跨度大、韧性高等优势,对风激励、导线覆冰等外界荷载的反馈灵敏,便于产生振动过度破坏和极限情况下的不稳态断裂损害。
对中国影响结果研究:关于荷载作用因素和结构动力反应特点的特殊性,有着理论认知中的缺失和不够,而设计理论的限制性和不足,会让目前的输电线路防灾管理办法不完善,需要继续扩大根本性研究。
东北地区的气象特性,风、冰等环境荷载构成了荷载的复杂性,导致输电线路环境荷载响应非常复杂。
1研究背景1.1输电线路覆冰舞动原因分析通常认为,引起输电线路舞动的主要因素为导线覆冰、风激励、线路参数3个因素。
(1)导线覆冰。
由于北半球冬季中东西走向的山脉导线的迎风斜坡比背风坡上结积冰程度更严重,因此东西向山脉导线结冰通常也比南北向山脉导线的结积冰度更严重些;导线的悬挂点高度一般越高,结冰现象越要严重,因为此时空气环境中含有的饱和液态水含量要随着悬挂高度的进一步增加而急剧增加的;此外,大截面导体则更容易发生偏心结冰问题;分水岭附近和风口处地区的交通线路覆冰往往比境内其他特殊地形的更严重,河湖水体变化对线路覆冰率也有其显著地影响。
由于导体的冰覆盖不均匀,容易出现扇形、D形、新月形等不规则形状。
一旦风被激发,就会发生导线舞动。
(2)风激励。
早春和冬季,冷空气流和暖空气流的同时存在会引发风向的加速流动,这是一种风向的激励。
对于高压输电线路来说,对于开阔的地段,能够看出电路的设计可以控制风向与输电线路方向之间的夹角,在夹角较大的时候,就可以充分发挥风激励的作用,并且对线路的舞动有着一定的影响。
覆冰对输电线路运行的影响与预防

覆冰对输电线路运行的影响与预防中国是国际认定最易遭遇气候危害的国家之一,恶劣天气对电网安全的影响日益加剧,造成了严重的损失。
因为电力系统的生产,输送与消费环节之间没有任何缓冲,电力系统的崩溃在社会的短期冲击比其他一次能源崩溃更加严重。
文章着重就覆冰的形成机理、过程、影响及防范手段进行了简要的分析论述。
标签:覆冰;输电线路;可靠性;影响;预防简述据统计,2005~2007年期间,国家电网公司因恶劣气候导致的电网和设备事故119起,占总事故数22.8%。
2008年初南方雨雪冰冻灾害对公司系统特别是湖南、江西、浙江电网造成严重设备损失,直接经济损失达百亿元。
输电线路因电线覆冰造成断线、倒塔的事故时有发生,不仅影响正常的电力生产,还造成了巨大的经济损失[1]。
墨菲定律中提到,假如某件事有可能发生,则在一定情况下一定会发生。
所以我们应该提高大气覆冰对电力系统运行的影响的认识,对电网抗灾水平及灾害应急处置能力提出更高的要求。
1 覆冰表观特性及形成过程覆冰按照表观特性可分为雨凇、雾凇、混合凇和雪凇。
雨凇是指粒径较大的过冷却水滴,碰撞在物体上,先散开成水膜然后冻结成冰凌,呈湿增长方式。
冰体透明坚固,比重大,一般为0.7~0.9g/cm3,粘附力强,常伴有冰柱。
雾凇又称软雾凇是指粒径较小的过冷却水滴,随气流浮动,在碰击物体瞬间即冻结成冰凌,呈干增长方式。
冰体白色疏松,比重小,一般为0.1~0.3g/cm3之间,粘附力较弱,通常在物体的迎风面冻结。
混合凇又称硬雾凇是当不同粒径的过冷却水滴,随气流浮动,在碰撞物体瞬间,部份呈干增长,部份呈湿增长。
冰体呈半透明状,比重中等,一般为0.2~0.6g/cm3之间,常在物体迎风面冻结,粘附力较强。
雪凇又称湿雪,是冻结的雪片,在降落过程中,通过一段温暖层后,雪片趋于潮湿、融化,然后冻结在物体上,冰体呈白色堆积状,比重偏小且粘附力差,一般为0.2~0.4g/cm3之间。
在导线振动或风吹下很容易脱落,一般只会在融雪时造成绝缘子串闪络,因此对线路安全运行威胁不大。
输电线路覆冰的形成、危害及防治

输电线路覆冰的形成、危害及防治0 引言输电线路严重覆冰将会造成主网线路发生倒塔(杆)及断线事故,形成大面积停电、电网崩溃瓦解的重特大电网事故。
因此,加强和改善输电线路的抗覆冰能力,有效降低输电线路事故,构造坚强电网,是我们电力企业义不容辞的责任。
1 输电线路覆冰的形成1.1 导线覆冰的基本物理过程当过冷却在0 ℃及其以下的云中或雾中水滴与输电线路导线表面碰撞并结冻时,覆冰现象产生。
在冬季当温度低于0 ℃时,大气中的小水滴将发生过冷却;在高海拔或高空甚至在夏季水滴也会发生过冷却。
处于过冷却水滴包围的输电线路导线与气流中过冷却水滴发生碰撞,并冻结在导线表面而形成覆冰。
导线表面发生覆冰现象必须满足三个条件,即:①大气中必须有足够的过冷却水滴;②过冷却水滴被导线捕获;③过冷却水滴立即冻结或在离开表面前冻结。
1.2 导线覆冰的发展过程严冬或初春季节,当气温下降至-5-0℃,风速为3-15m/s时,如遇大雾或毛毛雨,首先将在导线上形成雨凇;如气温升高,天气转晴,雨凇则开始融化,覆冰过程随温度升高终止;如天气骤然变冷,气温下降,出现雨雪天气,冻雨或雪则在黏结强度很高的雨凇冰面上迅速增长,形成密度大于0.6g/cm3的较厚的冰层;如温度继续下降至-15--8℃,原有冰层外侧积覆雾凇。
这种过程将导致导线表面形成雨凇-混合凇-雾凇的复合冰层。
如在这种过程中,天气变化,出现多次晴-冷天气,则融化加强了冰的密度,如此往复发展将形成雾凇和雨凇交替重叠的混合冻结物,即混合凇。
导线覆冰首先在迎风面上生长,如风向不发生急剧变化,迎风面上覆冰厚度就会继续增加。
当迎风面冰达到一定厚度,其重量足以使导线扭转时,导线发生扭转现象;导线再扭转,覆冰就会继续成长变大,终于在导线上形成圆形或椭圆形覆冰。
1.3 导线覆冰的必要条件导线覆冰的必要条件是:①具有足可冻结的气温,即0℃以下;②具有较高的湿度,即空气相对湿度一般在85%以上;③具有可使空气中水滴运动之风速,即大于1m/s的风速。
输电线路覆冰危害及除冰措施的研究

输电线路覆冰危害及除冰措施的研究摘要:近年来,我国南方和西北多省多次遭遇了持续的低温,雨雪,冰冻极端天气,输电线路结冰严重,轻者发生线路跳闸,重者引起到杆,断线事故。
造成了严重的经济损失和社会影响,本文通过对覆冰危害的分析,介绍了去除导线上的积雪、覆冰研究方案,避免倒塔、断线舞动等事故的发生。
关键词:输电线路;覆冰:危害;除冰一、导线覆冰的危害通常情况来讲,覆冰对电网线路的破坏有三种。
第一种是少量的覆冰,它在导线上这种圆截面的覆冰不是均匀地包在上面,它可能形成一个椭圆或者形成其他形状,在大气当中构成了一个迎风面,当风的角度和冰的迎风面角度合适的时候导线就会舞动。
第二种情况是闪路,南方地区的输电线路的很多结冰短路点并不在线路上而是在瓷瓶底部逐步结冰,造成冰层短路,损坏供电系统。
第三种也是最普遍的,当导线表面的覆冰越积越厚,导线将承受几百到几吨的荷载,这时导线自重及所覆的冰重产生的拉力将通过导线,导线金具,绝缘子传递给杆塔,杆塔又将拉力转给拉线,只要导线,金具,绝缘子,杆塔,拉线固定件等其中一个环节承受不住所受拉力,就将会出现到塔(杆)和断线的事故,这种事故往往会扩展至一个耐张段。
例如,2008年雨雪天气使国家电网公司系统的湖南,江西,重庆,浙江,福建,安徽等九个电网遭受严重影响,其中湖南,江西,浙江电网受灾最严重,湖南,江西电网一度与主网解列运行,部分地区电网几乎全部毁坏。
二、关于覆冰的研究我国每年严冬和初春季节,由于北方冷空气与南方暖空气的交汇常形成静止锋,气温降低的暖气团所析出的大量水汽升至零摄式度线以上或凝结高度以上就会形成冰晶,雪花或过冷却水滴,一部分过冷却水滴在不断运动过程中由互相碰撞和凝结作用而逐渐增大。
在下降过程中大的过冷却水滴若遇到可作凝结核的尘埃,就会变成雪花或冰晶落到地面。
这种过冷却水滴很不稳定,一旦碰撞振动可使过冷却的液态水立刻变成固态水——冰。
同时,碰撞使水滴发生变形,表面弯曲度减少,表面张力也相应减少而导线表面又可起到类似凝结核作用,使水滴有所依附,于是便结成雾凇或雨凇,一般过冷却水滴愈小愈易结成雾凇,较大过冷却水滴则易在海拔较低的山区结成坚实雨凇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线路覆冰的成因危害防范
措施
Revised by Hanlin on 10 January 2021
线路覆冰的成因、危害、防范措施由覆冰、舞动引起的输电线路倒杆(塔)、断线及跳闸事故,严重威胁到电网的安全稳定运行及供电可靠性。
1覆冰形成原因和过程
导线覆冰首先是由气象条件决定的,是受温度、湿度、冷暖空气对流、环流以及风等因素决定的综合物理现象。
云中或雾中的水滴在0℃或更低时与输电线路导线表面碰撞并冻结时,覆冰现象就产生了。
贵州省地处云贵高原,海拔在1500m以上,境内沟壑纵横,地势高低不平,空气潮湿,受西伯利亚寒流和太平洋暖湿气流的共同影响,2008年初贵州大面积的遭受了覆冰危害。
导线表面发生覆冰现象必须满足以下几个条件:大气中必须有足够的过冷却水滴,过冷却水滴与导线接触,过冷却水滴立即冻结在导线表面。
覆冰按形成条件及性质可分为A、B、C、D、E五种类型。
A型称雨凇覆冰,是在冻雨期发生于低海拔地区的覆冰,持续时间一般较短,环境温度接近冰点,风相当大,积冰透明,在导线上的粘合力很强,冰的密度很高,雨凇覆冰是混合凇覆冰的初级阶段,由于冻雨持续期一般较短,因此,导线覆冰为纯粹的雨凇覆冰的情况相对较少。
B型称混合凇,当温度在冰点以下,风比较猛时,则形成混合凇。
在混合凇覆冰条件下,水滴冻结比较弱,积冰有时透明,有时不透明,冰在导线上粘合力很强。
导线长期暴露于湿气中,便形成混合凇。
混合凇是一个复合覆冰过程,密度较高,生长速度快,对导线危害特别严重。
C型称软雾凇,是由于山区低层云中含有的过冷水滴,在极低温度与风速较小情况下形成的。
这种积冰呈白色、不透明、晶状结构、密度小,在导线上附着力相当弱。
最初的结冰是单向的,由于导线机械失衡,逐渐围绕导线均匀分布,在此情况下,这种冰对导线一般不构成威胁。
D型和E型分别为白霜、雪,白霜是空气中湿气与0℃以下的物体接触时,湿气往冷物体表面凝合形成的,白霜在导线上的粘结力十分微弱,即使是轻轻地振动,也可以使白霜脱离所粘结导线的表面,与其他类型覆冰相比,白霜基本不对导线构成严重危害。
空气中的干雪或冰晶很难粘结到导线表面。
只有当空气中的雪为“湿雪”时,导线才会出现积雪现象。
当有强风时,雪片易被风吹落,导线
覆雪不可能发生,故导线覆雪受风速制约,因此平原地区或低地势无风地区,导线覆雪现象较山区常见。
导线覆冰的基本物理过程是严冬或初春季节,当气温下降至-5~0℃,风速为3~15m/s时,如遇大雾或毛毛雨,首先将在导线上形成雨凇,这时如果气温再升高,雨凇则开始融化,如天气继续转晴,则覆冰过程就停止;这时如果天气骤然变冷,出现雨雪天气,冻雨和雪则在粘结强度较高的雨凇面上迅速增长,形成较厚的冰层;如温度继续下降至-15~-8℃,原有冰层外则积覆雾凇。
在这样一个过程中,出现多次晴~冷变化天气,短暂的融化加强了冰的密度,如此往复发展将形成雾凇和雨凇交替重叠的混合冻结物,即混合凇。
2影响覆冰的因素
当具备了形成覆冰的温度和水汽条件后,风对导线覆冰起着重要的作用。
它可将大量的过冷却水滴不断地输向线路,与导线碰撞而被截获并逐步增大形成覆冰现象。
据观测,覆冰首先在导线迎风面上成长,当迎风面达到某一覆冰厚度时,导线因重力作用而产生扭转,从而出现了新的迎风面。
这样,导线通过不断扭转而使覆冰逐步增大,最终导线上形成圆形或椭圆形的覆冰。
除了风速的大小对覆冰有影响外,风向与导线
平行时,或当与导线之间的夹角小于45°或大于150°时,覆冰较轻;风向与导线垂直或风向与导线之间的夹角大于45°或小于150°时,覆冰比较严重。
除了风速大小和风向会影响覆冰外,线路走向和导线悬挂高度及导线直径都会影响到导线的覆冰力学。
一般来说,我国东西走向的导线覆冰,普遍较南北走向的导线覆冰严重,因此在重冰区线路走线时,尽量避免呈东西走向。
导线悬挂高度越高,覆冰越严重,因为空气中液水含量随高度的增加而升高,有利于覆冰的形成。
另外,导线越粗覆冰也越严重。
3输电线路覆冰危害的特点
3.1线路覆冰倒杆(塔)断线的特点
线路覆冰倒杆(塔)断线的特点:一是由于覆冰时杆(塔)两侧的张力不平衡造成的。
在一些地形起伏较大的地区,两相邻的杆(塔)在高度和距离上存在很大的差距,在还未覆冰时两侧就形成了较大的不平衡张力,当线路上出现大密度的覆冰时,杆(塔)两侧的不平衡张力加剧,当张力不断加大,直至到达杆(塔)、导线所能承受的极限时,就出现
了导线断落或杆(塔)倒塌的现象。
因此,在灾后恢复和未来的设计改造中,应尽量避免大高度差、大距离和大转角。
二是线路上有大密度的雨凇覆冰时,因为雨凇覆冰是“湿”度增长过程,其粘附能力强,不易掉落。
在风的激励下,导线会产生大振幅、低频率的自激振动。
当舞动的时间过长时,会使导线、绝缘子、金具、杆(塔)受不平衡冲击疲劳损伤。
3.2覆冰绝缘子串的闪络特性
绝缘子的冰闪是冰害的另一种,当绝缘子发生覆冰现象后,在特定温度下使绝缘子表面覆冰或被冰凌桥接后,绝缘强度下降,泄漏距离缩短。
在融冰过程中冰体表面或冰晶体表面的水膜会很快溶解污秽物中的电解质,并提高融冰水或冰面水膜的导电率,引起绝缘子串电压分布的畸变(而且还会引起单片绝缘子表面电压分布的畸变),从而降低覆冰绝缘子串的闪络电压。
大气中的污秽微粒直接沉降在绝缘子表面或作为凝聚核包含在雾中,将会使绝缘子覆冰融化时,冰水电导率进一步增加。
另外有关试验数据表明,覆冰越重、电压分布畸变越大,绝缘子串两端,特别是高压引线端绝缘子承受电压百分数越高,最终造成冰闪事故。
实际上,纯冰的电阻很高,完全可以满足电力系统安全运行的要求,只有当冰中混杂有导电杂质后,覆冰绝缘子的闪络电压才会降低。
这不仅因为冰闪是由于冰中含有污秽等导电杂质造成的,而且从污秽绝缘子和
覆冰绝缘子的耐受电压和闪络机理也可发现其相似性。
图1为覆冰绝缘子交流耐受电压和污秽绝缘子交流耐受电压的比较。