禽流感的研究进展
禽流感病毒的免疫研究进展

禽流感病毒的免疫研究进展【摘要】禽流感病毒是一种常见的家禽疾病,造成严重的经济损失和公共卫生问题。
免疫研究一直是防控禽流感病毒的重要方向,该研究在作用机制、治疗方法、疫苗研发、抗体应用和基因工程等方面取得了重要进展。
免疫系统对禽流感病毒的作用机制研究有助于解析感染过程和免疫应答机制,提供治疗靶点和疫苗设计依据。
疫苗研发和抗体应用在禽流感的防控中起着关键作用。
禽流感病毒的基因工程研究为深入了解病毒特性和疫苗设计提供了重要支持。
未来的研究方向包括加强基础研究、提高疫苗的覆盖范围和效果、开发新的治疗方法等。
免疫研究对禽流感病毒的防控具有重要意义,但仍面临着挑战,需要全球合作和持续投入。
【关键词】禽流感病毒, 免疫, 研究, 进展, 作用机制, 治疗方法, 疫苗, 抗体, 防控, 基因工程, 疫情, 挑战, 研究方向, 结论1. 引言1.1 禽流感病毒的免疫研究进展禽流感病毒是一种可以感染禽类的病毒,对禽类养殖业造成了严重的威胁。
由于禽流感病毒的高变异性和传染性,研究禽流感病毒的免疫机制对于疫情的防控至关重要。
近年来,科研人员对禽流感病毒的免疫研究取得了一系列的进展。
免疫对禽流感病毒的作用机制研究发现,宿主的免疫系统在禽流感病毒感染过程中发挥着至关重要的作用。
通过研究宿主的抗病毒免疫应答,科学家们揭示了禽流感病毒与宿主免疫系统之间的相互作用机制,为进一步疫情防控提供了重要参考。
禽流感病毒免疫治疗方法研究和禽流感病毒疫苗研发进展也是当前研究的热点。
研究人员持续探索新的疫苗设计方案和治疗方法,希望能够有效地预防和治疗禽流感病毒感染。
免疫抗体在禽流感防控中的应用以及禽流感病毒基因工程研究也为禽流感疫情的防控提供了新的思路和方法。
通过免疫抗体的应用和基因工程技术的发展,科研人员不断探索新的防控策略,为禽流感病毒的防控作出贡献。
禽流感病毒的免疫研究对疫情的防控具有重要意义,但仍然面临着诸多挑战和未知领域。
未来,科研人员将继续努力,探索更有效的防控策略,为禽流感病毒的防控作出更大的贡献。
禽流感病毒的免疫研究进展

禽流感病毒的免疫研究进展禽流感是由禽流感病毒(avian influenza virus)引起的家禽呼吸系统疾病,主要感染家禽,如鸡、鸭、鹅等,但极少数情况下也可以传染给人类。
自从2003年中国发生了SARS疫情以来,禽流感疫情就被公众所关注。
禽流感的爆发不仅对家禽养殖业产生了巨大的经济影响,更是对人类健康造成了巨大的威胁。
因此,对禽流感的病毒学特性和免疫学研究已经成为了当前研究的热点之一。
禽流感病毒的病理学特性禽流感病毒是一种RNA病毒,属于正反式病毒科(Orthomyxoviridae),分为A、B、C、D四种型号。
其中只有A型和B型病毒会引起流感病毒,而D型病毒则主要感染牲畜。
A型病毒具有高变异率和广泛感染性,可以感染多种动物和人类。
据统计,自2003年开始,全球已经发生了多次禽流感大规模暴发,间歇性地在全球不同地区爆发。
1.清洁蛋白材料。
禽流感病毒外表皮有两种糖蛋白质:血凝素和神经氨酸酯化酶。
其中血凝素是禽流感病毒的主要清洁标记物,其血凝素亚型不同决定了其毒性和致病性的差异。
2.覆盖膜。
每个病毒都包含了一层薄膜,这是由病毒在宿主细胞内复制过程中夺取细胞膜形成的。
病毒的薄膜的主要成分是磷脂类物质和覆盖蛋白质。
3.病毒复制能力。
禽流感病毒具有强大的复制能力和变异能力,可以在任何宿主内复制。
病毒的感染和复制也受到宿主细胞的限制,禽流感病毒能感染和复制于多种宿主细胞中,然而只在特定环境下才会产生足够的病毒产生细胞,从而继续传播病毒。
禽流感病毒的病原学特性决定了其研究的重要性,研究其免疫学特性则是控制禽流感疫情的重要途径之一。
禽流感病毒的免疫学特性主要涉及以下几个方面。
1.病毒抗原结构分析。
研究禽流感病毒血凝素、内质膜蛋白、核蛋白、非结构蛋白等多种蛋白结构,寻找高度保守的免疫原性表位,为开发新型疫苗提供理论依据。
2.疫苗研发。
目前,研究禽流感病毒免疫学特性主要集中在疫苗的研制上。
禽流感病毒的血凝素亚型具有多样性,不同亚型的血凝素互相之间没有交叉保护能力。
禽流感诊断研究进展

E IA 法 。我 国 建 立 的禽 流 感 问 接 酶 联 免 疫 吸 附 试 验 (J - LS 方 AV E IA诊断技术 及禽 流感抗体斑点- LS 诊断技术 ,既可用于禽流 LS ) E IA 感 的早 期 诊 断 ,又 可 用 于抗 体 的监 测 ,其 中 的禽 流感 抗 体斑 点一 E IA LS 诊断技术 ,结果易于判定 ,适合 于现场禽流感抗体监测及流行 病学调查。诊断 试剂盒 ,具有敏感性高 、 异性强 、快速 、稳定定性 特 好等特点 ,便于大批量检测 。2( ,李海燕等在禽流感全病毒酶联 0 ̄ K 免疫吸附试验(LS ) E IA和斑点一 LS 研究的基础上 ,建立了以杆状病 E IA 毒系统表达的AV I 核蛋 白为抗原的禽流感间接酶联免疫吸附试验诊断 技 术( N — L S ) 。此法不仅具有与A V E IA同样 的特异性和敏 R P E IA I — LS 感性 , 而且具备了抗原制备工艺简单 、 生物安全度高 、成本价廉、易 于生产等优点 。 () 3 分子生物学诊 断技术 。①聚合 酶联反应 ( C 及反转录 P R) 聚合酶联 反应 (T C ) C 是近来发展成熟起来的一种体外基因 R P R。P R 扩 增技术 ,能在 数小时 内使 D A N 呈指数增 加 ,现在 已成功地 用于多
禽流感 ( i f ez , I 是由正粘病毒科 、流感病毒属A v n n u naA ) ai l 型流 感病毒引起 的一种禽类急性高度致死性传染病 ,以急性败血性死亡到 无症 状带毒等 多种病 征为特点 。该病 一旦在 活禽或禽 肉产品 中检 测 出,将直接影响活禽 及相关产 品的对 外贸易 ,并 造成恶 劣的国际 影 响 。特 别是高致病 性禽流感 (P 1 H A) ,是严 重危害养 禽业 的烈性传染 病 ,不仅对 鸡群造成毁灭性打击 , 而且严重威胁到人类生命健康。据 世卫组织公布的最新资料显示 : ) 0 3 l月底在亚洲各国爆发的禽 )20年 2 , 流感至2 0 年1 月 ,有 l8 09 O l 人感染 禽流感 ,其 中6 人死 亡。禽流感 在 1 亚洲肆虐之后 ,又蔓延至欧洲诸 国。我国于20 年冬 l 多个 省地相继 05 0 发生禽流感, 并出现人类死亡病例 面对 H益严峻的形势 ,多国纷纷 ’ 。 推 出防范新举措 , 全球防疫战 已经打 响。本 文就禽 流感诊断的研 一场
禽流感病毒的免疫研究进展

禽流感病毒的免疫研究进展禽流感病毒是一种严重威胁禽类健康和人类健康的病原体。
近年来,各国对禽流感病毒的免疫研究取得了一系列重要进展。
疫苗是预防禽流感的一种重要措施。
传统的禽流感疫苗主要采用灭活病毒或者鸡胚疫苗,虽然有一定的预防效果,但是由于疫苗生产过程复杂且昂贵,限制了疫苗的大规模应用。
近年来,研究人员使用基因工程技术,开发了重组疫苗。
重组疫苗是通过将禽流感病毒的关键基因片段进行重组,得到的疫苗具有更好的稳定性和免疫效果。
科学家利用重组DNA技术构建了禽流感病毒衣壳蛋白基因,并且通过植入毕赤酵母表达系统进行高效表达,获得了高度免疫原性的禽流感重组疫苗。
除了传统的疫苗方法,部分研究人员尝试使用核酸疫苗预防禽流感。
核酸疫苗是通过直接注射目标疫苗基因的核酸片段,利用机体的自身机制进行表达和免疫应答。
近年来,研究人员通过注射疫苗基因的DNA片段或者mRNA片段,成功预防了禽流感病毒感染。
相比传统疫苗,核酸疫苗制备简单、成本低,而且能够引发强烈的免疫应答,具有广阔的应用前景。
禽流感病毒的免疫研究还涉及到免疫辅助治疗。
研究人员发现,某些天然产物或者合成小分子化合物可以改善机体的免疫应答,提高对禽流感病毒的抗体水平。
研究人员发现,金藻蓝素可以有效抑制禽流感病毒的复制和侵染,提高机体免疫反应,从而预防感染。
研究人员还通过基因编辑技术(如CRISPR-Cas9)研究禽流感病毒的感染机制,发现了病毒与机体宿主之间的相互作用关系,从而为研究疫苗和药物开发提供了新的思路和目标。
禽流感病毒的免疫研究取得了诸多重要进展,包括重组疫苗的开发、核酸疫苗的应用、免疫辅助治疗的发现以及基因编辑技术的应用等。
这些研究成果为预防和控制禽流感病毒的传播提供了新的手段和理论基础,对于维护人民群众的生命健康具有重要意义。
浅析研究禽流感病毒检测方法相关进展

浅析研究禽流感病毒检测方法相关进展禽流感是一种高度传染性的疾病,对禽类产业造成了巨大的损失,同时对人类健康也带来了极大的威胁。
因此,准确、快速地检测禽流感病毒对于防控禽流感具有重要意义。
本文将对禽流感病毒检测方法相关进展进行浅析。
一、传统检测方法1. 细胞培养法细胞培养法是一种常用的传统禽流感病毒检测方法。
该方法将病毒接种到特定的细胞培养物中并进行培养,观察细胞的形态变化、病毒感染区域出现的细胞变形、塑像等特征来判断样本中是否存在禽流感病毒。
该方法具有操作简单、成本较低等优点,但需要一定时间进行细胞培养以便检测,且检测结果需要通过显微镜观察,此法的数据精度相对较低,不能对病毒毒株作差异分析。
此外,细胞培养法只能检测能够感染特定细胞系的禽流感病毒株,不能检测全部毒株。
2. 血清学方法血清学方法是利用血清学技术,检测血清中是否存在禽流感病毒特异性抗体或抗原的方法。
血清学方法具有操作方便、标本保存期长等优点,同时可对不同毒株作差异分析,且可以作为定量方法来测定病毒的抗体或抗原含量。
但是该方法的灵敏度相对较低,不能检测到病毒感染初期的病例;同时抗体响应不稳定,因此不能用于诊断急性感染,只能用于长期的流行病学监测。
二、分子生物学检测法随着现代分子生物学技术的不断发展,在禽流感病毒检测方面也出现了一系列基于分子生物学技术的新型检测方法,如PCR法、实时荧光定量PCR法(RT-PCR法)、LAMP法、核酸微芯片法等。
1. PCR法PCR法是指用聚合酶链反应技术,通过扩增目标病毒基因片段使其呈指数倍增长从而检测样本中的禽流感病毒。
PCR法具有闭管式系统、扩增特异性高、灵敏度高、快速检测等优点,但PCR法检测中存在假阳性、假阴性等误差,并且PCR扩增后的目的产物需要进行凝胶电泳分析,需要一定实验经验,操作相对较复杂。
RT-PCR法是在传统PCR法基础上,通过引入逆转录过程得到RNA模板进行扩增,从而实现对RNA病毒如禽流感病毒检测。
高致病性禽流感研究进展

作者单位:100052 北京,中国疾病预防控制中心病毒病预防控制所国家流感中心・综述・高致病性禽流感研究进展郭元吉 禽流感(Avian in fluenza,AI or bird flu)是禽流行性感冒的简称,它是指由禽流感病毒引起的一种动物传染病,常发生在禽,有时也发生在低等哺乳类动物,至今在人仅有偶发病例。
禽流感病毒(Avian in fluenza Virus,AI V),根据其对鸡致病性的不同分为高致病性、中致病性和低Π非致病性的,而不是对人而言。
高致病性的为H5和H7亚型病毒中一些毒株,中致病性的主要指H9N2和H6N8亚型毒株。
其他的毒株均为低Π非致病性的。
禽流感病毒不仅会给养禽、畜牧业带来灾难性的破坏,而且对公共健康也构成了严重威胁。
因此,禽流感的危害已引起世界各国普遍关注。
尤其自2003年以来,国内外媒体不断报道了人间禽流感事件,并自1997年以来,一些人一直认为高致病性禽H5N1流感病毒即将会造成世界性流感大流行而担忧,人类将面临1918年西班牙流感悲剧的重演。
同时我国内地近来人群中也出现了禽流感病Π死病例,因此,禽流感已成当今我国市民街头巷尾所议论的热点话题之一,少数市民有谈禽色变之感。
故有必要对高致病性禽H5N1流感研究的一些进展做个简要介绍。
1 流感病毒生态学研究的兴起流感病毒生态学是研究流感病毒与外界环境之间的关系,具体来讲是研究流感病毒在自然界中的分布、传播和生存方式,它如何引起流感疾病发生和流行给人类带来灾难,人类应如何和流感疾病作斗争的一门学科。
这门学科引起医学界的重视始于1957年,因那时甲2 (H2N2)亚型毒株突然出现并引起世界性流感大流行,该亚型毒株无论血凝素(H)还是神经氨酸酶(N)与人群中流行的甲1(H1N1)亚型毒株截然不同,显然不是由H1N1亚型毒株演变而来,而被认为其来源可能性很大与低等动物流感病毒有关,因此,世界卫生组织(WH O)立即建议世界各国开展流感病毒生态学研究,来弄清H2N2亚型毒株来源问题。
禽流感的研究进展
至坏死 ,脚鳞 出血;呼 吸 困难 、咳嗽 、打 喷嚏 、流 泪 。
初期两 眼流浆液 性带泡沫 的 分泌物 ,后期 流黄 白色脓性
分泌物 , 肉髯增 厚变硬 , 向两 侧开 张 ,呈 金鱼 头状 。也 有 的 出现抽 搐 ,头颈 后 扭 ,运 动 失 调 ,瘫 痪 等神 经 症 状 。如 不采取措 施 ,很 容易造 成疫情 扩散 、蔓延 。并且 病毒毒力还有变强 的可 。
先 要 搞清 楚 禽 流 感病 毒 的致病 机 制 ,对于 禽 流感 的危 害 。我们必须要有全面 、正确 、科学 的认识。
参考文献 【 l 】牟维东。王永 录.禽流感 的研 究进展.中国兽医科技【 J 】 .2 0 0 4 ,
3 4 ( 4 ) : 3 2 — 3 9 .
4 病理变化
3 . 2 急性型 表现 为突然发 病 ,体温 升高 ,可达4 2 ℃ 以 上 ;采食量 急剧 下降 ,头部 、鸡冠 和 肉髯肿胀 、出血甚
7 结语 目前 ,禽流 感 己给 世 界养 禽业 造 成 了巨大 的经济损 失,更重要 的是它 对人类 健康 也构 成 了极 大威胁 ,所 以 A I 的 防治工作 已经提 升到前 所 未有 的 公共 卫生学 高度。 A I 是一种 古老 的禽类传 染病 ,对 于人类又 是一个新 的课 题 。要高度警 惕禽 流感病 毒可 能发 生抗原 变异 ,所 以首
山东畜牧兽医
2 0 1 3 年第 3 4
禽流感 的研 究进展
穆平玲 ( 山东 省泰安市 岱岳区畜牧兽医 局 2 7 1 0 0 0 )
中图分类号 :¥ 8 5 8 . 3 1 文献标识码 ;A 文章编号: 1 0 0 7 . 1 7 3 3 ( 2 0 1 3 ) 0 2 . 0 0 6 0 - 0 2
H9亚型禽流感病毒变异的研究进展
H9亚型禽流感病毒变异的研究进展1. H9亚型禽流感病毒简介H9亚型禽流感病毒(H9N2)是一种常见的禽流感病毒,广泛存在于鸡、鸭、鹅等禽类中。
该病毒对家禽的感染具有高度传染性,且对人类具有一定的潜在传染性。
近年来,H9N2病毒发生了多次变异,引起了广泛的关注。
本文将介绍H9N2亚型禽流感病毒变异的最新研究进展。
2. H9N2亚型禽流感病毒变异的临床表现H9N2亚型禽流感病毒在家禽中引起了一系列临床表现,包括呼吸道炎症、消化道异常等。
在人类中,该病毒引起了轻度呼吸道感染,并偶尔导致重度肺部损伤和死亡。
近年来发现的新变异株显示出更高的传染性和致死率。
3. H9N2亚型禽流感病毒基因组变异H9N2亚型禽流感病毒基因组变异是其变异的重要基础。
研究发现,H9N2病毒的表面糖蛋白HA和NA基因发生了多次变异,导致了病毒的抗原性和传染性的改变。
此外,H9N2病毒内部基因片段的重组和变异也是其变异的重要原因。
4. H9N2亚型禽流感病毒与其他流感病毒亚型间的基因交换H9N2亚型禽流感病毒与其他流感病毒亚型之间存在着广泛而频繁的基因交换。
这种交换导致了新流行株的出现,增加了人类和动物之间传播的风险。
近年来发现H9N2与H7N9、H5N1等高致死性禽流感病毒亚型之间存在着多次基因交换事件。
5. H9N2亚型禽流感病毒对抗药物耐药性近年来,一些H9N2亚型禽流感株对抗药物出现耐药性。
这种耐药性不仅增加了治愈该类感染的难度,也增加了人类治愈其他高致死性禽流感病毒感染的难度。
因此,研发新的抗病毒药物对于控制H9N2亚型禽流感病毒的传播至关重要。
6. H9N2亚型禽流感病毒的传播途径H9N2亚型禽流感病毒主要通过飞沫传播途径在家禽间传播。
然而,近年来发现该病毒也可以通过空气传播和接触传播途径在家禽间和人类间传播。
这种多种传播途径增加了该病毒对人类健康的威胁。
7. H9N2亚型禽流感病毒变异对防控措施的影响H9N2亚型禽流感病毒变异增加了防控该类疾病的难度。
禽流感病毒的免疫研究进展
禽流感病毒的免疫研究进展禽流感病毒是一种具有较高毒性和传染性的病毒,可引起禽类和人类的严重疾病。
近年来,禽流感病毒的不断传播和变异给人类健康和禽类养殖业造成了严重威胁。
为了更好地预防和控制禽流感病毒的传播,科学家们进行了大量的免疫研究工作,取得了一系列重要的进展。
一、禽流感病毒的免疫研究现状禽流感病毒的免疫研究主要包括疫苗研发、免疫应答机制、免疫诊断技术等多个方面。
在疫苗研发方面,科学家们通过不断地改良疫苗的配方和制备技术,研发了多种禽流感病毒疫苗,包括灭活疫苗、减毒活疫苗、基因重组疫苗等,这些疫苗在禽类和人类中均表现出较好的保护效果。
在免疫应答机制方面,研究者们发现了禽流感病毒感染后的免疫应答机制,包括细胞免疫和体液免疫等,为深入理解机体对病毒的免疫应答提供了重要线索。
在免疫诊断技术方面,研究者们开发了多种高灵敏度和高特异性的禽流感病毒检测技术,包括PCR技术、ELISA技术、免疫荧光技术等,为疾病的早期诊断和流行病学调查提供了关键支持。
二、禽流感病毒疫苗研发的进展疫苗是预防和控制禽流感病毒传播的关键手段之一。
近年来,科学家们对禽流感病毒疫苗的研发进行了大量工作,取得了一系列重要的进展。
研究者们通过对禽流感病毒的基因结构和致病机制进行深入研究,不断优化疫苗的配方和制备技术,开发了多种新型的禽流感病毒疫苗。
基因重组疫苗通过将禽流感病毒的关键抗原基因导入其他病毒载体,使之表达禽流感病毒的抗原蛋白,从而激发机体产生免疫应答,具有较好的保护效果。
科学家们通过在传统疫苗配方中添加佐剂(adjuvant)等辅助成分,增强疫苗的免疫原性,提高疫苗的保护效果。
研究者们还不断改进疫苗的制备工艺,提高了疫苗的稳定性和安全性,使之更适合在大规模禽类养殖中使用。
这些工作为禽流感病毒疫苗的研发提供了重要技术支持,为预防和控制禽流感病毒的传播奠定了坚实的基础。
三、禽流感病毒免疫应答机制研究的进展禽流感病毒感染后,机体会产生多种免疫应答,包括细胞免疫和体液免疫等,这些免疫应答对于清除病毒、保护机体免受感染起着关键作用。
禽流感的研究进展
前言禽流感是由A型流感病毒引起鸡、火鸡、鸭、鹅、鹌鹑等家禽的传染病,同时也是一种人畜共患病、我国将其列为一类动物传染病[1]。
早在1878年,该病就在意大利的流行,当时叫“鸡瘟”。
1981年在美国马里兰州召开的第一届国际禽流感学术讨论会上废除了“鸡瘟”这一病名,改称高致病性禽流行性感冒。
由基于该病在经济上的重要性,尤其是考虑到该病感染人的巨大威胁,对该病毒的基础研究显得迫在眉睫。
目前,与其他病毒性疾病相同,禽流感的防制尚无特别有效的方法,接种疫苗是预防禽流感发生与传播的最有效手段。
随着禽流感病毒多种亚型的发现,以及基础免疫学理论、分子生物学及生物技术的发展,科研人员已研发出了针对禽流感的数种疫苗。
除了应用较为普遍的全病毒灭活疫苗外,对多种新型疫苗的研发也有了较大的进展。
本文对目前国内外几种主要禽流感疫苗进行简要综述。
1 病原禽流感病毒(AIV)属于正黏病毒科, 流感病毒属。
一般多形性,直径为80-120纳米,也可见有同样直径的丝状形态,长短不一。
禽流感病毒是分节段的单股负链RNA病毒,共有8个独立的RNA片段,每个RNA片段都以不同的核酸蛋白复合体形式存在。
这8个片段编码10种蛋白,其中有8种结构蛋白, 2种非结构蛋白。
病毒表面有10-12纳米的密集钉状物或纤突覆盖,病毒囊膜内有螺旋形核衣壳。
两种不同形状的表面钉状物是HA(棒状三聚体)和NA(蘑菇形四聚体)。
禽流感病毒粒子大约由0.8%-1.1%的RNA,70%-75%的蛋白质,20%-24%的脂质和5%-8%的碳水化合物组成。
病毒蛋白包括HA蛋白、NA蛋白NP蛋白、非结构蛋白、M蛋白、聚合酶蛋白。
2 禽流感病毒的分类及致病性2.1 禽流感病毒的分类禽流感病毒(AIV)可按病毒粒子表面的血凝素和神经氨酸酶的糖蛋白进行分类,分为15个H亚型和9个N亚型,其血清型有H1N1、H4N2、H5N1、H5N2、H7N2、H9N2 等。
其中最受关注的是含H5和H7血凝素的AIV。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
禽流感的研究进展谭飞虎,刁小龙,朱玉娟,张尚弟,张连团,祁越,刘卫军,吴頔甘肃农业大学生命科学技术学院,甘肃兰州(730070)E-mail:tanfeihu521@摘要:禽流感(Avian Influenza,AI),1878年首次发现与意大利,目前在美洲、非洲、亚洲、欧洲一些国家广泛发生。
禽流感(AI)是由是由A型禽流感病毒(av ian in fluenza virus,AIV) 引起的禽类烈性传染病,主要在禽类中传播。
AI不仅给世界养禽业造成了巨大的经济损失,而且对人类健康和生命安全构成了严重威胁。
它可通过多种途径传播,且临床症状多样。
本文主要从AIV的结构特征,致病机理,防治措施等方面论述了AIV 的研究进展关键词:禽流感,结构特征,致病机理引言禽流感(Avian Influenza,AI)又名真性鸡瘟、欧洲鸡瘟,1878年首次发现于意大利。
禽流感是由正粘病毒科甲型流感病毒属的A型流感病毒引起的禽类感染和疾病综合症。
禽流感病毒(Avian Influenza Virus,AIV)亚型众多,变异频繁,根据病毒的血凝素(Hemagglutinin, HA)和神经氨酸酶(Neuraminidase,NA)的差异,将A型流感病毒分为不同的血清型,目前已发现16种HA亚型和9种NA亚型。
其分子机制涉及点突变引起的抗原漂移(Antiyentil drife)和不同亚型毒株同源性产生新亚型所引起的抗原转变(Antiyentic shift)。
该病在临床上所表现的症状变化从亚临床感染,重轻度的呼吸系统疾病,产蛋下降到严重的致死性疾病,其严重程度取于病毒的毒株以及被感染禽的种类,日龄和有无并发症等因素。
禽流感病毒仅有H5和H7了两个血清型可引起高致病力禽流感(High Pathogentic Avian Influenza,HPAIV),以突然死亡和高死率为特征,在火鸡和鸡种引起的危害最为严重,常可导致感染鸡群的全军覆没,造成严重的经济损失,所以被国际兽医局列为A类烈性传染病。
1 流感病毒的分类由于禽流感造成的损失巨大,引起国际社会的广泛关注,并对其分类进行了更为详尽的研究。
根据国际病毒分类学(ICTV)第六次分类报告(1995年)规定,正粘病毒科分3个病毒属:A,B型病毒属(Influenza Virus),A,B,C型流感病毒属(Influenza Virus C),类托高土病毒属(Thogotoline Virus),各属的代表中分别为A型流感病毒,C型流感病毒,托高土病毒,但是习惯上仍将A,B,C型流感病毒都归属亚流感病毒属的3个型[1]。
这3个型的流感病毒没有共同的抗原,在内部核蛋白和基质蛋白的抗原性上有很大差异,在致病性和基因结构上也有所不同,其中的A型流感病毒感染的范围最大,危害最大,它可以感染人,猪,马,海洋哺乳动物,禽类等,是人和畜禽呼吸道疾病的重要病原。
而B,C型流感病毒却只能感染人,所以禽流感可感染人类,引起以呼吸系统症状为主的急性传染病,部分患者可发展为全身多脏器功能衰竭而死亡。
2005年1月新英格兰医学杂志上确认了第一例在人与人之间传播的禽流感病例,由于猪既有人类病毒的受体,又具有禽类病素的受体,所以猪可以同时感染两种病毒,并发生重配进而感染人类,这是禽流感病毒传染的最可能途径[ 2 ]。
-1-2 禽流感的流行病史禽流感分为非致病性、低致病性、高致病性禽流感三大类,前两类发病症状较轻,对家禽生命威胁不大,属于温和型禽流感(Mildly Pathogentic Avian Influenza,MPHIV)但高致病性AIV(Highly Pathogentic Avian Influenza Vinus ,HPAIV)一旦暴发,发病率和死亡率都很高,感染的鸡群常常是全军覆没。
[ 3 ]自1878年Pereoncito首次报道意大利鸡群爆发禽流感至今的又一百多年的历史,禽流感呈广泛性传播和全国球性分布,世界范围内许多国家和地区,包括美国、英国、澳大利亚、爱尔兰、比利时、英格兰、荷兰、法国、加拿大、中国等均有禽流感爆发流行的报道,给养禽业造成了很大的经济损失。
禽流感病毒广泛分布于世界范围内的许多家禽,包括鸡、火鸡、珍珠鸡、石鸡、鹧鸪、鸵鸟、鸭、雉、鹌鹑、鸽、鹅和野禽(鸭、鹅、燕鸥、天鹅、鹭、海鸠、海鹦和鸥)。
其中,禽流感对家养的鸡和火鸡危害最为严重,近几年来,感染鸭也出现大量的死亡。
特别自1959年英格兰H5N1,1983年4月美国宾夕法尼亚州发生禽流感,初期发病即死亡较低,未受到足够的重视,病情未得到完全的控制,至半年后病毒突变为HPAIV,此刻美国政府采取紧急措施,共淘汰了1700万羽家禽,耗资8500万元,而消费者更是支出了3.49亿美元用于补贴生产者的损失。
1993年秋墨西哥发生禽流感,在全国蔓延,鸡群死亡率逐渐上升,疫情直到1996年才得以控制,淘汰1800万羽鸡,3000万羽鸡被封锁1.3亿羽鸡紧急接种疫苗。
直接经济损失达10亿美元。
1997年3月香港爆发HPAIV,特区政府耗资1亿港币,扑杀150万只鸡,并出现18人感染禽流感,其中6人死亡,这是世界上首次发生禽流感突破中间屏蔽,直接感人并致死的事件。
2001年香港再度爆发,港政府又出资8000万港币,扑杀250万只鸡。
2003年3—4期间,禽流感袭击了荷兰家禽饲养业,其农业部淘汰了2500万只家禽,几乎占荷兰整个养禽业总量的1/4,损失超过1亿欧元。
2003年底,在韩国首先报道发生禽流感,随后在日本,台湾,越南,泰国等东南亚国家爆发了HPAIV,并有23人因为禽流感而死亡。
自1997年“香港禽流感事件之后”,世界各国将禽流感的研究提升为重点,并采取一系列措施防止疾病的传播。
[ 4 ]3 禽流感的形态特征(图1)[ 5 ]-2-图1 禽流感病毒结构示意图禽流感病毒(AI)一般为球形(图2)[ 6 ],直径为80~120纳米,但也常有同样直径的丝状形态,长短不一。
病毒表面有10~12纳米的密集钉状物或纤突覆盖,病毒囊膜内有螺旋形核衣壳。
两种不同形状的表面钉状物是HA(棒状三聚体)和NA(蘑菇形四聚体)。
图2 H5N1的电镜照片禽流感病毒结构示意图血凝素(Hemagglutinin, HA) 是典型的Ⅰ型糖蛋白,即羧基端在囊膜内氨基端在囊膜外.其一级结构含有信号肤(前导序列)、胞浆域、跨膜域、胞外域四个结构域。
信号肤位于HA的氨基端,由16个疏水氨基酸组成,紧跟其后的是HAI部分,由300多个氨基酸组成,羧基端是HA2.由200多个氨基酸组成。
HA在细胞内质网内合成,合成后由内质网运送到高尔基体,在运送过程中经过不断修饰,由二硫键连接并折叠成三聚体,最后到达细胞膜,嵌入胞膜的脂质双层,病毒出芽释-3-放时被带到病毒囊膜上。
神经氨酸酶(Neuraminidase,NA) 属于二类糖蛋白,即氨基端在囊膜内而羧基端在囊膜外,与HA正好相反。
其一级结构包括4个区域,分别为氨基端胞浆尾,非极性跨膜区,颈部和头部序列。
HA是AIV的主要表面抗原,成熟形式是具有催化活性的四聚体,能将唾液酸从蛋白和脂蛋白中切开。
它的酶活性的催化中心位于头部顶端,呈凹陷状,每个NA单体都有一个,所以每个NA都有4个催化中心。
催化中心由9个酸性氨基酸残基、6个碱性氨基酸残基和3个疏水性残基组成,这些氨基酸残基都很保守。
禽流感病毒基因组由8个负链的单链RNA片段组成。
这8个片段编码10个病毒蛋白,其中8个是病毒粒子的组成成分(HA、NA、NP、M1、M2、PB1、PB2和PA),另两个是分子质量最小的RNA片段,编码两个非结构蛋白——NS1和NS2。
NS1与胞浆包含体有关,但对NS1和NS2的功能目前尚不清楚。
现在已经获得了包括H3、H5和H7在内的几个禽流感病毒亚型HA基因的全部序列以及所有14个血凝素基因的部分序列。
核蛋白(Nucleoprotein,NP) 是一种单体磷酸化的多肽,分子量60kD,是构成核衣壳的主要蛋白成分。
核蛋白具有型特异性,根据其抗原性的不同,可将流感病毒分为A, B, C三型。
NP的主要功能是使病毒的RNA形成RNP复合体,以此来稳定RNA,使其免受seRNA 的作用.另外,NP还在病毒的基因表达和复制过程中扮演一定角色。
基质蛋白(Matixp roteins,M)是病毒粒子中含量最大的蛋白质,占病毒粒子总量的30%-40%。
流感病毒有两种基质蛋白,即M1和M2。
M1由252个氨基酸组成,分子量260,是病毒的主要结构蛋白,占病毒蛋白总量的40%。
它位于病毒囊膜的类脂双层内侧,核衣壳的外侧,是维持病毒形态的结构蛋白。
M2 由 97 个氨基酸组成,分子量大约为150,M 2也是一种小跨膜蛋白,主要以四聚体的形式存在于感染细胞的细胞膜上,另外,也是病毒囊膜上的蛋白组分之一。
它的主要作用是,在HA合成过程中作为粒子通道控制高尔基体内的pH,在病毒脱壳时酸化病毒粒子的内部环境。
另外,在病毒的装配过程中也起作用。
聚合酶(Polymerase) 由3种成分组成,它们是PB1、PB2、PA,这3种蛋白质是病毒粒子中分子量最大的蛋白质,分别为PB1 960、 PB2 870、 PA 850,这3种蛋白质的氨基酸序列上有一共同特点,都含有一特定的亲核序列区,其作用是使这几种蛋白质在胞浆合成后能顺利进入细胞核。
非结构蛋白(Nonstructuralp rotein ,NS)分为两种NS1和NS2,分子量分别为25kD和12kD,由片段8编码。
NS蛋白的功能还没有搞清楚,可能在病毒的复制过程中起一定的作用。
[ 7 ]4 禽流感病毒的致病机理:禽流感病毒能够感染许多种类的家禽和野禽,并通过在畜禽体内的大量复制而引起疾病。
4.1 AIV的复制机制(图3)[ 8 ]:-4-图3 禽流感病毒的复制机理首先,AIV依靠其表面的血凝素蛋白吸附到宿主细胞的唾液酸受体上,然后通过受体介导的内吞作用进入细胞,在吞噬小体低PH条件下,HA结构发生变化,蛋白酶将HA裂解为HA1和HA2,这一变化是病毒囊膜与内吞体膜融合和病毒感染细胞的先决条件。
病毒囊膜与吞噬小体发生膜融合后,病毒核衣壳进入宿主的细胞核中,在那里以病毒RNA为模板由病毒的转录酶复合体合成mRNA,在细胞核中产生的6个单顺反子RNA被转运到细胞质中,并翻译出相应的蛋白:HA、NA、NP、PB1、PB2和PA。
HA和NA蛋白在粗面内质网被糖基化,在高尔基体内进行剪切后转运到表面,植入细胞膜中。
NS和M蛋白的mRNA通过剪切分别产生编码NS1、NS和M1、M2的两个mRNA。
病毒RNA在宿主细胞核内同时发生复制过程,以病毒RNA为模板先合成正链互补RNA(cRNA),然后再以cRNA为模板合成病毒RNA。