2017-2018学年度第一学期海口市七年级数学期末检测题
2017-2018第一学期期末七年级数学试题及答案

2017—2018学年度第一学期期末教学质量检测七年级数学试卷注意事项:1.答卷前,先将密封线左侧的项目填写清楚.一、选择题:(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中只有一项是符合题目要求的,请将它的代号填在题后的括号内.)1.-43的相反数是………… 【 】(A )43 (B )-34 (C ) -43(D ) 342.如图1,小明的家在A 处,书店在B 处,星期日他到书 店去买书,想尽快的赶到书店,请你帮助他选择一条最近的路线 ………………………………………………………………………………【 】 (A )A →C →D →B (B )A →C →F →B (C )A →C →E →F →B (D )A →C →M →B3.下列四种说法中,正确的是 ……………………………………………………… 【 】(A )“3x ”表示“3+x ” (B )“x 2”表示“x +x ”(C )“3x 2”表示“3x ·3x ” (D )“3x +5”表示“x +x +x +5”4.下列计算结果为负数的是 ………………………………………………………… 【 】 (A )-2-(-3) (B )()23- (C )21- (D )-5×(-7)5.迁安市某天的最低气温为零下9℃,最高气温为零上3℃,则这一天的温差为 … 【 】 (A )6℃ (B )-6℃ (C )12℃ (D )-12℃6.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠β一定互补的是 …【 】(A )(B ) (C ) (D )7.解方程2(3)3(4)5x x ---=时,下列去括号正确的是 …………………………【 】 (A )23345x x --+= (B )26345x x ---= (C )233125x x ---= (D )263125x x --+=8.定义新运算:a ⊕b =ab +b ,例如:3⊕2=3×2+2=8,则(-3)⊕4= ……………… 【 】 (A )-8 (B )-10 (C )-16 (D )-24 9. 已知3=x 是关于x 的方程:ax a x +=-34的解,那么a 的值是 ………………【 】 (A )2(B )49 (C )3 (D )29M图1A DB E F·10.如图2,小红做了四道方程变形题,出现错误有【(A )①②③(B )①③④ (C )②③④ (D )①②④11.如图3,将三角形ABC 绕着点C 顺时针旋转50°后得到三角形A ′B ′C , 若∠A´CB´=30°,则∠BCA ′的度数 是…………………………【 】 (A )110° (B )80°(C )50° (D )30°12.若x a +2y 4与-3x 3y 2b 是同类项,则2018(a -b )2 018的值是…………………………………………【 】 (A )2 018 (B )1 (C )-1 (D )-2 018 13.如图4,四个有理数在数轴上的对应点M 、P 、N 、 Q .若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是………………【 】 (A )点M (B )点N (C ) 点P (D )点Q14.某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%, 则5月份的产值是…………………………【 】(A )(a -10%)(a +15%)万元 (B )a (1-10%)(1+15%)万元 (C )(a -10%+15%)万元 (D )a (1-10%+15%)万元 15.用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是…………【 】(A )4n +1 (B )3n +1 (C )4n +2 (D )3n +2 16. 已知线段AB =10cm ,P A + PB =20cm ,下列说法正确的是…………………………【 】 (A )点P 不能在直线AB 上 (B )点P 只能在直线AB 上 (C )点P 只能在线段AB 的延长线上 (D )点P 不能在线段AB 上 二、填空题(本大题共3小题,共10分;17-18题每小题3分,19题每空2分)17.数轴上的点A 表示﹣3,将点A 先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是 个单位长度. 18. 如图5,已知∠AOB =50°,∠AOD= 90°,OC 平分∠AOB . 则∠COD 的度数是 .N M P Q 图4图3 图2图5D19.根据如图6所示的程序计算,写出关于x 的代数式 为 ;若输入x 的值为1,则输出 y 的值为 .三、解答题(本大题共6个小题,共58分,解答应写出文字说明、证明过程或演算步骤)20.(本题满分8分)(1)解方程:1)3(31)1(31++-=-x x(2)计算:32)12()4161()8(2)21(432---⨯-+-÷--⨯图621. (本题满分8分)小明受到《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如图7-1、图7-2、图7-3的操作实验:发现问题:(1)投入第1个小球后,水位上升了 cm ,此时桶里的水位高度达到了 cm ; 提出问题:(2)设投入n 个小球后没有水溢出,用n 表示此时桶里水位的高度 cm ; 解决问题:(3)请你求出最多投入小球多少个水没有从量筒中溢出?(列方程方程求解)图7-1 图7-2 图7-322. (本题满分10分)已知:ab a B A 7722-=-,且7642++-=ab a B . (1)求A 等于多少?(2)若0)2(12=-++b a ,求A 的值.23.(本题满分10分)如图8-1,某学校由于经常拔河,长为40米的拔河比赛专用绳AB 左右两端各有一段(AC 和BD )磨损了,磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米。
海口市七年级上学期数学期末考试试卷(五四制)

海口市七年级上学期数学期末考试试卷(五四制)姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)(2018·广州) 如图所示的五角星是轴对称图形,它的对称轴共有()A . 1条B . 3条C . 5条D . 无数条2. (2分) (2019八上·武安期中) 下列长度的三条线段能组成三角形的是()A . 2,2,4B . 3,4,1C . 5,6,12D . 5,5,83. (2分) (2019九上·梅县期中) 一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A .B .C .D .4. (2分) (2017九上·杭州月考) 下列说法正确的是()A . “明天的降水概率为80%”,意味着明天有 80%的时间降雨B . 掷一枚质地均匀的骰子,“点数为奇数”与“点数为偶数”的可能性相等C . “某彩票中奖概率是1%”,表示买 100 张这种彩票一定会中奖D . 小明上次的体育测试成绩是“优秀”,这次测试成绩一定也是“优秀”5. (2分)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M 和N,再分别以M,N为圆心,大于 MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD平分∠BAC;②作图依据是SAS;③∠ADC=60°;④点D在AB的垂直平分线上.A . 1个B . 2个C . 3个D . 4个6. (2分)下列各组数中不能作为直角三角形的三边长的是()A . 6,12,8B . 7,24,25C . 1.5,2,2.5D . 9,12,157. (2分)在△ABC中,若三边BC,CA,AB满足BC∶CA∶AB=5∶12∶13,则cosB的值等于()A .B .C .D .8. (2分) (2019七下·新密期中) 如图,在长方形中,点为上一点,且 , ,,动点从点出发,沿路径运动,则的面积与点运动的路径长之间的关系用图象表示大致为()A .B .C .D .9. (2分) (2019八上·大庆期末) 如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A .B .C .D .二、填空题 (共9题;共10分)10. (1分)(2012·锦州) 已知三角形的两条边长分别是7和3,第三边长为整数,则这个三角形的周长是偶数的概率是________.11. (1分) (2016七下·随县期末) 如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.则下列结论:①∠BOE= (180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论________(填编号).12. (1分)如图,一边靠墙,其它三边用12米的篱笆围成一个矩形(ABCD)花圃,则这个花圃的面积S(平方米)与AB的长x(米)之间的函数关系式为________.13. (1分)如图,△ABC中,∠BAC=90°,点G是△ABC的重心,如果AG=4,那么BC的长为________14. (2分) (2019八上·杭州期末) 在中,,边AB的垂直平分线交边BC于点D,边AC的垂直平分线交边BC于点E,连结AD,AE,则的度数为________ 用含的代数式表示15. (1分)(2013·嘉兴) 如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,小球P 从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E 时,小球P与正方形的边碰撞的次数为________,小球P所经过的路程为________.16. (1分)如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,若AB=4,且点D到BC的距离为3,则BD=________.17. (1分)一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距________千米.18. (1分)在△ABC中,AB=6,AC=2,AD是BC边上的中线,则AD的取值范围是________.三、解答题 (共9题;共45分)19. (2分) (2014·柳州) 如图,在△ABC中,BD⊥AC,AB=6,AC=5 ,∠A=30°.①求BD和AD的长;②求tanC的值.20. (5分)如图,AD∥BC,AD平分∠EAC,你能确定∠B与∠C的数量关系吗?请说明理由.21. (5分)(2017·巫溪模拟) 如图,C,E,F,D共线,AB∥FD,BG∥FH,且AB=FD,BG=FH.求证:∠A=∠D.22. (5分)如图,在四边形ABCD中,∠A=90°,AD=3,AB=4,BC=12,CD=13,试判断△BCD的形状,并说明理由.23. (5分)在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O 重合,一边OE经过点C,另一边OD与AC交于点M.(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2;(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC相交于点N,连接MN,则MN2=AM2+BN2成立吗?24. (2分)(2018·吴中模拟) 某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为________元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?25. (10分) (2018九上·福田月考) 如图,在△ABC中,AB=AC=1,∠A=45°,边长为1的正方形的一个顶点D在边AC上,与△ABC另两边分别交于点E、F,DE∥AB,将正方形平移,使点D保持在AC上(D不与A重合),设AF=x,正方形与△ABC重叠部分的面积为y.(1)求y与x的函数关系式并写出自变量x的取值范围;(2) x为何值时y的值最大?(3) x在哪个范围取值时y的值随x的增大而减小?26. (5分)在一个口袋中装有4个完成相同的小球,把它们分别标号1、2、3、4,小明从中随机地摸出一个球.(1)直接写出小明摸出的球标号为4的概率;(2)若小明摸到的球不放回,记小明摸出球的标号为x,然后由小强再随机摸出一个球记为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.请问他们制定的游戏规则公平吗?请用树状图或列表法说明理由.27. (6分)(2017·济宁模拟) 如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC、BD相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E 和点F.(1)求证:△AOE≌△COF;(2)当α=30°时,求线段EF的长度.参考答案一、单选题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共9题;共10分)10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共45分)19-1、20-1、21-1、22-1、24-1、24-2、25-1、25-2、25-3、26-1、27-1、27-2、。
(完整)海口市七年级上数学期末试卷

海口市七年级数学科期末检测题时间:100分钟 满分:100分 得分:一、选择题 1.-5的绝对值是 A .51B . 5C . -5D .±52.与算式32+32+32的运算结果相等的是A . 33B . 23C . 35D . 363.若有理数a 、b 满足ab >0,且a +b <0,则下列说法正确的是 A . a 、b 可能一正一负 B . a 、b 都是正数 C . a 、b 都是负数D . a 、b 中可能有一个为04.下列计算正确的是A .3a -2a =1B .x 2y -2xy 2=-xy 2C .3a 2+5a 2=8a 4D .3ax -2xa =ax 5. 图1是由5个大小相同的小正方体摆成的立体图形,它的俯视图...是6. 一个整式减去a 2-b 2的结果是a 2+b 2,则这个整式是A .2a 2B .-2a 2C .2b 2D .-2b 27.如图2,已知AB ⊥CD ,垂足为O ,图中∠1与∠2的关系是A .∠1+∠2=90°B .∠1+∠2=180°C .∠1=∠2D .无法确定 8.下午2点30分时(如图3),时钟的分针与时针所成角的度数为A .90°B .105°C .120°D .135°DBCA图1图3图41BEFD AC图2 29.如图4,在单行练习本的一组平行线上放一张对边平行的透明胶片,如果横线与透明胶片右下方所成的∠1=58°,那么横线与透明胶片左上方所成的∠2的度数为 A .60° B. 58° C. 52° D. 42°10.一条船停在海面上,从船上看某灯塔位于北偏东30°,那么在这个灯塔上看船应位于A .南偏东60°B .西偏南40°C .南偏西30°D .北偏东30° 11.已知()0112=++-y x ,求20192018y x+-。
海口市七年级上册数学期末考试试卷

海口市七年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)与﹣2的差为0的数是()A . 2B . -2C .D . -2. (2分)地球半径约为6400000米,则此数用科学记数法表示为()A . 0.64×109B . 6.4×106C . 6.4×104D . 64×1033. (2分) (2017七上·湛江期中) 下列代数式 a,﹣2ab,x+y,x2+y2 ,﹣1, ab2c3 中,单项式共有()A . 6个B . 5 个C . 4 个D . 3个4. (2分) (2019七上·城固期中) 如图,是一个正方体骰子的表面展开图,将其折叠成正方体骰子(点数朝外),如果1点在上面,3点在左面,在前面的点数为()A . 2B . 4C . 5D . 65. (2分) (2020九上·浦东月考) 已知ax=by,且所有字母均表示正实数,则下列各式不成立的是()A .B .C .D .6. (2分) (2020七上·怀仁期末) 下列说法:①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④如果AB=BC,则点B是AC的中点.其中正确的有()A . 1个B . 2个C . 3个D . 4个7. (2分)在一段坡路,小明骑自行车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是()千米/时.A .B .C .D . 无法确定8. (2分)(2020·大东模拟) 的倒数是()A . 5B . -5C . -D .9. (2分)下列计算不正确的是()A . ﹣8+8=16B . ﹣8﹣(﹣8)=0C . 8﹣(﹣8)=16D . 8+8=1610. (2分)下列计算正确的是()A . ﹣2﹣1=﹣1B . ﹣(﹣2)3=8C . 3÷3=3D . (﹣2)4=8二、填空题 (共6题;共7分)11. (1分)计算(﹣3)+(﹣9)的结果为________12. (1分)如图,人们明明知道就践踏草坪是不文明的行为,但在生活中还是常常出现这种现象,我们可以用________这一数学中的基本事实来解释这种不文明现象.13. (1分)已知,x=2是方程2﹣(m﹣x)=2x的解,求代数式m2﹣(6m+2)的值是________.14. (1分) (2020七上·五华期末) 如图,在灯塔0处观测到轮船A位于北偏西53°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB的大小为________15. (2分) (2020七上·通州期末) 我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设,则,,,解得,即 .仿此方法,将化成分数是________,将化成分数是________.16. (1分) (2019八上·大东期中) 定义运算“ ”的运算法则为:,则________.三、解答题 (共8题;共78分)17. (20分) (2018七上·东台月考) 计算(1)(2)(3) 9+(-7)+10+(-3)+(-9)(4)18. (5分)如图,平面上有射线AP和点B、点C,按下列语句要求画图:( 1 )连接AB;(2)用尺规在射线AP上截取AD=AB;(3)连接BC,并延长BC到E,使CE=BC;(4)连接DE.19. (5分) (2017七上·大石桥期中) 解方程:﹣ +x=3x+1.20. (12分) (2016七上·宜昌期中) 某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款________元.(用含x的代数式表示)若该客户按方案二购买,需付款________元.(用含x的代数式表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.21. (5分) (2019·增城模拟) 如图,点是线段的中点,,.求证:.22. (5分)某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几名工人加工甲种零件.23. (15分) (2019七上·中山期末) 定义一种新运算:观察下列式:1⊙3=1×4+3=7;3⊙(﹣1)=3×4﹣1=11;(﹣2)⊙4=(﹣2)×4+4=﹣4;(﹣3)⊙(﹣5)=(﹣3)×4﹣5=﹣17……(1)请你想一想:a⊙b等于多少;(2)若a⊙(﹣2b)=4,请计算(﹣3a+2b)⊙(2a﹣3b)的值;(3)若满足等式(x﹣1)⊙(kx+5)=4(k为整数)中的x为整数,求k的值.24. (11分) (2018七上·河南月考) 将长为 1,宽为 a 的长方形纸片(0.5<a<1)如图折叠,剪下一个边长等于长方形的宽度的正方形(称为第一次操作);再把剩下的长方形如图折叠,剪下一个边长等于此时长方形宽度的正方形 (称为第二次操作);如此反复操作下去,如此反复下去,若在第 n 次操作后剩下的长方形恰好为正方形,则操作终止.(1)第一次操作后,剩下的长方形两边长分别为________;(用含 a 的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则求 a 的值,写出解答过程;(3)若第三次操作后,剩下的长方形恰好是正方形,画出示意图形,直接写出 a 的值.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共7分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共78分)答案:17-1、答案:17-2、答案:17-3、答案:17-4、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。
2017-2018学年第一学期期末测试七年级数学试题及答案

2017—2018学年第一学期期末测试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分为120分。
考试用时100分钟。
考试结束后,只上交答题卡。
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。
3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
24.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列算式:(1) (2)--;(2) 2- ;(3) 3(2)-;(4) 2(2)-. 其中运算结果为正数的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 2.若a 与b 互为相反数,则a-b 等于(A )2a (B )-2a (C ) 0 (D )-2 3.下列变形符合等式基本性质的是(A )如果2a -b =7,那么b =7-2a (B )如果mk =nk ,那么m =n (C )如果-3x =5,那么x =5+3 (D )如果-13a =2,那么a =-64.下列去括号的过程(1)c b a c b a --=--)(; (2)c b a c b a ++=--)(; (3)c b a c b a +-=+-)(; (4)c b a c b a --=+-)(.其中运算结果错误的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 5.下列说法正确的是(A )1-x 是一次单项式 (B)单项式a 的系数和次数都是1 (C )单项式-π2x 2y 2的次数是6 (D)单项式24102x ⨯的系数是26.下列方程:(1)2x -1=x -7 ,(2)12x =13x -1 ,(3)2(x +5)=-4-x , (4)23x =x -2.其中解为x =-6的方程的个数为 (A ) 4 (B ) 3 (C ) 2 (D ) 1 7.把方程5.07.01.023.012.0-=--x x 的分母化为整数的方程是 (A )57203102-=--x x (B )5723102-=--x x (C )572312-=--x x (D )5720312-=--x x 8.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为(A ) 28.3×107(B ) 2.83×108(C )0.283×1010(D )2.83×1099.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是 (A )用两个钉子就可以把木条固定在墙上(B )利用圆规可以比较两条线段的大小关系 (C )把弯曲的公路改直,就能缩短路程(D )植树时,只要定出两棵树的位置,就能确定同一行树所在的直线10.一个两位数,个位数字为a ,十位数字为b ,把这个两位数的个位数字与十位数字 交换,得到一个新的两位数,则新两位数与原两位数的和为 (A )b a 99+ (B )ab 2 (C )ab ba + (D )b a 1111+ 11.已知表示有理数a 、b 的点在数轴上的位置如图所示:则下列结论正确的是(A )|a|<1<|b| (B )1<a<b (C )1<|a|<b (D ) -b<-a<-1 12.定义符号“*”表示的运算法则为a*b =ab +3a ,若(3*x)+(x*3)=-27,则x = (A )29-(B )29(C )4 (D )-4 第Ⅱ卷(非选择题)(第11题图)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.若把45.58°化成以度、分、秒的形式,则结果为 . 14.若xm-1y 3与2xyn的和仍是单项式,则(m-n )2018的值等于______ .15. 若031)2(2=++-y x ,则y x -= . 16.某同学在计算10+2x 的值时,误将“+”看成了“﹣”,计算结果为20, 那么10+2x 的值应为 . 17.如图,数轴上相邻刻度之间的距离是51,若BC=52,A 点在数轴上对应的数值是53-,则B 点在数轴上对应的数值是 .218.我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题分5分,本小题满分10分)计算: (1)11(0.5)06(7)( 4.75)42-+--+-- (2)[(﹣5)2×]×(﹣2)3÷7.20.(每小题分5分,本小题满分10分)先化简,再求值: (1)3x 2-[5x-(6x-4)-2x 2],其中x=3(2)(8mn-3m 2)-5mn-2(3mn-2m 2),其中m=-1,n=2. 21.(每小题分5分,本小题满分10分)解方程:53-(1)6322-41--=x x . (2)3125121103--=+x x . 22.(本小题满分8分)一个角的余角比这个角的补角的 13还小10°,求这个角的度数.23.(本大题满分10分)列方程解应用题:A 车和B 车分别从甲,乙两地同时出发,沿同一路线相向匀速而行.出发后1.5小时两车相距75公里,之后再行驶2.5小时A 车到达乙地,而B 车还差40公里才能到达甲地.求甲地和乙地相距多少公里?24.(本小题满分12分)如图,∠AOB 是直角,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线. (1)当∠AOC =40°,求出∠MON 的大小,并写出解答过程理由; (2)当∠AOC =50°,求出∠MON 的大小,并写出解答过程理由; (3)当锐角∠AOC=α时,求出∠MON 的大小,并写出解答过程理由.2017—2018学年第一学期期末测试七年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CADCBCBDCDCD二、填空题(本大题6个小题,每小题4分,共24分)(第24题图)13.45°34'48"; 14.1; 15.37; 16. 0 ; 17.0或54 ; 18.1112 . 三、解答题(本大题6个小题,共60分) 19.(每小题分5分,本小题满分10分)计算: 解:(1)11(0.5)06(7)( 4.75)42-+--+-- =130.567.5444-+-+ ………………………………………………2分 =13(0.57.5)(64)44--++ ………………………………………………4分 =3. ………………………………………………5分(2)[(﹣5)2×]×(﹣2)3÷7=[25×]×(﹣8)÷7……………………………………1分=[﹣15+8]×(﹣8)÷7………………………………………………2分=﹣7×(﹣8)÷7………………………………………………………3分=56÷7…………………………………………………………4分=8.…………………………………………………………5分20.(每小题分5分,本小题满分10分)先化简,再求值: 解:(1)原式, ………………………3分当时,原式; ………………………5分(2)原式,………………………3分当时,原式. ………………………5分21.(每小题分5分,本小题满分10分)解方程: 解:(1)去分母得:, …………3分移项合并得:; …………5分(2)解:原方程可化为312253--=+x x . …………1分 去分母,得)12(2)53(3--=+x x . …………2分去括号,得24159+-=+x x . …………3分 移项,得215-49+=+x x . …………4分 合并同类项,得1313-=x .系数化为1,得1-=x . …………5分22.(本小题满分8分)解:设这个角的度数为x °, …………1分 根据题意,得90-x =13(180-x)-10, …………5分解得x =60. …………7分 答:这个角的度数为60°. …………8分 23.(本大题满分10分)解:设甲地和乙地相距x 公里,根据题意,列出方程752401.5 1.52.5x x --=+ ………………………………………5分 解方程,得4300360x x -=- ………………………………………7分240x = ………………………………………9分答:甲地和乙地相距240公里. ……………………………10分 24.(本小题满分12分) 解:(1)∠AOC =40°时,∠MON =∠MOC -∠CON ………………………………………1分 =12(∠BOC -∠AOC) ………………………………………3分=12∠AOB ………………………………………5分=45°. ………………………………………6分 (2)当∠AOC =50°,∠MON =45°.理由同(1).………………………9分 (3)当∠AOC=α时,∠MON =45°. 理由同(1).………………………12分注意:评分标准仅做参考,只要学生作答正确,均可得分。
【期末试卷】海南省海口市 2017-2018学年 七年级数学上册期末专题复习卷--整式的加减(含答案)

2017-2018学年七年级数学上册期末专题复习卷--整式的加减一、选择题:1.在式子,2x +5 y,0.9,−2a,−3x2y,中,单项式的个数是( )A.5个B.4个C.3个D.2个2.一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长a﹣b,则长方形的周长为( ) A.6a B.10a+3b C.10a+2b D.10a+6b3.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0 D.5a2﹣4a2=14.火车站和机场为旅客提供打包服务,如果长、宽、高分别为x、y、z的箱子按如图的方式打包,则打包带的长至少为 ( )A.4x+4y+l0z B.x+2y+3z C.2x+4y+6z D.6x+8y+6z5.多项式是关于x的四次三项式,则m的值是()A.4 B.-2 C.-4 D.4或-46.下列计算错误的是()A.x3·x4=x7B. (x2)3=x6C.x3÷x3=x D.(-2xy2)4=16x4y87.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A.(3a+4b)元B.(4a+3b)元C.4(a+b)元D.3(a+b)元8.下列说法中,正确的个数有()A.0个B.1个C.2个D.3个9.单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,710.若是关于、的五次单项式,则的值为( )A.B.C.D.11.下列说法正确的是()A.单项式的系数是﹣5 B.单项式a的系数为1,次数是0C.次数是6 D.xy+x﹣1是二次三项式12.某服装店新开张,第一天销售服装a件,第二天比第一天少销售14件,第三天的销售量是第二天的2倍多10件,则这三天销售了( )件.A.3a﹣42 B.3a+42 C.4a﹣32 D.3a+3213.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2015个单项式是()A.2015x2015B.4029x2014C.4029x2015D.4031x2015二、填空题:14.有理数a、b、c在数轴上的位置如图所示,化简|a+b|-|a-c|+|b-c|的结果是.15.多项式1﹣2x4y﹣3x3y2﹣y4+x2y3按y的降幂排列为.16.单项式的系数是,次数是.17.已知a2﹣ab=20,ab﹣b2=﹣12,则a2﹣b2= ,a2﹣2ab+b2= .18.已知a+2b=3,则5﹣a﹣2b= .三、解答题:19.化简:3(2x2-xy)-4(x2-xy+3)20.化简:21.化简:3(2x2-xy)-4(x2-xy+3)22.化简:3(2a 2b -21ab 2)-4(ab 2-3ba 2-1).23.已知a+b=4,ab=﹣2,求代数式(2a ﹣5b ﹣2ab )﹣(a ﹣6b ﹣ab )的值.24.对于有理数a 、b ,定义运算:“⊗”,a ⊗b=ab ﹣a ﹣b ﹣2.(1)计算:(﹣2)⊗3的值; (2)比较4⊗(﹣2)与(﹣2)⊗4的大小.25.先化简,后求值:,其中x 在数轴上的对应点到原点的距离为个单位长度.26.已知A=y 2﹣ay ﹣1,B=2y 2+3ay ﹣2y ﹣1,且多项式2A ﹣B 的值与字母y 的取值无关,求a 的值. 27.已知:A ﹣2B=7a 2﹣7ab ,且 B=﹣3a 2+6ab+4.(1)求 A 等于多少? 若|a+b ﹣1|+(b ﹣2)2=0,求 A 的值.参考答案1.C2.A.3.C4.C5.C6.A7.A8.C9.D10.D.11.C.12.D.13.D.14.C.15.答案为:﹣2a.16.答案为:﹣y4+x2y3﹣3x3y2﹣2x4y+1.17.答案为:,618.解:∵a2﹣ab=20,ab﹣b2=﹣12,∴a2﹣b2=a2﹣ab+ab﹣b2=20﹣12=8;a2﹣2ab+b2=a2﹣ab﹣ab+b2=20+12=32.故答案为:8;32.19.答案为:220.原式=2x2+xy-1221.原式=12x-9-5x+6=7x-322.原式=2x2+xy-1223.16a2b-5.5ab2+4;24.原式=2a﹣5b﹣2ab﹣a+6b+ab=a+b﹣ab,当a+b=4,ab=﹣2时,原式=4+2=6.25.(1)(﹣2)⊗3=(﹣2)×3﹣(﹣2)﹣3﹣2=﹣6+2﹣3﹣2=﹣9;(2)4⊗(﹣2)=4×(﹣2)﹣4﹣(﹣2)﹣2=﹣8﹣4+2﹣2=﹣12,(﹣2)⊗4=(﹣2)×4﹣(﹣2)﹣4﹣2=﹣8+2﹣4﹣2=﹣12,所以,4⊗(﹣2)=(﹣2)⊗4.26.解:原式=﹣x3+x﹣2﹣x+1=﹣x3﹣1,又∵x到原点的距离为个单位长度,∴x=±,当x=时,原式=﹣﹣1=﹣;当x=﹣时,原式=﹣1=﹣.27.解:2A﹣B=2(y2﹣ay﹣1)﹣(2y2+3ay﹣2y﹣1)=2y2﹣2ay﹣2﹣2y2﹣3ay+2y+1=(2﹣5a)y﹣1,∵多项式与字母y的取值无关,∴2﹣5a=0,2=5a,a=.28.解:(1)∵A﹣2B=7a2﹣7ab,B=﹣3a2+6ab+4,∴A﹣2B=A﹣2(﹣3a2+6ab+4)=7a2﹣7ab,解得,A=a2+5ab+8;∵|a+b﹣1|+(b﹣2)2=0,∴解得,a=﹣1,b=2∴A=a2+5ab+8=(﹣1)2+5×(﹣1)×2+8=﹣1,即 A 的值是﹣1.。
海口市人教版七年级上册数学期末考试试卷及答案
海口市人教版七年级上册数学期末考试试卷及答案一、选择题1.以下选项中比-2小的是( ) A .0B .1C .-1.5D .-2.52.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .3.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或734.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() m A .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯5.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°6.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=67.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .8.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )9.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥 10.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( )A .﹣4B .﹣2C .4D .211.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人12.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 14.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________.15.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.16.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.17.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.18.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____.19.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________20.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___21.A 学校有m 个学生,其中女生占45%,则男生人数为________. 22.数字9 600 000用科学记数法表示为 .23.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.24.8点30分时刻,钟表上时针与分针所组成的角为_____度.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?27.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.28.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.29.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.30.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.31.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?32.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C、D运动时,总有2MD AC=,则AM=________(填空)()4在()3的条件下,N是直线AB上一点,且AN BN MN-=,求MNAB的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据有理数比较大小法则:负数的绝对值越大反而越小可得答案.【详解】根据题意可得:2.52 1.501-<-<-<<,故答案为:D.【点睛】本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.2.A解析:A【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.3.A解析:A【解析】【分析】先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),解得:m=﹣1,故选:A.【点睛】本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.4.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000104=1.04×10−4.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.A解析:A【解析】【分析】延长CD交直线a于E.由∠ADC=∠AED+∠DAE,判断出∠ADC>70°即可解决问题.【详解】解:延长CD交直线a于E.∵a∥b,∴∠AED=∠DCF,∵AB∥CD,∴∠DCF=∠ABC=70°,∴∠AED=70°∵∠ADC=∠AED+∠DAE,∴∠ADC>70°,【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.C解析:C 【解析】 【分析】方程两边都乘以分母的最小公倍数即可. 【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=, 故选:C . 【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.7.C解析:C 【解析】 【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可. 【详解】 移项得,x >2, 在数轴上表示为:故选:C . 【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.8.D解析:D 【解析】 【分析】设应从乙处调x 人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x 的一元一次方程,此题得解. 【详解】设应从乙处调x 人到甲处,依题意,得: 30+x =2(24﹣x ). 故选:D .本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.9.C解析:C【解析】【分析】根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.【详解】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故选:C.【点睛】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.10.C解析:C【解析】【分析】由题意可知3b-3a-(a-b)3=3(b-a)-(a-b)3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)=4;故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.11.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.12.C解析:C【解析】试题解析:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y ﹣0.5y=180+120, 解得y≈55,∴此同学做作业大约用了55﹣11=44分钟. 故选C .二、填空题13.两点确定一条直线. 【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线. 【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线. 故答案为两点确定一条直线.14.-1; 【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.解析:-1; 【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.15.【解析】 【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元 解析:(23)a b +【解析】 【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元. 故选C.此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.16.﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣解析:﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣3,y=2时,x+y=﹣1,当x=﹣3,y=﹣2时,x+y=﹣5,所以,x+y的值是﹣1或﹣5.故答案为:﹣1或﹣5.【点睛】本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x、y的值.17.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5,n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键18.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.20.【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,解析:121 4【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据213 7SS,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,∵AB=10,BC=13,∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,AH=13−DH=13−(10−a)=a+3,∵2137SS=,即23(3)7aa a=+,∴4a2−9a=0,解得:a1=0(舍),a2=94,则S3=(10−2a)2=(10−92)2=1214,故答案为1214.【点睛】本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.21.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】【分析】将男生占的比例:145%-,乘以总人数就是男生的人数.【详解】-=,则男生人数为55%m,男生占的比例是145%55%故答案是55%m.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.22.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a |<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.23.5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.24.75钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.三、压轴题25.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.26.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示: .(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.27.(1)∠MEN =90°;(2)∠MEN =105°;(3)∠FEG =2α﹣180°,∠FEG =180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.28.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m 2=, 所以,OA=212,点A 在原点O 的右侧,a 的值为212. 当A 在原点的左侧时(如图),a=-212综上,a 的值为±212. (3)解:当点A 在原点的右侧,点B 在点C 的左侧时(如图), c=-285.当点A 在原点的右侧,点B 在点C 的右侧时(如图), c=-8.当点A 在原点的左侧,点B 在点C 的右侧时,图略,c=285. 当点A 在原点的左侧,点B 在点C 的左侧时,图略,c=8. 综上,点c 的值为:±8,±285. 【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.29.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.30.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.31.(1)-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B 点表示的数为10-30;点P 表示的数为10-5t ;(2)分类讨论:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差易求出MN .(3) 分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A 表示的数为10,B 在A 点左边,AB=30, ∴数轴上点B 表示的数为10-30=-20;∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数为10-5t ;故答案为-20,10-5t ; (2)线段MN 的长度不发生变化,都等于15.理由如下:①当点P 在点A 、B 两点之间运动时,∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP+NP=AP+BP=(AP+BP )=AB=15;②当点P 运动到点B 的左侧时:∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP-NP=AP-BP=(AP-BP )=AB=15,∴综上所述,线段MN 的长度不发生变化,其值为15.(3)若点P 、Q 同时出发,设点P 运动t 秒时与点Q 距离为4个单位长度.①点P 、Q 相遇之前,由题意得4+5t=30+3t ,解得t=13;②点P 、Q 相遇之后,由题意得5t-4=30+3t ,解得t=17.答:若点P 、Q 同时出发,13或17秒时P 、Q 之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.32.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm,CM=2 cm,BD=4 cm,∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm;(3)根据C、D的运动速度知:BD=2MC.∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM.∵AM+BM=AB,∴AM+2AM=AB,∴AM=13AB=4.故答案为4;(4)①当点N在线段AB上时,如图1.∵AN﹣BN=MN.又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,∴MNAB=412=13;②当点N在线段AB的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.。
2017—2018学年度第一学期海南省海口市四中七年级数学科期末检测模拟(原卷版)
2017—2018学年度第一学期海南省海口市四中七年级数学科期末检测模拟题一、选择题(每小题2分,共28分)1. 5的相反数是()A. B. C. 5 D. -52. 大于-2.6且小于4的整数有()A. 4个B. 5个C. 6个D. 7个3. 在算式( )+6=-8中,括号里应填()A. 2B. -2C. 14D. -144. 数据36000000用科学记数法表示为()A. 36×106B. 3.6×106C. 3.6×107D. 3.6×1085. 当m=-3时,代数式m2-2m+1的值是()A. -11B. 1C. 4D. 166. 下列计算的结果中正确的是()A. 3x+y=3xyB. 5x2-2x2=3C. 2y2+3y2=5y4D. 2xy3-2y3x=07. 某品牌电脑原价为x元,先降价y元,又降低20%,两次降价后的售价为()A. 0.8(x-y)元B. 0.8(x+y)元C. 0.2(x-y)元D. 0.2(x+y)元8. 一个整式减去a2-2ab+b2后所得的结果是2ab,则这个整式是()A. a2+b2B. a2-b2C. a2-4ab+b2D. a2+4ab+b29. 如图所示的几何体的左视图是()学#科#网...A. AB. BC. CD. D10. 如图,O是线段AB的中点,点C在OB上,若AB=9,OC=2CB,则AC等于()A. 5.5B. 6.5C. 7.5D. 811. 如图,CO⊥AB于点O,DO⊥EO,若∠DOC=58°40′,则∠BOE等于()A. 31°20′B. 32°20′C. 58°40′D. 68°40′12. 如图,直线AB,CD交于点O,OE平分∠AOD,若∠COE=108°,则∠1等于()A. 30ºB. 36ºC. 48ºD. 72º13. 如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是()A. ∠1=∠3B. ∠2=∠4C. ∠C=∠CBED. ∠C+∠ABC=180º14. 如图6,一张地图上有A、B、C三地,C地在A地的东南方向,若∠BAC=83°,则B地在A地的()A. 南偏西38°方向B. 北偏东52º方向C. 南偏西52°方向D. 西南方向二、填空题(每小题3分,共12分)15. 若|-a|=8,则a=______.16. 如图7,OD、OE分别是∠AOC、∠BOC的平分线,∠DOE=45º,则∠AOB=______度.17. 如图8,已知AB∥CD,AD∥ BE,∠B=40°,∠E=48°,则∠CDF=_______度.18. 按图9的方式摆放餐桌和椅子(每个小半圆代表1把椅子),n张餐桌子按上述方式拼在一起可摆放_____________把椅子(用含n的代数式表示).三、解答题(共60分)19. 计算(1);(2);(3).20. 先化简,再求值.,其中,.21. 某电动车厂一周计划生产2100辆电动车,平均每天计划生产300辆,由于各种原因,实际每天的生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负).(1)根据记录可知本周前三天共生产电动车多少辆?(2)本周产量最多的一天比产量最少的一天多生产电动车多少辆?(3)该厂实行每周计件工资制,每生产一辆电动车可得a元,若超额完成,则超额部分每辆再奖b元(b<a),少生产一辆扣b元,求该厂工人这一周的工资总额.(注:第(1)、(2)小题列出算式,并计算)22. 如图10,在三角形ABC中,∠BAC=90°.(1)按下列要求画出相应的图形.①取线段BC的中点D,连接AD;②过点D分别画DE⊥AB,DF⊥AC,垂足分别为点E、F;(2)在(1)所画出的图形中,按要求完成下列问题.①点A、D之间的距离是线段的长;点D到AB的距离是线段的长,约等于mm(精确到1mm);②∠EDF= 度;③三角形ABD与三角形ADC的面积有怎样的关系?为什么?23. 如图11,在下列解答中,填写适当的理由或数学式:(1)∵∠ABD=∠CDB,(已知)∴∥ . ()(2)∵∠ADC+∠DCB=180°,(已知)∴∥ . ()(3)∵AD∥BE,(已知)∴∠DCE=∠ . ()(4)∵∥,(已知)∴∠BAE=∠CFE. ()24. 如图12,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与CF平行吗?请说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?注:本题第(1)、(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程. 解:(1)AE∥CF,理由如下:∵∠CDB+∠2=180°,(平角的定义)∠1+∠2=180°,(已知)∴∠1=∠,()∴AE∥CF. ()(2)AD与BC的位置关系是: .∵AE∥CF,(已知)∴∠C=∠.()又∵∠A=∠C,(已知)∴∠A=∠CBE . ()∴∥.()(3)。
海南省海口市秀英区 美安中学 2017-2018学年七年级数学上册 期末模拟卷(含答案)
2017-2018学年七年级数学上册期末模拟卷一、选择题:1.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的( )A.24.70千克B.25.30千克C.24.80千克D.25.51千克2.把数据1.804精确到0.01得( )A.1.8 B.1.80 C.2 D.1.8043.多项式2a2b﹣ab2﹣ab的项数及次数分别是( )A.3,3 B.3,2 C.2,3 D.2,24.下列方程中,解为x=2的方程是( )A.3x-2=3 B.4-2(x-1)=1 C.-x+6=2x D.0.5x+1=05.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑6.下列四个生产生活现象,可以用基本事实“两点之间线段最短”来解释的是()A.用两个钉子就可以把木条固定在墙上B.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C.从A地到B地架设电线,总是尽可能沿着线段AB来架设D.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上7.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①.AP=BP;②.AB=2BP;③.AB=2AP;④.AP+PB=AB.A.1个B.2个C.3个D.4个8.已知∠A=65°,则∠A的补角的度数是()A.15°B.35°C.115°D.135°9.钟表在3点30分时,它的时针和分针所成的角是()A.75°B.80°C.85°D.90°10.如果两个数的和是负数,那么这两个数()A.同是正数B.同为负数C.至少有一个为正数D.至少有一个为负数11.下面四个整式中,不能表示图中阴影部分面积的是( )A.(x+3)(x+2)﹣2x B.x(x+3)+6 C.3(x+2)+x2D.x2+5x12.将方程3(x-1)-2(x-3)=5(1-x)去括号得 ( )A.3x-1-2x-3=5-x B.3x-1-2x+3=5-xC.3x-3-2x-6=5-5x D.3x-3-2x+6=5-5x13.为引导居民节约用水,某市出台了城镇居民作用水阶梯水价制度.每年水费的计算方法为:年交水费=第一阶梯水价×第一阶梯用水量+第二阶梯水价×第二阶梯用水量+第三阶梯水价×第三阶梯用水量.该市某同学家在实施阶梯水价制度后的第一年缴纳水费1730元,则该同学家这一年的用水量为()某市居民用水阶梯水价表A.250m3B.270m3C.290m3D.310m314.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式:按照上述规律排下去,那么第100行从左边数第5个数是( )A.-4955 B.4955 C.-4950 D.4950二、填空题:15.若|a|=8,|b|=5,且a+b>0,那么a﹣b= .17.若一个角的补角比它的余角的2位多15°,则这个角的度数是________.18.如图,平面内有公共端点的四条射线OA,OB,OC,OD,从射线OA开始按逆时针方向依次在射线上写出数字2,﹣4,6,﹣8,10,﹣12,….则第16个数应是;“﹣2016”在射线上.三、解答题:19.计算:(1)(3.4)+(-2.875)-(-5.6)-(0.125). (2)﹣22+(﹣33)×(﹣)3﹣12÷(﹣2)2.(3)-3a2b-(2ab2-a2b)-(2a2b+4ab2), (4)(5a2—2ab)-2(3a2+4ab-b2)20.解方程:(1)2(2x-2)+1=2x-(x-3) (2)21.计算:(1)18°36′12″+12°28′14″ (2)32°45′48″+21°25′14″.22.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。
2017-2018学年初一上期末质量数学试题附含答案
2017—2018学年度第一学期期末教学质量检测七年级数学科试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种解法供参考,如果考生的解法与参考答案不同可比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.2-1-c-n-j-y3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题共10小题,每小题3分,共30分。
1.A 2.A 3.C 4.B 5.D6.B 7.C 8.C 9.A 10.D二、填空题:本大题共6小题,每小题4分,共24分。
11.1.18×105 12.11 13.X= -714.39 15.75 16.18cm三、解答题(一):本大题共3小题,每小题6分,共18分。
17.解:原式=3-2×25 ………………(3分)=3-50 ……………(5分)=-47 …………(6分)18.解:原式=10-1+a-1+a+a2+1+a-a2-a3…………………(2分)=9+3a-a3…………………(4分)3……………(6分)819.解:∵m2-mn=7,mn-n2=-2 ……………………(2分)∴m2-n2= m2-mn+mn-n2 =5 …………………(4分)m2-2mn+n2= m2-mn-(mn –n2)=7+2=9 ……………(6分)四、解答题(二):本大题共3小题,每小题7分,共21分。
20.解: 2x+2-4=8+2-x ……(3分)∴2x+x=8+2+4-2 …………(4分)∴3x=12 …………(6分)∴x =4 ………………(7分)21.解:设这种服装每件成本是x 元,依题意得……………(1分)∴(1+40%)×0.8x - x=12 ……………………(3分) ∴1.12x - x=120.12x =12 ………………(5分)X=100………………(6分)答:设这种服装每件成本是100元 …………………(7分)22.解:设∠AOB 的度数是x 0 ……………(1分)x+36………………(3分)x+36 ……(4分) 32x=144+3632x=180 ……(5分)X=120 ……(6分)答:∠AOB 的度数是1200 ……………… (7分)五、解答题(三):本大题共3小题,每小题9分,共27分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学 第1页(共6页)2017—2018学年度第一学期海口市七年级数学科期末检测题时间:100分钟 满分:100分 得分:一、选择题(每小题2分,共28分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.61-的相反数是 A .-6B .6C .61-D .612.大于 -4.3且小于2的整数有A .4个B .5个C .6个D .7个 3. 数据2500000用科学记数法表示为A . 25×105B . 2.5×105C . 2.5×106D . 2.5×1074. 数轴上表示数12和表示数-4的两点之间的距离是A . 8B . -8C . 16D . -165. 下列计算的结果中正确的是A .3x +2y =5xyB .6x -2x =4C .3x 2+x 2=4x 4D . -xy -yx =-2xy6.若|a|=1,|b|=4,且ab <0,则a +b 的值为 A .±3 B . -3 C . 3D . ±57.某品牌电脑原价为x 元,先降价y 元,又降低20%,两次降价后的售价为A .0.8(x -y )元B .0.8(x +y )元C .0.2(x -y )元D .0.2(x +y )元学校_____________________________班级__________________姓名___________________座号_____________七年级数学 第2页(共6页)8. 图1所示的几何体的俯视图是9.如图2,AB =1.6,延长AB 至点C ,使得AC =4AB ,D 是BC 的中点,则AD 等于A .2.4B . 3.2C . 4D . 4.810. 如图3,AO ⊥BO 于点O ,∠AOC =∠BOD ,则∠COD 等于 A .80ºB .90ºC .95ºD .100º11. 如图4,直线a ∥b ,c ∥d ,∠1=56°40′,则∠2等于A .56°40′B .123°40′C .123°20′D .124°20′12.已知∠2是∠1的余角,∠3是∠2的补角,且∠1=38º,则∠3等于 A .62ºB .128ºC .138ºD .142º13. 如图5,下列条件中能判断AB ∥DC 的是A .∠1=∠3B .∠C +∠ADC =180º C .∠A =∠CD .∠2=∠414. 如图6,一张地图上有A 、B 、C 三地,B 地在A 地的东北方向,若∠BAC=103°,则C地在A 地的 A .北偏西58°方向 B .北偏西68º方向 C .北偏西32°方向D .西北方向BO ACD图3图4 1 2abc d图2DBCAB .A .C .D .图1C图5 BCD A2 341南 北西东图6七年级数学 第3页(共6页)二、填空题(每小题3分,共12分)15. 若a -2b =-3,则代数式1-a +2b 的值为 .16. 如图7,直线AB ,CD 交于点O ,OE 平分∠AOD ,若∠1=36°,则∠BOE = 度.17. 如图8,在四边形ABCD 中,点E 在AD 的延长线上,若∠A =∠EDC ,∠C =2∠B ,则∠C = 度.18. 图9是一组有规律的图案,它们是由边长相同的正方形和等边三角形镶嵌而成,按照这样的规律继续摆下去,第n 个图案有 个三角形(用含n 的代数式表示).三、解答题(共60分)19.计算(第(1)小题4分,第(2)小题5分,第(3)小题7分,共16分) (1))6()15()6(43-÷-+-⨯; (2) )1278561()2(34+-⨯-⨯;(3)()2321.0)25191(35)32()3(-÷-⨯⎥⎦⎤⎢⎣⎡+-⨯-.EDC图8 图7 BACE DO1(1)(2)(3) 图9…(4)七年级数学 第4页(共6页)20. (7分)先化简,再求值.]21)32(2[)36(32222222xy x y x xy y x x -+-+--,其中21=x ,1-=y .21.(8分) 有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克? (2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若这20筐白菜的进货价为每千克x 元,售价为每千克y 元(x <y ),则出售这批白菜可获利润多少元?(用含x 、y 的代数式表示) (注:第(1)、(2)小题列出算式,并计算)七年级数学 第5页(共6页)22.(7分)如图10,点D 是∠AOB 的角平分线OC 上的任意一点.(1)按下列要求画出图形.① 过点D 画DE ∥OA ,DE 与OB 交于点E ;② 过点D 画DF ⊥OC ,垂足为点D ,DF 与OB 交于点F ;③ 过点D 画DG ⊥OA ,垂足为点G ,量得点D 到射线OA 的距离等于 mm (精确到1mm );(2)在(1)所画出的图形中,若∠AOB =n º,则∠EDF = 度(用含n的代数式表示).23.(9分) 如图11,在下列解答中,填写适当的理由或数学式:(1)∵ EB ∥DC , ( 已知 )∴ ∠DAE =∠ . ( ) (2)∵ ∠BCF +∠AFC=180°, ( 已知 )∴ ∥ . ( ) (3)∵ ∥ , ( 已知 )∴ ∠EFA =∠ECB . ( )BA C图11DEF图10七年级数学 第6页(共6页)24. (13分) 如图12,∠ADE +∠BCF =180°,BE 平分∠ABC ,∠ABC =2∠E .(1)AD 与BC 平行吗?请说明理由; (2)AB 与EF 的位置关系如何?为什么? (3)若AF 平分∠BAD ,试说明:① ∠BAD =2∠F ;② ∠E +∠F =90°.注:本题第(1)、(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程.解:(1)AD ∥BC ,理由如下:∵ ∠ADE +∠ADF =180°, ( 平角的定义 )∠ADE +∠BCF =180°, ( 已知 )∴ ∠ADF =∠ , ( ) ∴ AD ∥BC ( ) (2)AB 与EF 的位置关系是: .∵ BE 平分∠ABC , ( 已知 ) ∴ ∠ABE =21∠ABC . ( 角平分线的定义 ) 又∵ ∠ABC =2∠E , ( 已知 ),即 ∠E =21∠ABC , ∴ ∠E =∠ . ( ) ∴ ∥ . ( ) (3)BD C图12EAOF七年级数学 第7页(共6页)2017—2018学年度第一学期海口市七年级数学科期末检测题参考答案及评分标准一、DCCCD AADCB CBDA二、15.4 16. 108 17. 120 18.(3n +1)三、19.(1)原式=2529+- …(3分) (2)原式=)1278561()48(+-⨯- …(2分)=-2 …(4分) =-8+30-28 …(4分)=-6 …(5分)(3)原式=100125635)278(9÷⨯⎥⎦⎤⎢⎣⎡+-⨯ …(4分) =1001256)1(÷⨯- …(5分)=-24 …(7分)20. 原式=4x 2-2x 2y -(2xy 2-2x 2y +3x 2-21xy 2) …(1分) =4x 2-2x 2y -23xy 2+2x 2y -3x 2 …(2分)=x 2-23xy 2. …(4分) 当21=x ,1-=y 时, 原式=22)1(2123)21(-⨯⨯- …(5分)4341-= …(6分)21-=. …(7分)21.(1)最重的一筐超过2.5千克,最轻的差3千克,2.5-(-3)=5.5(千克),答:最重的一筐比最轻的一筐重5.5千克.(3分) (2)(-3)×1+(-2)×4+(-1.5)×2+3×0+1×2+2.5×8=-3-8-3+2+20=8(千克). 答:20筐白菜总计超过8千克. …(6分) (3)508(y -x )(元).…(8分)22.(1)①②③如图1所示;③ 20(允许误差范围20±3) 4分) (2)(90-21n ) …(7分)图1七年级数学 第8页(共6页)23.(1)∵ EB ∥DC , ( 已知 )∴ ∠DAE =∠ D . ( 两直线平行,内错角相等 ) …(3分) (2)∵ ∠BCF +∠AFC=180°, ( 已知 )∴ AD ∥ BC . (同旁内角互补,两直线平行 )…(6分) (3)∵ AD ∥ BC , ( 已知 )∴ ∠EFA =∠ECB . ( 两直线平行,同位角相等 ) …(9分)24(1)AD ∥BC ,理由如下:∵ ∠ADE +∠ADF =180°, ( 平角的定义 ) ∠ADE +∠BCF =180°, ( 已知 )∴ ∠ADF =∠ BCF , ( 同角的补角相等 ) …(2分) ∴ AD ∥BC ( 同位角相等,两直线平行 ) …(4分) (2)AB 与EF 的位置关系是: AB ∥EF .∵ BE 平分∠ABC , ( 已知 )∴ ∠ABE =21∠ABC . ( 角平分线的定义 ) 又∵ ∠ABC =2∠E , ( 已知 ),即 ∠E =21∠ABC , ∴ ∠E =∠ ABE . ( 等量代换 ) …(6分) ∴ AB ∥ EF ( 内错角相等,两直线平行 ) …(8分) (3)① 由(1)知AB ∥EF ,∴ ∠BAF =∠F . ∵ AF 平分∠BAD , ∴ ∠BAD =2∠BAF ,∴ ∠BAD =2∠F . …(11分) ② 由(1)知AD ∥BC , ∴ ∠BAD +∠ABC =180°,∵ ∠BAD =2∠F ,∠ABC =2∠E , ∴ ∠E +∠F =90°. …(13分)(注:用其它方法求解参照以上标准给分.)B DC 图3E A OF B A C图2 DE F七年级数学第9页(共6页)。