向量中数量积的最值
平面向量中的极化恒等式及有关最值(范围)问题(1)

2(a·b-a·c-b·c+1)=48+2(a+b)·c=48+2|a+b|cos θ(其中θ为 a+b
与 c 的夹角),因为|a-b|=|a+b|,所以|a-b|2=48+2|a-b|cos θ,则由
cos θ∈[-1,1],得 48-2|a-b|≤|a-b|2≤48+2|a-b|,解得 6≤|a-
1x 2
2-1x2=1.
4
4
(2)如图,由已知|OF|=1,取 FO 中点 E,连接 PE,由极化恒等式得
O→P·F→P=|PE|2-1|OF|2=|PE|2-1,
4
4
∵|PE|2max=245,∴O→P·F→P的最大值为 6.
答案 (1)1 (2)C
题型二 平面向量中的最值(范围)问题
类型 1 利用函数型
则A→P·B→P的取值范围是________;若向量A→C=λD→E+μA→P,则λ+μ的最
小值为________.
解析 (1)由题意,不妨设 b=(2,0),a=(cos θ,sin θ)(θ∈[0,2π)),
则 a+b=(2+cos θ,sin θ),a-b=(cos θ-2,sin θ).
令 y=|a+b|+|a-b|
= (2+cos θ)2+sin2θ+ (cos θ-2)2+sin2θ
= 5+4cos θ+ 5-4cos θ,
则 y2=10+2 25-16cos2θ∈[16,20].
由此可得(|a+b|+|a-b|)max= 20=2 5,
(|a+b|+|a-b|)min= 16=4,
即|a+b|+|a-b|的最小值是 4,最大值是 2 5.
4a2
4a2
θ)2=1,化简得
b2(1-cos2θ)=
向量的数量积运算的所有公式

向量的数量积运算的所有公式1.向量的数量积定义:对于两个向量u和v,它们的数量积表示为u·v,即:u·v = ,u,,v,cosθ其中,u,和,v,分别表示向量u和v的长度(或模),θ表示向量u和v之间的夹角。
2.向量的数量积性质:(a)u·v=v·u(交换律,数量积满足交换律)(b)u·u=,u,^2(自身与自身的数量积等于向量的长度的平方)(c) (ku)·v = k(u·v)(数量积与标量的乘积等于标量与数量积的乘积)(d)(u+v)·w=u·w+v·w(数量积的分配律)3.向量的数量积的计算公式:(a)对于二维向量u=(u₁,u₂)和v=(v₁,v₂):u·v=u₁v₁+u₂v₂(b)对于三维向量u=(u₁,u₂,u₃)和v=(v₁,v₂,v₃):u·v=u₁v₁+u₂v₂+u₃v₃4.向量的数量积的几何解释:(a)两个向量u和v之间的数量积u·v等于向量u在向量v方向上的投影长度乘以向量v的长度。
(b)如果u和v之间的夹角θ等于0度,则u·v=,u,,v,(数量积的最大值)(c)如果u和v之间的夹角θ等于90度,则u·v=0(数量积的最小值)5.向量的数量积与向量的垂直性:(a)如果u·v=0,则向量u和v垂直(正交)。
(b)如果u·v≠0,则向量u和v不垂直。
6.向量的数量积与向量的夹角的关系:(a) u·v = ,u,,v,cosθ(b)如果θ=0度,则u·v=,u,,v,(数量积的最大值)(c)如果θ=90度,则u·v=0(数量积的最小值)这些公式是向量的数量积运算的基本公式和性质,可用于求解向量的数量积问题,以及在几何和物理等领域中的应用。
平面向量数量积的最小值问题

平面向量数量积的最小值问题引言平面向量的数量积是向量运算中的一种重要形式之一,它可以用于表示向量之间的夹角以及判断向量的正交性。
对于给定的平面向量,我们感兴趣的问题之一就是如何求得它们数量积的最小值。
本文将介绍平面向量数量积的最小值问题,以及一些解决该问题的方法。
问题描述给定平面上的两个向量 $\\vec{a}$ 和 $\\vec{b}$,它们的数量积(也称为点积或内积)定义为:$$ \\vec{a} \\cdot \\vec{b} = |\\vec{a}| \\cdot |\\vec{b}| \\cdot \\cos(\\theta) $$其中 $|\\vec{a}|$ 和 $|\\vec{b}|$ 分别表示向量 $\\vec{a}$ 和 $\\vec{b}$ 的模长,$\\theta$ 表示 $\\vec{a}$ 和 $\\vec{b}$ 之间的夹角。
我们的目标是求解数量积的最小值。
方法一:代数法一种简单直接的方法是通过代数运算求解最小值。
设 $\\vec{a} =\\begin{bmatrix}a_x \\\\ a_y \\end{bmatrix}$ 和 $\\vec{b} = \\begin{bmatrix}b_x \\\\ b_y \\end{bmatrix}$,则数量积可以表示为:$$ \\vec{a} \\cdot \\vec{b} = a_x \\cdot b_x + a_y \\cdot b_y $$为了求解最小值,可以利用数量积的几何意义,选择一个使得夹角$\\theta$ 最小的向量 $\\vec{b}$。
根据向量的乘积性质,当 $\\theta = 0$ 时,夹角最小,此时:$$ \\vec{a} \\cdot \\vec{b} = |\\vec{a}| \\cdot |\\vec{b}| \\cdot \\cos(0) =|\\vec{a}| \\cdot |\\vec{b}| $$为了使 $\\vec{a} \\cdot \\vec{b}$ 最小,我们只需找到一个使得$|\\vec{b}|$ 最小的向量,这个向量可以通过求解 $\\vec{b}=\\begin{bmatrix}b_x \\\\ b_y \\end{bmatrix}$ 的模长最小值问题来得到。
最全归纳平面向量中的范围与最值问题 (十大题型)(学生版)

最全归纳平面向量中的范围与最值问题目录题型一:三角不等式题型二:定义法题型三:基底法题型四:几何意义法题型五:坐标法题型六:极化恒等式题型七:矩形大法题型八:等和线题型九:平行四边形大法题型十:向量对角线定理方法技巧总结技巧一.平面向量范围与最值问题常用方法:(1)定义法第一步:利用向量的概念及其基本运算将所求问题转化为相应的等式关系第二步:运用基木不等式求其最值问题第三步:得出结论(2)坐标法第一步:根据题意建立适当的直角坐标系并写出相应点的坐标第二步:将平面向量的运算坐标化第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等求解(3)基底法第一步:利用其底转化向量第二步:根据向量运算律化简目标第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等得出结论(4)几何意义法第一步:先确定向量所表达的点的轨迹第二步:根据直线与曲线位置关系列式第三步:解得结果技巧二.极化恒等式(1)平行四边形平行四边形对角线的平方和等于四边的平方和:|a +b |2+|a -b |2=2(|a|2+|b |2)证明:不妨设AB =a ,AD =b ,则AC =a +b ,DB =a -bAC 2=AC 2=a +b 2=a 2+2a ⋅b +b 2①DB 2=DB 2=a -b 2=a 2-2a ⋅b +b 2②①②两式相加得:AC 2+DB 2=2a 2+b 2=2AB 2+AD 2 (2)极化恒等式:上面两式相减,得:14a +b 2-a -b 2----极化恒等式①平行四边形模式:a ⋅b =14AC 2-DB 2几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.②三角形模式:a ⋅b =AM 2-14DB 2(M 为BD 的中点)技巧三.矩形大法矩形所在平面内任一点到其对角线端点距离的平方和相等已知点O 是矩形ABCD 与所在平面内任一点,证明:OA 2+OC 2=OB 2+OD 2.【证明】(坐标法)设AB =a ,AD =b ,以AB 所在直线为轴建立平面直角坐标系xoy ,则B (a ,0),D (0,b ),C (a ,b ),设O (x ,y ),则OA 2+OC 2=(x 2+y 2)+[(x -a )2+(y -b )2]OB 2+OD 2=[(x -a )2+y 2]+[x 2+(y -b )2]∴OA 2+OC 2=OB 2+OD 2技巧四.等和线(1)平面向量共线定理已知OA =λOB +μOC ,若λ+μ=1,则A ,B ,C 三点共线;反之亦然.(2)等和线平面内一组基底OA ,OB 及任一向量OP ,OP =λOA +μOB(λ,μ∈R ),若点P 在直线AB 上或者在平行于AB 的直线上,则λ+μ=k (定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线.①当等和线恰为直线AB 时,k =1;②当等和线在O 点和直线AB 之间时,k ∈(0,1);③当直线AB 在点O 和等和线之间时,k ∈(1,+∞);④当等和线过O 点时,k =0;⑤若两等和线关于O 点对称,则定值k 互为相反数;技巧五.平行四边形大法1.中线长定理2AO 2=AB 2+AD 2-12DB 22.P 为空间中任意一点,由中线长定理得:2PO 2=PA 2+PC 2-12AC 22PO 2=PD 2+PB 2-12DB 2两式相减:PA 2+PC 2-PD 2+PB 2=AC2-BD 22=2AB ⋅AD技巧六.向量对角线定理AC ⋅BD =(AD 2+BC 2)-(AB 2+CD2)2必考题型归纳题型一:三角不等式1(2023·全国·高三专题练习)已知向量a ,b ,c 满足|a |=2,|b |=1,|c -a -b |=1,若对任意c ,(c -a )2+(c-b )2≤11恒成立,则a ⋅b 的取值范围是.2(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足:|a|=1,b ⋅a =-1,若对满足条件的任意向量b ,|c -b |≥|c -a |恒成立,则cos c +a ,a 的最小值是.3已知向量a ,b ,c 满足a =b =c =2,a ⋅b =0,若关于t 的方程ta +b2-c=12有解,记向量a ,c 的夹角为θ,则sin θ的取值范围是.1.已知e 1 ,e 2 ,e 3 是平面向量,且e 1 ,e 2 是互相垂直的单位向量,若对任意λ∈R 均有e 3 +λe 1的最小值为e 3 -e 2 ,则e 1 +3e 2 -e 3 +e 3-e 2 的最小值为.2.已知平面向量e 1 ,e 2 满足2e 2 -e 1 =2,设a =e 1 +4e 2 ,b =e 1 +e 2 ,若1≤a ⋅b ≤2,则|a|的取值范围为.3.(2023·浙江金华·统考一模)已知平面向量a ,b ,c 满足a ⋅b =74,|a -b|=3,(a -c )(b -c )=-2,则c的取值范围是.1已知向量a ,b 的夹角为π3,且a ⋅b =3,向量c 满足c =λa +1-λ b 0<λ<1 ,且a ⋅c =b ⋅c ,记x =c ⋅aa ,y =c ⋅b b,则x 2+y 2-xy 的最大值为.2(2023·四川成都·高二校联考期中)已知向量a ,b ,c 满足a =1,b=2,a ⋅b=-1,向量c -a 与向量c -b 的夹角为π4,则c 的最大值为.3(2023·浙江绍兴·高二校考学业考试)已知向量a ,b 满足a =1,b=3,且a ⊥b ,若向量c 满足c -a -b =2a -b ,则c的最大值是.1.已知向量a ,b 满足a =1,b =3,且a ⋅b =-32,若向量a -c 与b -c 的夹角为30°,则|c |的最大值是. 2.已知向量a ,b ,满足a =2b =3c =6,若以向量a ,b 为基底,将向量c 表示成c =λa+μb (λ,μ为实数),都有λ+μ ≤1,则a ⋅b的最小值为 3.已知向量a 、b 满足:a -b=4,a =2b .设a -b 与a +b 的夹角为θ,则sin θ的最大值为.1.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分在边BC ,CD 上,BE =λBC ,DF=μDC .若λ+μ=23,则AE ⋅AF 的最小值为.2.(2023·天津·高三校联考阶段练习)已知菱形ABCD 的边长为2,∠BAD =120°,点E 、F 分别在边BC ,CD 上,BE =λBC ,DF =μDC ,若2λ+μ=52,则AE ⋅AF 的最小值.3.如图,菱形ABCD 的边长为4,∠BAD =30°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ⋅AN的最大值为.4.菱形ABCD 的边长为4,∠BAD =30°,若N 为菱形内任意一点(含边界),则AB ⋅AN的最大值为.5.如图,菱形ABCD 的边长为4,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ⋅AN的最大值为.6.平面四边形ABCD 是边长为2的菱形,且∠A =120°,点N 是DC 边上的点,且DN =3NC,点M 是四边形ABCD 内或边界上的一个动点,则AM ⋅AN的最大值为.7.(2023·全国·高三专题练习)已知向量a ,b 满足a +b =3,a ⋅b =0.若c =λa+1-λ b ,且c ⋅a =c ⋅b,则c 的最大值为.8.已知平面向量a ,b ,c 满足a =2,b =1,a ⋅b =-1,且a -c 与b -c 的夹角为π4,则c 的最大值为.9.已知平面向量a 、b 、c 满足a=4,b =3,c =2,b ⋅c =3,则a -b 2a -c 2-a -b⋅a -c 2最大值为.10.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,且满足AN =λAB +μAC,则λ2+μ2的最小值为.题型四:几何意义法1(2023·全国·模拟预测)已知a ,b ,c 是平面向量,满足a -b =a +b ,a =2b =2,c +a -b=5,则向量c 在向量a上的投影的数量的最小值是.2(2023·上海浦东新·上海市建平中学校考三模)已知非零平面向量a ,b ,c 满足:a ,b 的夹角为π4,c -a与c -b 的夹角为3π4,a -b=2,c -b =1,则b ⋅c 的取值范围是.3(2023·全国·高三专题练习)已知平面向量a ,b 夹角为π3,且平面向量c 满足c -a =c -b =1,c -a ⋅c -b =-12,记m 为f t =ta +1-t b (t ∈R )的最小值,则m 的最大值是. 1.(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足a ⋅b =-3,a -b=4,c -a 与c -b 的夹角为π3,则c -a -b 的最大值为. 2.(2023·四川内江·高二四川省内江市第六中学校考开学考试)已知非零平面向量a ,b ,c 满足:a ,b 的夹角为π3,c -a 与c -b的夹角为2π3,a -b =23,c -b =2,则b ⋅c 的取值范围是.3.已知非零平面向量a ,b ,c 满足a -b =2,且(c -a )⋅(c -b )=0,若a 与b 的夹角为θ,且θ∈π6,π3,则|c |的最大值是.4.(2023·全国·高三专题练习)平面向量a ,b ,c 满足:a ,b 的夹角为π3,|a -b|=|b -c |=|a -c |=23,则b ⋅c的最大值为. 5.(2023·广东阳江·高二统考期中)已知非零平面向量a ,b ,c 满足a -b =4,且a -c⋅b -c =-1,若a 与b 的夹角为θ,且θ∈π3,π2,则c 的模取值范围是. 6.(2023·浙江·高三专题练习)已知平面向量a ,b ,c ,若a =b =a -b =1,且2a -c+2b +c =23,则a -c的取值范围是.7.(2023·安徽阜阳·高三安徽省临泉第一中学校考期末)已知向量a ,b 满足a =b =1,且a ⋅b=0,若向量c 满足c +a +b=1,则c 的最大值为.8.(2023·浙江·模拟预测)已知向量a ,b ,c 满足a -b +c=2b =2,b -a 与a 的夹角为3π4,则c 的最大值为.9.(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足:a -b =5,向量a与向量b 的夹角为π3,a -c=23,向量a -c 与向量b -c 的夹角为2π3,则a 2+c 2的最大值为.题型五:坐标法1(2023·全国·高三专题练习)已知向量a ,b 满足2a +b=3,b =1,则a +2a +b 的最大值为.2(2023·江苏常州·高三统考期中)已知平面向量a ,b ,c 满足|a |=2,|b |=4,a ,b 的夹角为π3,且(a -c )⋅(b -c )=2,则|c |的最大值是.3设平面向量a ,b ,c 满足a =b =2,a 与b 的夹角为2π3,a -c ⋅b -c =0则c 的最大值为.1.(2023·安徽滁州·校考三模)已知平面向量a ,b ,c 满足|a|=1,|b |=3,a ⋅b =0,c -a 与c -b 的夹角是π6,则c ⋅b -a 的最大值为.2.(2023·河北·统考模拟预测)如图,在边长为2的正方形ABCD 中.以C 为圆心,1为半径的圆分别交CD ,BC 于点E ,F .当点P 在劣弧EF 上运动时,BP ⋅DP的最小值为.3.(2023·山东·山东省实验中学校考一模)若平面向量a ,b ,c 满足a =1,b ⋅c =0,a ⋅b =1,a⋅c=-1,则b +c 的最小值为.4.(2023·四川眉山·仁寿一中校考一模)如图,在平面四边形ABCD 中,∠CDA =∠CBA =90°,∠BAD =120°,AB =AD =1,若点E 为CD 边上的动点,则AE ⋅BE的最小值为.5.(2023·安徽滁州·校考模拟预测)已知a=1,b +a +b -a =4,则b -14a 的最小值是.6.(2023·浙江·模拟预测)已知向量a ,b 满足a=3,且b -λa 的最小值为1(λ为实数),记a,b =α,a ,a -b=β,则b ⋅b -a cos α+β最大值为.7.在矩形ABCD 中,AB =4,AD =3,M ,N 分别是AB ,AD 上的动点,且满足2AM +AN =1,设AC =xAM +yAN ,则2x +3y 的最小值为()A.48B.49C.50D.51题型六:极化恒等式1(2023·山东师范大学附中模拟预测)边长为1的正方形内有一内切圆,MN 是内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM ⋅PN的取值范围是.2(2023·湖北省仙桃中学模拟预测)如图直角梯形ABCD 中,EF 是CD 边上长为6的可移动的线段,AD =4,AB =83,BC =12,则BE ⋅BF的取值范围为. 3(2023·陕西榆林·三模)四边形ABCD 为菱形,∠BAC =30°,AB =6,P 是菱形ABCD 所在平面的任意一点,则PA ⋅PC的最小值为. 1.(2023·福建莆田·模拟预测)已知P 是边长为4的正三角形ABC 所在平面内一点,且AP=λAB +(2-2λ)AC (λ∈R ),则PA ⋅PC 的最小值为()A.16B.12C.5D.42.(2023·重庆八中模拟预测)△ABC 中,AB =3,BC =4,AC =5,PQ 为△ABC 内切圆的一条直径,M 为△ABC 边上的动点,则MP ⋅MQ的取值范围为()A.0,4B.1,4C.0,9D.1,9题型七:矩形大法1已知圆C 1:x 2+y 2=9与C 2:x 2+y 2=36,定点P (2,0),A 、B 分别在圆C 1和圆C 2上,满足PA ⊥PB ,则线段AB 的取值范围是.2在平面内,已知AB 1 ⊥AB 2 ,OB 1 =OB 2 =1,AP =AB 1 +AB 2 ,若|OP |<12,则|OA |的取值范围是()A.0,52B.52,72C.52,2D.72,23(2023·全国·高三专题练习)已知圆Q :x 2+y 2=16,点P 1,2 ,M 、N 为圆O 上两个不同的点,且PM⋅PN =0若PQ =PM +PN ,则PQ的最小值为.1.设向量a ,b ,c满足|a |=|b |=1,a ⋅b =12,(a -c )⋅(b -c )=0,则|c |的最小值是()A.3+12B.3-12C.3D.1题型八:等和线1如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP =xAB +yAC,则2x +2y 的最大值为()A.83B.2C.43D.12在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN =λAB +μAC(λ,μ∈R ),则λ+μ的取值范围是()A.0,13B.13,12C.[0,1]D.[1,2]3(2023·全国·高三专题练习)如图,OM ∥AB ,点P 在由射线OM 、线段OB 及AB 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB .当x =-12时,y 的取值范围是()A.0,+∞ B.12,32C.12,+∞ D.-12,321.(2023·全国·高三专题练习)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一动点,若OC=xOA +yOB,则3x +y 的取值范围是.2.(2023·江西上饶·统考三模)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一个动点.若OC=xOA +yOB ,则2x +y 的取值范围是.3.(2023·全国·高三专题练习)在扇形OAB 中,OA =1,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB ,则x +3y 的取值范围是.4.(2023·福建三明·高二三明一中校考开学考试)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB,则x +4y 的取值范围是.5.(2023·全国·高三专题练习)如图,OM ⎳AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OP =xOA +yOB,则实数对x ,y 可以是()A.-14,34B.-15,75C.14,-12D.-23,236.如图,B 是AC 的中点,BE =2OB ,P 是平行四边形BCDE 内(含边界)的一点,且OP=xOA +yOBx ,y ∈R ,则下列结论正确的个数为()①当x =0时,y ∈2,3②当P 是线段CE 的中点时,x =-12,y =52③若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段④x -y 的最大值为-1A.1B.2C.3D.47.(2023·全国·高三专题练习)在△ABC 中,AB =AC=AB ⋅AC=2,点Q 在线段BC (含端点)上运动,点P 是以Q 为圆心,1为半径的圆及内部一动点,若AP =λAB +μAC,则λ+μ的最大值为()A.1B.33C.3+33D.328.在△ABC 中,AD 为BC 上的中线,G 为AD 的中点,M ,N 分别为线段AB ,AC 上的动点(不包括端点A ,B ,C ),且M ,N ,G 三点共线,若AM =λAB ,AN =μAC,则λ+4μ的最小值为()A.32 B.52C.2D.949.(2023·全国·高三专题练习)在ΔABC 中,AC =2,AB =2,∠BAC =120°,AE =λAB ,AF=μAC ,M 为线段EF 的中点,若AM=1,则λ+μ的最大值为()A.73B.273C.2D.21310.在扇形OAB 中,∠AOB =60o ,OA =1,C 为弧AB 上的一个动点,且OC =xOA +yOB.则x +4y 的取值范围为()A.[1,4)B.[1,4]C.[2,3)D.[2,3]11.(2023·全国·高三专题练习)如图,在扇形OAB 中,∠AOB =600,C 为弧AB 上且与A ,B 不重合的一个动点,且OC =xOA +yOB,若u =x +λy (λ>0)存在最大值,则λ的取值范围为()A.(1,3)B.13,3C.12,1D.12,2题型九:平行四边形大法1如图,圆O 是半径为1的圆,OA =12,设B ,C 为圆上的任意2个点,则AC ⋅BC 的取值范围是.2如图,C ,D 在半径为1的⊙O 上,线段AB 是⊙O 的直径,则AC ⋅BD的取值范围是.3(2023·浙江·模拟预测)已知e 为单位向量,平面向量a ,b 满足|a +e |=|b -e |=1,a ⋅b的取值范围是.1.(2023·江西宜春·校联考模拟预测)半径为1的两圆M 和圆O 外切于点P ,点C 是圆M 上一点,点B 是圆O 上一点,则PC ⋅PB的取值范围为.2.(2023·福建·高三福建师大附中校考阶段练习)设圆M ,圆N 的半径分别为1,2,且两圆外切于点P ,点A ,B 分别是圆M ,圆N 上的两动点,则PA ⋅PB的取值范围是()A.-8,12B.-16,34C.-8,1D.-16,1题型十:向量对角线定理1已知平行四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,若记a =OA⋅OB ,b =OB ⋅OC ,c =OC ⋅OD ,则()A.a <b <cB .a <c <bC .c <a <bD .b <a <c2如图,在圆O 中,若弦AB =3,弦AC =5,则AO ⋅BC的值是()A.-8B .-1C .1D .83如图,在四边形ABCD 中,AB ⊥BC ,AD ⊥BC 若,AB =a ,AD =b ,则AC ⋅BD 等于()A.b 2-a 2B.a 2-b 2C.a 2+b 2D.a 2⋅b 2。
数量积的最值问题

数量积的最值问题
数量积的最值问题是数学中常见的一类问题,通常涉及到向量的内积运算。
向量的数量积也称为内积或点积,它是向量与向量之间进行的一种运算,其结果是一个实数。
在数量积的最值问题中,我们需要确定一组向量中数量积的最大值或最小值。
在实际应用中,数量积的最值问题常常用于优化问题,如最大化力的方向或最小化工作量等。
例如,在物理学中,力的大小与方向对物体的运动有着重要的影响。
因此,我们可以使用数量积的最值问题优化力的方向,使其最大或最小。
在解决数量积的最值问题时,我们需要使用向量的性质和一些基本的数学知识。
首先,我们需要知道向量的数量积公式:
a·b=|a||b|cosθ,其中a和b分别是两个向量,|a|和|b|分别是它们的模长,θ是它们之间的夹角。
其次,我们需要根据问题的要求,确定向量的方向和模长,然后计算数量积,并找出最大或最小值。
总之,数量积的最值问题是数学中的一个重要问题,涉及到向量的内积运算和优化问题。
通过合理地使用向量的性质和相关的数学知识,我们可以解决这类问题,为实际应用提供重要的帮助。
- 1 -。
平面数量积最值问题 教案-2022届高三数学二轮复习微专题复习

微专题:平面向量数量积最值问题——2022年高三数学复习微专题微课一、本专题在高考中的地位1.课标对本专题的要求知识内容知识要求了解理解掌握平面向量1.平面向量的实际背景及基本概念(1)向量的实际背景√(2)平面向量的概念和两个向量相等的含义√(3)向量的几何表示√2.向量的线性运算(1)向量加法、减法运算,并理解其几何意义√(2)向量的数乘运算及其几何意义,理解两个向量共线的含义√(3)向量线性运算的性质及其几何意义√3.平面向量基本定理及坐标表示(1)平面向量的基本定理及其意义√(2)平面向量的正交分解及其坐标表示√(3)坐标表示平面向量的加减法与数乘运算√(4)用坐标表示的平面向量共线的条件√4.平面向量数量积(1)平面向量数量积的含义及其物理意义√(2)平面向量的数量积与向量投影的关系√(3)数量积的坐标表达式,会进行平面向量数量积的运算√(4)运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系√5.向量的应用(1)向量法解决某些简单的平面几何问题√(2)向量方法解决简单的力学问题与其他一些实际问题√明确《考试大纲》对知识的要求层次。
“理解”“掌握”这两个层次要求的知识点往往是高考命题的首选,尤其是“掌握”,通常高考命题会进行深度挖掘,所以在复习时要重视和强化。
2.近五年全国卷考查情况分析年份题序题型考点明细单独命题综合命题分值难易程度2016年全国卷I(理) 3 选择题向量加法坐标运算与垂直√ 5 易2017年全国卷I(理) 13 填空题 向量的模长和数量积应用√ 5 易 2018年全国卷I(理) 6 选择题 向量线性运算 √ 5 易 2018年全国卷I(理) 8 选择题 抛物线、直线及数量积 √ 5 中 2019年课标全国卷I(理) 7 选择题 向量数量积、夹角 √ 5 中 2020年课标全国卷I(理) 14 填空题 向量的数量积与模 √ 5 易 2020年课标全国卷I (文)14 填空题 向量数量积与向量垂直的充要条件 √ 5 易 2021·新高考Ⅱ卷13填空题向量的数量积与模√5易二、真题回顾1.(2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 2.(2021·全国甲卷)若向量a ,b 满足|a |=3,|a -b |=5,a ·b =1,则|b |=________. 3.(2021·新高考Ⅱ卷)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a =________.4.(2020·课标全国Ⅰ高考)设a ,b 为单位向量,且|a+b|=1,则|a-b|= .5.(2020·课标全国Ⅱ高考)已知单位向量a ,b 的夹角为45°,ka -b 与a 垂直,则k = .三.要点提炼考点 平面向量的数量积1.若a =(x ,y),则|a |=a ·a =x 2+y 2. 2.若A(x 1,y 1),B(x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.3.若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.四.典型例题:例1.(2021·福建六校联考)已知P 为边长为2的正方形ABCD 所在平面内一点,则PC →·(PB →+PD →)的最小值为________. 【解析】 建立如图所示的平面直角坐标系, 则A (0,0),B (2,0),C (2,2),D (0,2),设P (x ,y ),则PC →=(2-x ,2-y ),PB →+PD →=(2-x ,-y )+(-x ,2-y )=(2-2x ,2-2y ),∴PC →·(PB →+PD →)=(2-x )(2-2x )+(2-y )(2-2y )=2⎝⎛⎭⎫x -322-12+2⎝⎛⎭⎫y -322-12=2⎝⎛⎭⎫x -322+2⎝⎛⎭⎫y -322-1. ∴当x =y =32时,PC →·(PB →+PD →)取得最小值-1.【探究】 数量积的计算主要有基底法和坐标法,另外解方程也行,数量积的最值问题往往要用到函数思想和数形结合思想,结合求值域的方法求解.变式练习:1.已知四边形ABCD 中,AD ∥BC ,∠BAD =90°,AD =1,BC =2,M 是AB 边上的动点,则|MC →+2MD →|的最小值为________.例2.(2021·益阳模拟考试)如图所示为边长为2的正△ABC ,以BC 的中点O 为圆心,BC 为直径在三角形外部作半圆弧BC ︵,点P 在圆弧上运动,则AB →·AP →的取值范围为( )A .[2,33]B .[4,33]C .[2,4]D .[2,5]答案 D解析 由题可知当点P 在点C 处时AB →·AP →最小,此时AB →·AP →=|AB →|·|AC →|·cos π3=2×2×12=2,过圆心O 作OP ∥AB 交圆弧于点P ,连接AP ,此时AB →·AP →最大,此时AB →·AP →=2×⎝⎛⎭⎫32+1=5,所以AB →·AP →的取值范围为[2,5].故选D.【探究】 本题利用数量积的定义,结合数量量积的几何意义AP →在AB →上的投影,当当点P 在点C 处时AB →·AP →最小,过圆心O 作OP ∥AB 交圆弧于点P ,连接AP ,此时AB →·AP →最大。
高中数学向量的数量积与叉乘的意义及计算方法

高中数学向量的数量积与叉乘的意义及计算方法在高中数学中,向量是一个重要的概念,它不仅在数学中有广泛的应用,也在物理学、工程学等领域中发挥着重要的作用。
在向量的运算中,数量积和叉乘是两个常见且重要的操作。
本文将重点介绍向量的数量积与叉乘的意义以及计算方法,并通过具体的例题来说明其考点和解题技巧。
一、向量的数量积数量积又称为点积,是两个向量的乘积与它们夹角的余弦值的乘积。
数量积的计算方法如下:设有两个向量a和b,它们的数量积表示为a·b,计算公式为:a·b = |a| |b| cosθ其中,|a|和|b|分别表示向量a和b的模(长度),θ表示向量a和b之间的夹角。
数量积的意义在于可以判断两个向量之间的关系。
当两个向量的数量积为正时,表示它们的夹角为锐角;当数量积为负时,表示夹角为钝角;当数量积为零时,表示夹角为直角或两个向量垂直。
例如,有向量a(3, 4)和向量b(1, 2),求它们的数量积。
解:首先计算向量a和b的模,|a| = √(3^2 + 4^2) = 5,|b| = √(1^2 + 2^2) = √5然后计算向量a和b之间的夹角的余弦值,cosθ = (3*1 + 4*2) / (5*√5) = 11 /(5√5)最后计算数量积,a·b = |a| |b| cosθ = 5 * √5 * (11 / (5√5)) = 11因此,向量a和b的数量积为11,表示它们的夹角为锐角。
二、向量的叉乘叉乘又称为向量积或叉积,是两个向量的乘积与它们夹角的正弦值的乘积。
叉乘的计算方法如下:设有两个向量a和b,它们的叉乘表示为a×b,计算公式为:a×b = |a| |b| sinθ n 其中,|a|和|b|分别表示向量a和b的模,θ表示向量a和b之间的夹角,n表示垂直于a和b所在平面的单位向量。
叉乘的意义在于可以得到一个新的向量,该向量垂直于原来的两个向量所在的平面,并且满足右手法则。
向量的数量积结果

向量的数量积结果1. 什么是向量的数量积?在数学中,向量的数量积(也称为点积或内积)是一种用于衡量两个向量之间关系的运算。
向量的数量积可以通过将两个向量的对应分量相乘,并将乘积相加而得到。
具体而言,对于两个n维向量A和B,它们的数量积定义为:A·B = A1B1 + A2B2 + … + AnBn其中Ai和Bi分别表示向量A和B的第i个分量。
2. 数量积的几何意义数量积在几何上有着重要的意义。
它可以用来计算两个向量之间的夹角,以及判断两个向量是否垂直或平行。
2.1 夹角设向量A和B的数量积为A·B,向量A的模为|A|,向量B的模为|B|,则向量A和B之间的夹角θ可以通过如下公式计算得到:cosθ = (A·B) / (|A||B|)2.2 垂直和平行两个向量A和B垂直的充要条件是它们的数量积为0,即A·B = 0。
而两个向量A和B平行的充要条件是它们的数量积的绝对值等于它们的模的乘积,即|A·B| =|A||B|。
3. 数量积的性质向量的数量积具有一些重要的性质,这些性质使得数量积成为一种有用的工具。
3.1 交换律和分配律数量积满足交换律和分配律,即对于任意向量A、B和C,以及任意标量k,有以下性质成立:•A·B = B·A•(A + B)·C = A·C + B·C•k(A·B) = (kA)·B = A·(kB)3.2 数量积与向量的模数量积与向量的模之间有着重要的关系。
设向量A的模为|A|,则有以下性质成立:•A·A = |A|^2这一性质可以用来计算向量的模。
3.3 数量积与夹角数量积还与向量夹角有关。
设向量A和B的夹角为θ,则有以下性质成立:•cosθ = (A·B) / (|A||B|)这一性质可以用来计算夹角。
4. 应用向量的数量积在物理学、工程学和计算机图形学等领域有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年新高考数学总复习第五章《平面向量与复数》向量
中数量积的最值
题目 (2020·调研)如图1,已知AC =2,B 为AC 的中点,分别以AB ,AC 为直径在AC 同
侧作半圆,M ,N 分别为两半圆上的动点(不含端点A ,B ,C ),且BM ⊥BN ,则AM →·CN →的最
大值为________.
答案 14
解析 方法一 由题设可知AB =BC =BN =1.
因为点M 在以AB 为直径的半圆上,所以AM ⊥BM ,又BM ⊥BN ,所以AM ∥BN ,若设∠MAB =θ,则∠NBC =θ.
如题图2,建立平面直角坐标系xBy ,则点A (-1,0),M (-sin 2θ,sin θcos θ),C (1,0),N (cos
θ,sin θ),所以AM →=(-sin 2 θ+1,sin θcos θ)=(cos 2θ,sin θcos θ),CN →=(cos θ-1,sin θ). 于是,AM →·CN →=cos 2θ·(cos θ-1)+sin 2θcos θ
=cos 3θ-cos 2θ+(1-cos 2θ)cos θ
=-cos 2θ+cos θ=14-⎝
⎛⎭⎫cos θ-122. 又易知0<θ<π2,所以,当θ=π3时,可得AM →·CN →的最大值为14
. 评注 上述求解过程的切入点是引入辅助角θ,准确写出点M ,N 的坐标,以便灵活利用平面向量的坐标运算加以求解.
方法二 如题图2,建立平面直角坐标系xBy ,设直线BN 的方程为y =kx (k >0),则因为
BM ⊥BN ,所以直线BM 的方程为y =-1k
x . 注意到点N 是直线BN 与以AC 为直径的半圆的交点,所以将y =kx 与x 2+y 2=1联立,可
求得点N 的坐标为⎝ ⎛⎭⎪⎫11+k 2
,k 1+k 2. 注意到点M 是直线BM 与以AB 为直径的半圆的交点,所以将y =-1k x 与⎝⎛⎭⎫x +122+y 2=14
联
立,可求得点M 的坐标为⎝ ⎛⎭
⎪⎫-k 2k 2+1,k k 2+1. 又点A (-1,0),C (1,0),所以向量
AM →=⎝⎛⎭⎫1k 2+1,k k 2+1,CN →=⎝ ⎛⎭⎪⎫11+k 2
-1,k 1+k 2, 所以AM →·CN →=1k 2+1⎝ ⎛⎭⎪⎫11+k 2-1+k k 2+1·k 1+k 2
=1k 2+1⎝ ⎛⎭
⎪⎫k 2+11+k 2-1 =11+k 2-1k 2+1
=14-⎝ ⎛⎭
⎪⎫11+k 2-122, 故当11+k 2=12
,即k =3时,可得AM →·CN →的最大值为14. 评注 上述求解过程的关键是引入参数k (直线BN 的斜率),并借助直线和圆的方程,灵活求解点M ,N 的坐标,整个求解过程显然比方法一增加了许多运算量.
方法三 由题设可知AB =BC =BN =1,
因为点M 在以AB 为直径的半圆上,所以AM ⊥BM ,又BM ⊥BN ,所以AM ∥BN ,
所以AM →·BN →=|AM →|×1×cos 0°=|AM →|.
因为AM ⊥BM ,AB =1,
所以|AM →|=1×cos ∠MAB =cos ∠MAB ,所以
AM →·BC →=AM →·AB →
=|AM →|×1×cos ∠MAB =|AM →|2.
于是,AM →·CN →=AM →·(BN →-BC →)
=AM →·BN →-AM →·BC →
=|AM →|-|AM →|2=14-⎝
⎛⎭⎫|AM →|-122. 又0<|AM →|<1,
所以,当|AM →|=12时,可得AM →·CN →的最大值为14
. 评注 上述求解过程的关键是充分利用平面向量的数量积公式a ·b =|a |·|b |cos θ,将目标问题
等价转化为求解关于“|AM →|”的二次函数在区间(0,1)上的最大值.
方法四 如图3,分别延长AM ,CN ,设其交点为E ,并设ME 与大半圆的交点为D ,连接。