高考数学第一轮复习专题训练

合集下载

高考数学一轮复习排列与组合专题练习及答案

高考数学一轮复习排列与组合专题练习及答案

高考数学一轮复习排列与组合专题练习及答案高考数学一轮复习排列与组合专题练习及答案一、填空题1.市内某公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数是________.[解析] 由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共322=12种;如果是第二种偶奇奇的情况,个位(3种情况),十位(2种情况),百位(不能是0,1种情况),共321=6种,因此总共12+6=18种情况.[答案] 182.若从1,2,3,,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.[解析] 满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C=5(种);二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有CC=60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种,所以满足条件的`取法共有5+60+1=66(种).[答案] 663.(2014福州调研)若一个三位数的十位数字比个位数字和百位数字都大,称这个数为伞数.现从1,2,3,4,5,6这六个数字中取3个数,组成无重复数字的三位数,其中伞数有________个.[解析] 分类讨论:若十位数为6时,有A=20(个);若十位数为5时,有A=12(个);若十位数为4时,有A=6(个);若十位数为3时,有A=2(个).因此一共有40个.[答案] 404.一个平面内的8个点,若只有4个点共圆,其余任何4点不共圆,那么这8个点最多确定的圆的个数为________.[解析] 从8个点中任选3个点有选法C种,因为有4点共圆所以减去C种再加1种,共有圆C-C+1=53个.[答案] 535.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有________种.[解析] 分两种情况:选2本画册,2本集邮册送给4位朋友有C=6(种)方法;选1本画册,3本集邮册送给4位朋友有C=4(种)方法,不同的赠送方法共有6+4=10(种).[答案] 106.用数字1,2,3,4,5,6六个数字组成一个六位数,要求数字1,2都不与数字3相邻,且该数字能被5整除,则这样的五位数有________个.[解析] 由题可知,数字5一定在个位上,先排数字4和6,排法有2种,再往排好的数字4和6形成的3个空位中插入数字1和3,插法有6种,最后再插入数字2,插法有3种,根据分步乘法计数原理,可得这样的六位数有263=36个.[答案] 367.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法有________种.[解析] 第一类,含有1张红色卡片,共有不同的取法CC=264(种);第二类,不含有红色卡片,共有不同的取法C-3C=220-12=208(种).由分类计数原理知不同的取法有264+208=472(种).[答案] 4728.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的三位数共有________个.[解析] 在1,2,3,4,5这五个数字中有3个奇数,2个偶数,要求三位数各位数字之和为偶数,则两个奇数一个偶数,符合条件的三位数共有CCA=36(个).[答案] 36二、解答题9.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是多少?(用数字作答).[解] 分三类:选1名骨科医生,则有C(CC+CC+CC)=360(种);选2名骨科医生,则有C(CC+CC)=210(种);选3名骨科医生,则有CCC=20(种).骨科、脑外科和内科医生都至少有1人的选派方法种数是360+210+20=590种.10.四个不同的小球放入编号为1,2,3,4的四个盒子中.(1)若每个盒子放一球,则有多少种不同的放法?(2)恰有一个空盒的放法共有多少种?[解] (1)每个盒子放一球,共有A=24(种)不同的放法;(2)法一先选后排,分三步完成.第一步:四个盒子中选一只为空盒,有4种选法;第二步:选两球为一个元素,有C种选法;第三步:三个元素放入三个盒中,有A种放法.故共有4CA=144(种)放法.法二先分组后排列,看作分配问题.第一步:在四个盒子中选三个,有C种选法;第二步:将四个球分成2,1,1三组,有C种放法;第三步:将三组分到选定的三个盒子中,有A种放法.故共有CCA=144种放法.。

高考数学一轮复习专题训练—随机抽样

高考数学一轮复习专题训练—随机抽样

随机抽样考纲要求1.理解随机抽样的必要性和重要性;2.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.会用随机抽样的基本方法解决一些简单的实际问题.知识梳理1.简单随机抽样(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样. (2)最常用的简单随机抽样的方法:抽签法和随机数法. 2.系统抽样(1)定义:当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样. (2)系统抽样的操作步骤假设要从容量为N 的总体中抽取容量为n 的样本. ①先将总体的N 个个体编号;②确定分段间隔k ,对编号进行分段,当N n (n 是样本容量)是整数时,取k =Nn (否则,先剔除一些个体);③在第1段用简单随机抽样确定第一个个体编号l (l ≤k );④按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),……,依次进行下去,直到获取整个样本. 3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样. (2)应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.1.不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.2.系统抽样一般也称为等距抽样,入样个体的编号相差分段间隔k的整数倍.3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)简单随机抽样每个个体被抽到的机会不一样,与先后有关.()(2)系统抽样在起始部分抽样时采用简单随机抽样.()(3)分层抽样中,每个个体被抽到的可能性与层数及分层有关.()(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.()答案(1)×(2)√(3)×(4)×2.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是() A.总体B.个体C.样本的容量D.从总体中抽取的一个样本答案 A解析由题目条件知,5 000名居民的阅读时间的全体是总体;其中每1名居民的阅读时间是个体;从5 000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.3.一个公司共有N名员工,下设一些部门,要采用等比例分层抽样的方法从全体员工中抽取样本容量为n的样本,已知某部门有m名员工,那么从该部门抽取的员工人数是________.答案nm N解析 每个个体被抽到的概率是n N ,设这个部门抽取了x 个员工,则x m =n N ,∴x =nmN.4.(2020·上饶一模)总体由编号为00,01,02,…,48,49的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第3个个体的编号为( ) 附:第6行至第9行的随机数表如下: 2635 7900 3370 9160 1620 3882 7757 4950 3211 4919 7306 4916 7677 8733 9974 6732 2748 6198 7164 4148 7086 2888 8519 1620 7477 0111 1630 2404 2979 7991 9683 5125 A .3 B .16 C .38 D .20答案 D解析 按随机数表法,从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,超出00~49及重复的不选,则编号依次为33,16,20,38,49,32,…,则选出的第3个个体的编号为20,故选D.5.(2021·郑州调研)某校有高中生1 500人,现采用系统抽样法抽取50人作问卷调查,将高一、高二、高三学生(高一、高二、高三分别有学生495人、490人、515人)按1,2,3,…, 1 500编号,若第一组用简单随机抽样的方法抽取的号码为23,则所抽样本中高二学生的人数为( ) A .15 B .16 C .17 D .18答案 C解析 采用系统抽样法从1 500人中抽取50人,所以将1 500人平均分成50组,每组30人,并且在第一组抽取的号码为23,所以第n 组抽取的号码为a n =23+(n -1)×30=30n -7,而高二学生的编号为496到985,所以496≤30n -7≤985,又n ∈N *,所以17≤n ≤33,则共有17人,故选C.6.(2018·全国Ⅲ卷)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________. 答案 分层抽样解析 因为不同年龄段的客户对公司的服务评价有较大差异,所以需按年龄进行分层抽样,才能了解到不同年龄段的客户对公司服务的客观评价.考点一 简单随机抽样及其应用1.下面的抽样方法是简单随机抽样的是( )A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B .某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C .某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D .用抽签方法从10件产品中选取3件进行质量检验 答案 D解析 A ,B 不是简单随机抽样,因为抽取的个体间的间隔是固定的;C 不是简单随机抽样,因为总体中的个体有明显的层次;D 是简单随机抽样.故选D.2.用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是( ) A.110,110 B .310,15C.15,310 D .310,310答案 A解析 在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为110,故选A.3.(2021·南昌一模)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08 B.07 C.02 D.01答案 D解析从第1行第5列和第6列组成的数65开始由左到右依次选出的数为08,02,14,07,01,所以第5个个体编号为01.感悟升华 1.简单随机抽样需满足:(1)被抽取的样本总体的个体数有限;(2)逐个抽取;(3)是不放回抽取;(4)是等可能抽取.2.简单随机抽样常有抽签法(适用于总体中个体数较少的情况)、随机数法(适用于个体数较多的情况).考点二系统抽样及其应用【例1】(1)(2021·太原调研)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为()A.15 B.18 C.21 D.22(2)(2019·全国Ⅰ卷)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生(3)中央电视台为了解观众对某综艺节目的意见,准备从502名现场观众中抽取10%进行座谈,现用系统抽样的方法完成这一抽样,则在进行分组时,需剔除________个个体,抽样间隔为________.答案 (1)C (2)C (3)2 10解析 (1)由已知得间隔数为k =244=6,则抽取的最大编号为3+(4-1)×6=21.(2)根据题意,系统抽样是等距抽样, 所以抽样间隔为1 000100=10.因为46除以10余6,所以抽到的号码都是除以10余6的数,结合选项知应为616.故选C. (3)把502名观众平均分成50组,由于502除以50的商是10,余数是2,所以每组有10名观众,还剩2名观众,采用系统抽样的方法抽样时,应先用简单随机抽样的方法从502名观众中抽取2名观众,这2名观众不参加座谈;再将剩下的500名观众编号为1,2,3,…,500,并均匀分成50段,每段含50050=10个个体.所以需剔除2个个体,抽样间隔为10.感悟升华 1.如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn ,否则,可随机地从总体中剔除余数,然后按系统抽样的方法抽样,特别注意,每个个体被抽到的机会均是nN .2.系统抽样中依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.【训练1】 (1)(2021·衡水调研)衡水中学高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________. (2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________. 答案 (1)45 (2)4解析 (1)分组间隔为648=8,∵在第一组中随机抽取的号码为5,∴在第6组中抽取的号码为5+5×8=45.(2)依题意,可将编号为1~35号的35个数据分成7组,每组有5个数据,从每组中抽取一人.成绩在区间[139,151]上共有20个数据,分在4个小组内,每组抽取1人,共抽取4人. 考点三 分层抽样及其应用角度1 求某层入样的个体数【例2】 某电视台在网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有 20 000人,其中各种态度对应的人数如下表所示:最喜爱 喜爱 一般 不喜欢 4 8007 2006 4001 600为此要进行分层抽样,那么在分层抽样时,每类人中应抽取的人数分别为( ) A .25,25,25,25 B .48,72,64,16 C .20,40,30,10 D .24,36,32,8答案 D解析 法一 因为抽样比为10020 000=1200,所以每类人中应抽取的人数分别为4 800×1200=24,7 200×1200=36,6 400×1200=32,1 600×1200=8.法二 最喜爱、喜爱、一般、不喜欢的比例为4 800∶7 200∶6 400∶1 600=6∶9∶8∶2,所以每类人中应抽取的人数分别为66+9+8+2×100=24,96+9+8+2×100=36,86+9+8+2×100=32,26+9+8+2×100=8.角度2 求总体或样本容量【例3】 (1)(2021·东北三省四校联考)某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为n 的样本,其中高中生有24人,那么n 等于( ) A .12B .18C .24D .36(2)(2020·西安调研)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件. 答案 (1)D (2)1 800解析 (1)根据分层抽样方法知n 960+480=24960,解得n =36.(2)由题设,抽样比为804 800=160.设甲设备生产的产品为x 件,则x60=50,∴x =3 000.故乙设备生产的产品总数为4 800-3 000=1 800.感悟升华 1.求某层应抽个体数量:按该层所占总体的比例计算.2.已知某层个体数量,求总体容量或反之求解:根据分层抽样就是按比例抽样,列比例式进行计算.3.分层抽样的计算应根据抽样比构造方程求解,其中“抽样比=样本容量总体容量=各层样本数量各层个体数量”.【训练2】 (1)(2020·郴州二模)已知我市某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为( )A .240,18B .200,20C .240,20D .200,18(2)(2021·合肥模拟)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种,10种,30种,20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是________. 答案 (1)A (2)6解析 (1)样本容量n =(250+150+400)×30%=240,抽取的户主对四居室满意的人数为150×30%×40%=18.(2)抽样比为2040+10+30+20=15,则抽取的植物油类种数是10×15=2,抽取的果蔬类食品种数是20×15=4,所以抽取的植物油类与果蔬类食品种数之和是2+4=6.A 级 基础巩固一、选择题1.(2020·兰州二模)某学校为响应“平安出行”号召,拟从2 019名学生中选取50名学生加入“交通志愿者”,若采用以下方法选取:先用简单随机抽样方法剔除19名学生,剩下的2 000名再按照系统抽样的方法抽取,则每名学生入选的概率( ) A .不全相等 B .均不相等C .都相等,且为140D .都相等,且为502 019答案 D解析 先用简单随机抽样方法剔除19名学生,剩下的2 000名再按照系统抽样的方法抽取,则每名学生入选的概率相等,且为p =502 019,故选D. 2.(2021·永州模拟)现从已编号(1~50)的50位同学中随机抽取5位以了解他们的数学学习状况,用选取的号码间隔一样的系统抽样方法确定所选取的5位同学的编号可能是( ) A .5,10,15,20,25 B .3,13,23,33,43 C .1,2,3,4,5 D .2,10,18,26,34答案 B解析 抽样间隔为505=10,只有选项B 符合题意.3.(2020·长春一模)完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.宜采用的抽样方法依次是( ) A .①简单随机抽样,②系统抽样 B .①分层抽样,②简单随机抽样 C .①系统抽样,②分层抽样 D .①②都用分层抽样 答案 B4.在一个容量为N 的总体中抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( ) A .p 1=p 2<p 3 B .p 2=p 3<p 1 C .p 1=p 3<p 2 D .p 1=p 2=p 3 答案 D解析 由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等,故选D. 5. (2021·襄阳联考)如图是调查某学校高三年级男女学生是否喜欢数学的等高条形图,阴影部分的高表示喜欢数学的频率.已知该年级男、女生各500名(所有学生都参加了调查),现从所有喜欢数学的学生中按分层抽样的方式抽取32人,则抽取的男生人数为( )A .16B .32C .24D .8答案 C解析 由题中等高条形图可知喜欢数学的女生和男生的人数比为1∶3,,所以抽取的男生人数为24.故选C.6.某中学400名教师的年龄分布情况如图,现要从中抽取40名教师作样本,若用分层抽样方法,则40岁以下年龄段应抽取( )A .40人B .200人C .20人D .10人答案 C解析 由图知,40岁以下年龄段的人数为400×50%=200,若采用分层抽样应抽取200×40400=20(人).7.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A .50 B .40 C .25 D .20答案 C解析 由系统抽样的定义知,分段间隔为1 00040=25.8.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为( )A .800双B .1 000双C .1 200双D .1 500双答案 C解析 因为a ,b ,c 成等差数列,所以2b =a +c ,即第二车间抽取的产品数占抽样产品总数的13,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的13,即为1 200双皮靴. 二、填空题9.某单位在岗职工共620人,为了调查工人用于上班途中的时间,决定抽取62名工人进行调查,若采用系统抽样方法将全体工人编号等距分成62段,再用简单随机抽样法得到第1段的起始编号为4,则第40段应抽取的个体编号为________. 答案 394解析 将620人的编号分成62段,每段10个编号,按系统抽样,所抽取工人编号成等差数列,因此第40段的编号为4+(40-1)×10=394.10.假设要考察某公司生产的500克袋装牛奶的三聚氰胺是否超标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,将800袋牛奶按000,001,…,799进行编号,若从随机数表第7行第8列的数开始向右读,则得到的第4个样本个体的编号是________(下面摘取了随机数表第7行至第9行).答案 068解析 由随机数表知,前4个样本的个体编号分别是331,572,455,068.11.某企业三月中旬生产A ,B ,C 三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 的产品数量是________件. 答案 800解析 设样本容量为x ,则x3 000×1 300=130,∴x =300.∴A 产品和C 产品在样本中共有300-130=170(件). 设C 产品的样本容量为y ,则y +y +10=170,∴y =80. ∴C 产品的数量为3 000300×80=800(件).12.某校高三年级共有30个班,学校心理咨询室为了了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取5个班进行调查,若抽到的编号之和为75,则抽到的最小的编号为________. 答案 3解析 系统抽样的抽取间隔为305=6.设抽到的最小编号为x ,则x +(6+x )+(12+x )+(18+x )+(24+x )=75,所以x =3.B 级 能力提升13.我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( ) A .104人 B .108人C .112人D .120人答案 B解析 由题意知,抽样比为 3008 100+7 488+6 912=175,所以北乡遣175×8 100=108(人).14.下列抽取样本的方式属于简单随机抽样的个数为( ) ①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里. ③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛. A .0 B .1 C .2 D .3答案 A解析 ①不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的;②不是简单随机抽样.因为它是有放回抽样;③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样.因为不是等可能抽样.故选A.15.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数减少1人,在采用系统抽样时,需要在总体中先剔除2个个体,则n =________. 答案 18解析 总体容量为6+12+18=36,当样本容量为n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n -1)时,总体容量剔除以后是34人,系统抽样的间隔为34n -1,因为34n -1必须是整数,所以n 只能取18,即样本容量n =18.16.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定:如果在第1组随机抽取的号码为m,那么在第k组(k≥2)中抽取的号码个位数字与m+k的个位数字相同,若m=8,则k的值为________,在第8组中抽取的号码是________.答案876解析由题意知m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.。

高考数学一轮复习专题训练—直线、平面垂直的判定与性质

高考数学一轮复习专题训练—直线、平面垂直的判定与性质

直线、平面垂直的判定与性质考纲要求1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.知识梳理1.直线与平面垂直 (1)直线和平面垂直的定义如果一条直线l 与平面α内的任意直线都垂直,就说直线l 与平面α互相垂直. (2)判定定理与性质定理文字语言图形表示符号表示判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫l ⊥al ⊥b a ∩b =O a ⊂αb ⊂α⇒l ⊥α 性质定理两直线垂直于同一个平面,那么这两条直线平行⎭⎬⎫a ⊥αb ⊥α⇒a ∥b(1)定义:一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是直角;一条直线和平面平行或在平面内,则它们所成的角是0°的角. (2)范围:⎣⎡⎦⎤0,π2. 3.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角;(2)二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.(3)二面角的范围:[0,π]. 4.平面与平面垂直 (1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面经过另一个平面的一条垂线,则这两个平面互相垂直⎭⎬⎫l ⊥αl ⊂β⇒α⊥β 性质定理如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎪⎬⎪⎫α⊥βα∩β=al ⊥a l ⊂β⇒l ⊥α1.三个重要结论(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.2.使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”. 3.三种垂直关系的转化线线垂直判定定理性质线面垂直判定定理性质定理面面垂直诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( )(2)垂直于同一个平面的两平面平行.()(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.()(4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.()答案(1)×(2)×(3)×(4)×解析(1)直线l与平面α内的无数条直线都垂直,则有l⊥α或l与α斜交或l⊂α或l∥α,故(1)错误.(2)垂直于同一个平面的两个平面平行或相交,故(2)错误.(3)若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误.(4)若平面α内的一条直线垂直于平面β内的所有直线,则α⊥β,故(4)错误.2.已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n答案 C解析由题意知,α∩β=l,所以l⊂β,因为n⊥β,所以n⊥l.3.在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)若P A=PB=PC,则点O是△ABC的________心.(2)若P A⊥PB,PB⊥PC,PC⊥P A,则点O是△ABC的________心.答案(1)外(2)垂解析(1)如图1,连接OA,OB,OC,OP,在Rt△POA,Rt△POB和Rt△POC中,P A=PB=PC,所以OA=OB=OC,即O为△ABC的外心.图1(2)如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.因为PC⊥P A,PB⊥PC,P A∩PB=P,所以PC⊥平面P AB,又AB⊂平面P AB,所以PC⊥AB,因为PO⊥AB,PO∩PC =P,所以AB⊥平面PGC,又CG⊂平面PGC,所以AB⊥CG,即CG为△ABC边AB上的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.图24.(2021·日照检测)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析m⊂α,m⊥β⇒α⊥β,反过来,若m⊂α,α⊥βD m⊥β(m∥β或m与β斜交),所以“α⊥β”是“m⊥β”的必要不充分条件.5.(2021·西安联考)已知AB是圆柱上底面的一条直径,C是上底面圆周上异于A,B的一点,D为下底面圆周上一点,且AD⊥圆柱的底面,则必有()A.平面ABC⊥平面BCD B.平面BCD⊥平面ACDC.平面ABD⊥平面ACD D.平面BCD⊥平面ABD答案 B解析因为AB是圆柱上底面的一条直径,所以AC⊥BC,又AD垂直于圆柱的底面,所以AD⊥BC,因为AC∩AD=A,所以BC⊥平面ACD.由于BC⊂平面BCD.所以平面BCD⊥平面ACD.6.(2018·全国Ⅰ卷)在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8 B.6 2 C.8 2 D.8 3答案 C解析连接BC1,因为AB⊥平面BB1C1C,所以∠AC1B=30°,AB⊥BC1,所以△ABC1为直角三角形.又AB=2,所以BC1=2 3.又B1C1=2,所以BB1=232-22=22,故该长方体的体积V=2×2×22=8 2.考点一线面垂直的判定与性质【例1】(2019·全国Ⅱ卷)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥E -BB 1C 1C 的体积.(1)证明 由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故B 1C 1⊥BE .又BE ⊥EC 1,B 1C 1∩EC 1=C 1,B 1C 1,EC 1⊂平面EB 1C 1,所以BE ⊥平面EB 1C 1. (2)解 由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E , 所以∠AEB =∠A 1EB 1=45°, 故AE =AB =3,AA 1=2AE =6.如图,作EF ⊥BB 1,垂足为F ,则EF ⊥平面BB 1C 1C ,且EF =AB =3. 所以四棱锥E -BB 1C 1C 的体积V =13×3×6×3=18.感悟升华 1.证明直线和平面垂直的常用方法有:(1)判定定理;(2)垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);(3)面面平行的性质(a ⊥α,α∥β⇒a ⊥β);(4)面面垂直的性质(α⊥β,α∩β=a ,l ⊥a ,l ⊂β⇒l ⊥α).2.证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思路.【训练1】 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.证明(1)在四棱锥P-ABCD中,∵P A⊥底面ABCD,CD⊂平面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.又AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.又PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂平面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,又PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.考点二面面垂直的判定与性质【例2】(2020·全国Ⅰ卷)如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面P AB⊥平面P AC;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P -ABC 的体积. (1)证明 由题设可知,P A =PB =PC . 由△ABC 是正三角形,可得△P AC ≌△P AB ,△P AC ≌△PBC . 又∠APC =90°,故∠APB =90°,∠BPC =90°.从而PB ⊥P A ,PB ⊥PC ,又P A ,PC ⊂平面P AC ,P A ∩PC =P , 故PB ⊥平面P AC ,又PB ⊂平面P AB , 所以平面P AB ⊥平面P AC .(2)解 设圆锥的底面半径为r ,母线长为l , 由题设可得rl =3,l 2-r 2=2,解得r =1,l = 3. 从而AB = 3.由(1)可得P A 2+PB 2=AB 2,故P A =PB =PC =62. 所以三棱锥P -ABC 的体积为 13·12·P A ·PB ·PC =13×12×⎝⎛⎭⎫623=68. 感悟升华 1.判定面面垂直的方法主要是:(1)面面垂直的定义;(2)面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).2.已知平面垂直时,解题一般要用性质定理进行转化.在一个平面内作交线的垂线,将问题转化为线面垂直,然后进一步转化为线线垂直.【训练2】 (2021·安徽A10联盟检测)如图,在四棱锥A -BCDE 中,△ADE 是边长为2的等边三角形,平面ADE ⊥平面BCDE ,底面BCDE 是等腰梯形,DE ∥BC ,DE =12BC ,BE=DC =2,BD =23,点M 是DE 边的中点,点N 在BC 上,且BN =3.(1)证明:BD ⊥平面AMN ;(2)设BD ∩MN =G ,求三棱锥A -BGN 的体积. (1)证明 ∵△ADE 是等边三角形,M 是DE 的中点, ∴AM ⊥DE .又平面ADE ⊥平面BCDE ,平面ADE ∩平面BCDE =DE , ∴AM ⊥平面BCDE ,∵BD ⊂平面BCDE ,∴AM ⊥BD ,∵MD =ME =1,BN =3,DE ∥BC ,DE =12BC ,∴MD 綉CN ,∴四边形MNCD 是平行四边形, ∴MN ∥CD .又BD =23,BC =4,CD =2,∴BD 2+CD 2=BC 2, ∴BD ⊥CD ,∴BD ⊥MN .又AM ∩MN =M ,∴BD ⊥平面AMN . (2)解 由(1)知AM ⊥平面BCDE , ∴AM 为三棱锥A -BGN 的高. ∵△ADE 是边长为2的等边三角形, ∴AM = 3.易知GN =34CD =32,又由(1)知BD ⊥MN ,∴BG =BN 2-NG 2=332.∴S △BGN =12BG ·NG =12×332×32=938.∴V A -BGN =13S △BGN ·AM =13×938×3=98.考点三 平行与垂直的综合问题角度1 平行与垂直关系的证明【例3】 如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,E ,F 分别为AD ,PB 的中点.求证:(1)PE ⊥BC ;(2)平面P AB ⊥平面PCD ; (3)EF ∥平面PCD .证明 (1)因为P A =PD ,E 为AD 的中点, 所以PE ⊥AD .因为底面ABCD 为矩形,所以BC ∥AD . 所以PE ⊥BC .(2)因为底面ABCD 为矩形,所以AB ⊥AD .又因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,AB ⊂平面ABCD , 所以AB ⊥平面P AD .又PD ⊂平面P AD ,所以AB ⊥PD . 又因为P A ⊥PD ,且P A ∩AB =A , 所以PD ⊥平面P AB .又PD ⊂平面PCD , 所以平面P AB ⊥平面PCD .(3)如图,取PC 中点G ,连接FG ,DG . 因为F ,G 分别为PB ,PC 的中点, 所以FG ∥BC ,FG =12BC .因为ABCD 为矩形,且E 为AD 的中点, 所以DE ∥BC ,DE =12BC .所以DE ∥FG ,DE =FG .所以四边形DEFG 为平行四边形. 所以EF ∥DG .又因为EF ⊄平面PCD ,DG ⊂平面PCD , 所以EF ∥平面PCD .感悟升华 1.三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化. 2.垂直与平行的结合问题,求解时应注意平行、垂直的性质及判定的综合应用.如果有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.角度2 平行垂直关系与几何体的度量【例4】 (2019·天津卷)如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,△PCD 为等边三角形,平面P AC ⊥平面PCD ,P A ⊥CD ,CD =2,AD =3.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面P AD ; (2)求证:P A ⊥平面PCD ;(3)求直线AD 与平面P AC 所成角的正弦值. (1)证明 连接BD ,易知AC ∩BD =H ,BH =DH .又由BG =PG ,故GH 为△PBD 的中位线,所以GH ∥PD . 又因为GH ⊄平面P AD ,PD ⊂平面P AD ,所以GH ∥平面P AD . (2)证明 取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC .又因为平面P AC ⊥平面PCD ,平面P AC ∩平面PCD =PC ,DN ⊂平面PCD ,所以DN ⊥平面P AC .又P A ⊂平面P AC ,所以DN ⊥P A . 又已知P A ⊥CD ,CD ∩DN =D , 所以P A ⊥平面PCD .(3)解 连接AN ,由(2)中DN ⊥平面P AC ,可知∠DAN 为直线AD 与平面P AC 所成的角. 因为△PCD 为等边三角形,CD =2且N 为PC 的中点, 所以DN = 3.又DN ⊥AN ,在Rt △AND 中,sin ∠DAN =DN AD =33.所以直线AD 与平面P AC 所成角的正弦值为33. 感悟升华 1.平行垂直关系应用广泛,不仅可以证明判断空间线面、面面位置关系,而且常用以求空间角和空间距离、体积.2.综合法求直线与平面所成的角,主要是找出斜线在平面内的射影,其关键是作垂线,找垂足,把线面角转化到一个三角形中求解.【训练3】 如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上不同于A ,B 的一动点.(1)证明:△PBC是直角三角形;(2)若P A=AB=2,且当直线PC与平面ABC所成角的正切值为2时,求直线AB与平面PBC 所成角的正弦值.(1)证明∵AB是⊙O的直径,C是圆周上不同于A,B的一动点.∴BC⊥AC,∵P A⊥平面ABC,∴P A⊥BC,又P A∩AC=A,P A,AC⊂平面P AC,∴BC⊥平面P AC,∴BC⊥PC,∴△BPC是直角三角形.(2)解如图,过A作AH⊥PC于H,∵BC⊥平面P AC,∴BC⊥AH,又PC∩BC=C,PC,BC⊂平面PBC,∴AH⊥平面PBC,∴∠ABH是直线AB与平面PBC所成的角,∵P A⊥平面ABC,∴∠PCA是直线PC与平面ABC所成的角,∵tan∠PCA=P AAC=2,又P A=2,∴AC=2,∴在Rt △P AC 中,AH =P A ·AC P A 2+AC 2=233,∴在Rt △ABH 中,sin ∠ABH =AH AB =2332=33,故直线AB 与平面PBC 所成角的正弦值为33.与垂直平行相关的探索性问题立体几何中的探索性问题是近年高考的热点,题目主要涉及线面平行、垂直位置关系的探究,条件或结论不完备的开放性问题的探究,重点考查逻辑推理,直观想象与数学运算核心素养. 【典例】 如图所示,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,△PDC 和△BDC 均为等边三角形,且平面PDC ⊥平面BDC .(1)在棱PB 上是否存在点E ,使得AE ∥平面PDC ?若存在,试确定点E 的位置;若不存在,试说明理由. (2)若△PBC 的面积为152,求四棱锥P -ABCD 的体积. 解 (1)存在点E ,当点E 为棱PB 的中点时,使得AE ∥面PDC ,理由如下:如图所示,取PB 的中点E ,连接AE ,取PC 的中点F ,连接EF ,DF ,取BC 的中点G ,连接DG .因为△BCD 是等边三角形,所以∠DGB =90°. 因为∠ABC =∠BAD =90°,所以四边形ABGD 为矩形,所以AD =BG =12BC ,AD ∥BC .因为EF 为△BCP 的中位线,所以EF =12BC ,且EF ∥BC ,故AD =EF ,且AD ∥EF ,所以四边形ADFE 是平行四边形,从而AE ∥DF , 又AE ⊄平面PDC ,DF ⊂平面PDC , 所以AE ∥平面PDC .(2)取CD 的中点M ,连接PM ,过点P 作PN ⊥BC 交BC 于点N ,连接MN ,如图所示. 因为△PDC 为等边三角形,所以PM ⊥DC .因为PM ⊥DC ,平面PDC ⊥平面BDC ,平面PDC ∩平面BDC =DC . 所以PM ⊥平面BCD ,故PM 为四棱锥P -ABCD 的高. 又BC ⊂平面BCD ,所以PM ⊥BC .因为PN ⊥BC ,PN ∩PM =P ,PN ⊂平面PMN ,PM ⊂平面PMN ,所以BC ⊥平面PMN . 因为MN ⊂平面PMN ,所以BC ⊥MN . 由M 为DC 的中点,易知NC =14BC .设BC =x ,则△PBC 的面积为x 2·x 2-⎝⎛⎭⎫x 42=152,解得x =2,即BC =2, 所以AD =1,AB =DG =PM = 3.故四棱锥P -ABCD 的体积为V =13×S 梯形ABCD ×PM =13×1+2×32×3=32.素养升华 1.求条件探索性问题的主要途径:(1)先猜后证,即先观察与尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.2.涉及点的位置探索性问题一般是先根据条件猜测点的位置再给出证明,探索点的存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.平行或垂直关系入手,把所探究的结论转化为平面图形中线线关系,从而确定探究的结果. 【训练】 如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P -ABC 的体积;(2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在点M ,求出PMMC 的值;若不存在,请说明理由.解 (1)由题知AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32,由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高. 又P A =1,所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36.(2)在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM .由P A ⊥平面ABC 知P A ⊥AC ,所以MN ⊥AC . 由于BN ∩MN =N ,故AC ⊥平面MBN . 又BM ⊂平面MBN ,所以AC ⊥BM .在Rt △BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32.由MN ∥P A ,得PM MC =AN NC =13.A 级 基础巩固一、选择题1.(2021·淮北质检)已知平面α,直线m ,n ,若n ⊂α,则“m ⊥n ”是“m ⊥α”的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件答案 C解析 由n ⊂α,m ⊥n ,不一定得到m ⊥α;反之,由n ⊂α,m ⊥α,可得m ⊥n . ∴若n ⊂α,则“m ⊥n ”是“m ⊥α”的必要不充分条件.2.在正方体ABCD -A 1B 1C 1D 1中,E 为棱CD 的中点,则( ) A .A 1E ⊥DC 1 B .A 1E ⊥BD C .A 1E ⊥BC 1 D .A 1E ⊥AC 答案 C解析 如图,由题设知,A 1B 1⊥平面BCC 1B 1,且BC 1⊂平面BCC 1B 1,从而A 1B 1⊥BC 1. 又B 1C ⊥BC 1,且A 1B 1∩B 1C =B 1,所以BC 1⊥平面A 1B 1CD ,又A 1E ⊂平面A 1B 1CD ,所以A 1E ⊥BC 1.3.(2021·郑州调研)已知m ,l 是两条不同的直线,α,β是两个不同的平面,则下列可以推出α⊥β的是( ) A .m ⊥l ,m ⊂β,l ⊥α B .m ⊥l ,α∩β=l ,m ⊂α C .m ∥l ,m ⊥α,l ⊥β D .l ⊥α,m ∥l ,m ∥β答案 D解析 在A 中,m ⊥l ,m ⊂β,l ⊥α,则α与β相交或平行,故A 错误; 在B 中,m ⊥l ,α∩β=l ,m ⊂α,则α与β有可能相交但不垂直,故B 错误; 在C 中,m ∥l ,m ⊥α,l ⊥β,则α∥β,故C 错误;在D 中,l ⊥α,m ∥l ,则m ⊥α,又m ∥β,则α⊥β,故D 正确.4.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形,若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A.5π12 B .π3C.π4 D .π6答案 B解析 如图,取正三角形ABC 的中心为O ,连接OP ,则∠P AO 是P A 与平面ABC 所成的角.因为底面边长为3, 所以AD =3×32=32,AO =23AD =23×32=1.三棱柱的体积为34×(3)2AA 1=94, 解得AA 1=3,即OP =AA 1=3, 所以tan ∠P AO =OPOA=3,因为直线与平面所成角的范围是⎣⎡⎦⎤0,π2, 所以∠P AO =π3.5. (2020·昆明诊断)如图,AC =2R 为圆O 的直径,∠PCA =45°,P A 垂直于圆O 所在的平面,B 为圆周上不与点A 、C 重合的点,AS ⊥PC 于S ,AN ⊥PB 于N ,则下列不正确的是( )A.平面ANS⊥平面PBCB.平面ANS⊥平面P ABC.平面P AB⊥平面PBCD.平面ABC⊥平面P AC答案 B解析∵P A⊥平面ABC,BC⊂平面ABC,∴P A⊥BC,又AC为圆O直径,所以AB⊥BC,又P A∩AB=A,∴BC⊥平面P AB,又AN⊂平面ABP,∴BC⊥AN,又AN⊥PB,BC∩PB=B,∴AN⊥平面PBC,又AN⊂平面ANS,∴平面ANS⊥平面PBC,∴A正确,C,D显然正确.6.(2020·衡水调研)如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个结论:①三棱锥A-D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的结论的个数是()A.1个B.2个C.3个D.4个答案 C解析对于①,由题意知AD1∥BC1,从而BC1∥平面AD1C,故BC1上任意一点到平面AD1C 的距离均相等,所以以P为顶点,平面AD1C为底面,则三棱锥A-D1PC的体积不变,故①正确;对于②,连接A1B,A1C1,A1C1綉AC,由于①知:AD1∥BC1,所以面BA1C1∥面ACD1,从而由线面平行的定义可得,故②正确;对于③,由于DC⊥平面BCC1B1,所以DC⊥BC1,若DP⊥BC1,则BC1⊥平面DCP,所以BC1⊥PC,则P为中点,与P为动点矛盾,故③错误;对于④,连接DB1,由DB1⊥AC且DB1⊥AD1,可得DB1⊥面ACD1,从而由面面垂直的判定知,故④正确.二、填空题7.(2019·北京卷)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:________. 答案若m∥α,l⊥α,则l⊥m(或若l⊥m,l⊥α,则m∥α,答案不唯一)解析已知l,m是平面α外的两条不同直线,由①l⊥m与②m∥α,不能推出③l⊥α,因为l可以与α平行,也可以相交不垂直;由①l⊥m与③l⊥α能推出②m∥α;由②m∥α与③l⊥α可以推出①l⊥m.故正确的命题是②③⇒①或①③⇒②.8.如图,在直三棱柱ABC -A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB =90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E ,要使AB 1⊥平面C 1DF ,则线段B 1F 的长为________.答案 12解析 设B 1F =x ,因为AB 1⊥平面C 1DF ,DF ⊂平面C 1DF , 所以AB 1⊥DF , 由已知可得A 1B 1=2,设Rt △AA 1B 1斜边AB 1上的高为h ,则DE =12h .又12×2×2=12×h 22+22,所以h =233,DE =33.在Rt △DB 1E 中,B 1E =⎝⎛⎭⎫222-⎝⎛⎭⎫332=66. 由面积相等得12×66×x 2+⎝⎛⎭⎫222=12×22x , 得x =12.9.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为是正确的条件即可).答案 DM ⊥PC (或BM ⊥PC ) 解析 连接AC ,BD ,则AC ⊥BD ,因为P A ⊥底面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .又P A ∩AC =A ,所以BD ⊥平面P AC ,PC ⊂平面P AC ,所以BD ⊥PC . 所以当DM ⊥PC (或BM ⊥PC )时, 有PC ⊥平面MBD .PC ⊂平面PCD ,所以平面MBD ⊥平面PCD . 三、解答题10.如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. (1)证明 因为AP =CP =AC =4,O 为AC 的中点, 所以OP ⊥AC ,且OP =2 3.连接OB ,因为AB =BC ,AB 2+BC 2=AC 2,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC 且OB ∩AC =O ,知PO ⊥平面ABC . (2)解 作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离. 由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°.所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.11. (2021·昆明诊断)如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,∠BAD =60°,△P AD 是正三角形,E 为线段AD 的中点.(1)求证:平面PBC ⊥平面PBE ;(2)是否存在满足PF →=λFC →(λ>0)的点F ,使得V B -P AE =34V D -PFB ?若存在,求出λ的值;若不存在,请说明理由.(1)证明 因为△P AD 是正三角形,E 为线段AD 的中点, 所以PE ⊥AD .因为底面ABCD 是菱形,所以AD =AB ,又∠BAD =60°, 所以△ABD 是正三角形, 所以BE ⊥AD . 又BE ∩PE =E , 所以AD ⊥平面PBE . 又AD ∥BC , 所以BC ⊥平面PBE . 又BC ⊂平面PBC , 所以平面PBC ⊥平面PBE .(2)解 由PF →=λFC →,知(λ+1)FC =PC , 所以V B -P AE =12V P -ADB =12V P -BCD =λ+12V F -BCD ,V D -PFB =V P -BDC -V F -BDC =λV F -BCD . 因此,λ+12=3λ4,得λ=2.故存在满足PF →=λFC →(λ>0)的点F , 使得V B -P AE =34V D -PFB ,此时λ=2.B 级 能力提升12.如图,正三角形ABC 的中线AF 与中位线DE 相交于点G ,已知△A ′DE 是△ADE 绕直线DE 翻折过程中的一个图形,现给出下列命题: ①恒有直线BC ∥平面A ′DE ; ②恒有直线DE ⊥平面A ′FG ;③恒有平面A ′FG ⊥平面A ′DE ,其中正确命题的个数为( )A.0 B.1 C.2 D.3答案 D解析对于①,∵DE为△ABC的中位线,∴DE∥BC,又知DE⊂平面A′DE,BC⊄平面A′DE,∴BC∥平面A′DE,故①正确;对于②,∵△ABC为等边三角形,AF为BC边上的中线,∴BC⊥AF,又知DE∥BC,∴DE⊥AF,∴DE⊥FG,根据翻折的性质可知,DE⊥A′G,又A′G∩FG=G,∴DE⊥平面A′FG,故②正确;对于③,由②知DE⊥平面A′FG,又知DE⊂平面A′DE,∴平面A′FG⊥平面A′DE,故③正确.综上,正确的命题为①②③. 13.(2019·全国Ⅰ卷)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为3,那么P到平面ABC的距离为________.答案 2解析如图,过点P作PO⊥平面ABC于O,则PO为P到平面ABC的距离.再过O作OE⊥AC于E,OF⊥BC于F,连接PC,PE,PF,则PE⊥AC,PF⊥BC.所以PE=PF=3,所以OE=OF,所以CO为∠ACB的平分线,即∠ACO=45°.在Rt△PEC中,PC=2,PE=3,所以CE=1,所以OE=1,所以PO=PE2-OE2=32-12= 2.14.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°.以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.(1)证明 由已知可得,∠BAC =90°,即BA ⊥AC .又BA ⊥AD ,AC ∩AD =A ,AC ,AD ⊂平面ACD ,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)解 由已知可得, DC =CM =AB =3, DA =AM =3 2. 又BP =DQ =23DA ,所以BP =2 2.作QE ⊥AC ,垂足为E ,则QE 綉13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q -ABP 的体积为V Q -ABP =13×QE ×S △ABP =13×1×12×3×22sin 45°=1.。

高考数学一轮复习专题训练—合情推理与演绎推理

高考数学一轮复习专题训练—合情推理与演绎推理

合情推理与演绎推理考纲要求1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;3.了解合情推理和演绎推理之间的联系和差异.知识梳理1.合情推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.1.合情推理包括归纳推理和类比推理,其结论是猜想,不一定正确,若要确定其正确性,则需要证明.2.在进行类比推理时,要从本质上去类比,只从一点表面现象去类比,就会犯机械类比的错误.3.应用三段论解决问题时,要明确什么是大前提、小前提,如果前提与推理形式是正确的,结论必定是正确的.若大前提或小前提错误,尽管推理形式是正确的,但所得结论是错误的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.()(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.()(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.()(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.()答案(1)×(2)√(3)×(4)×解析(1)类比推理的结论不一定正确.(3)平面中的三角形与空间中的四面体作为类比对象较为合适.(4)演绎推理是在大前提、小前提和推理形式都正确时,得到的结论一定正确.2.如图,根据图中的数构成的规律,得a表示的数是()A.12 B.48 C.60 D.144答案 D解析由题干图中的数据可知,每行除首末两数外,其他数等于其上一行两肩上的数字的乘积.所以a=12×12=144.3.在等差数列{a n}中,若a10=0,则有a1+a2+…+a n=a1+a2+…+a19-n(n<19,且n∈N*)成立.类比上述性质,在等比数列{b n}中,若b9=1,则存在的等式为________.答案b1b2…b n=b1b2…b17-n(n<17,且n∈N*)解析根据类比推理的特点可知:等比数列和等差数列类比,在等差数列中是和,在等比数列中是积,故有b1b2…b n=b1b2…b17-n(n<17,且n∈N*).4.(2020·贵阳一模)有一段“三段论”推理是这样的:对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点,因为f(x)=x3在x=0处的导数值为0,所以x=0是f(x)=x3的极值点,以上推理()A.大前提错误B.小前提错误C.推理形式错误D.结论正确答案 A解析大前提是“对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f′(x0)=0,且满足在x0附近左右两侧导函数值异号,那么x=x0才是函数f(x)的极值点,所以大前提错误.故选A.5.(2021·郑州质检)某学校甲、乙、丙、丁四人竞选校学生会主席职位,在竞选结果出来前,甲、乙、丙、丁四人对竞选结果做了如下预测:甲说:丙或丁竞选成功;乙说:甲和丁均未竞选上;丙说:丁竞选成功;丁说:丙竞选成功.若这四人中有且只有两人预测的正确,则成功竞选学生会主席职位的是()A.甲B.乙C.丙D.丁答案 D解析若成功竞选的是甲,则甲、乙、丙、丁四人的预测均错误,故不合题意;若成功竞选的是乙,则甲、丙、丁三人的预测错误,乙的预测正确,故不合题意;若成功竞选的是丙,则甲、乙、丁三人的预测正确,丙的预测错误,故不合题意;若成功竞选的是丁,则甲、丙两人的预测正确,乙、丁两人的预测错误,符合题意.故选D.6.(2020·桂林模拟)已知函数f(x)满足f(1)=f(2)=1,且对任意n∈N*恒有f(n+2)=f(n+1)+f(n),观察下列等式:f(1)+f(2)=2=3-1,f(1)+f(2)+f(3)=4=5-1,f(1)+f(2)+f(3)+f(4)=7=8-1,f(1)+f(2)+f(3)+f(4)+f(5)=12=13-1,可推测f(1)+f(2)+f(3)+…+f(n+1)=________.答案f(n+3)-1解析根据题意可得f(3)=2,f(4)=3,f(5)=5,f(6)=8,f(7)=13,因为f(1)+f(2)=2=3-1=f(4)-1,f(1)+f(2)+f(3)=4=5-1=f(5)-1,f(1)+f(2)+f(3)+f(4)=7=8-1=f(6)-1,f(1)+f(2)+f(3)+f(4)+f(5)=12=13-1=f(7)-1,可推测f(1)+f(2)+f(3)+…+f(n+1)=f(n+3)-1.故答案为f(n+3)-1.考点一归纳推理角度1与图形变化有关的推理【例1】中国有句名言“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算的,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放有纵横两种形式,如图,当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示,以此类推.例如6 613用算筹表示就是,则8 335用算筹可表示为()答案 B解析各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示,则8 335用算筹可表示为.故选B.角度2与数字或式子有关的推理【例2】 已知32+27=2327,33+326=33326,34+463=43463,……,3 2 021+mk=2 0213m k ,则k +1m 2=________.答案 2 021解析 由已知32+27=2327,33+326=33326,34+463=43463,……,可归纳出3n +n n 3-1=n 3nn 3-1, 又因为32 021+mk =2 0213m k,所以m =2 021,k =2 0213-1, 所以k +1m 2=2 0213-1+12 0212=2 021.感悟升华 归纳推理问题的常见类型及解题策略体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象、图象或者物理过程.标准的自相似分形是数学上的抽象,迭代生成无限精细的结构.也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已,谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,按照如下规律依次在一个黑色三角形内去掉小三角形,则当n =6时,该黑色三角形内去掉小三角形个数为( )A .81B .121C .364D .1 093(2)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2; ⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2 =43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …… 照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=________. 答案 (1)C (2)4n n +13解析 (1)由图可知,每一个图形中去掉小三角形的个数等于前一个图形去掉小三角形个数的3倍加1,所以,n =1时,a 1=1; n =2时,a 2=3+1=4; n =3时,a 3=3×4+1=13; n =4时,a 4=3×13+1=40; n =5时,a 5=3×40+1=121; n =6时,a 6=3×121+1=364,故选C. (2)观察前4个等式,由归纳推理可知⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=43×n ×(n +1)=4n n +13.考点二 类比推理【例3】 (1)在平面上,设h a ,h b ,h c 是△ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c =1.把它类比到空间中,则三棱锥中的类似结论为________.(2)已知命题:在平面直角坐标系xOy 中,椭圆x 2a 21+y 2b 21=1(a 1>b 1>0),△ABC 的顶点B 在椭圆上,顶点A ,C 分别为椭圆的左、右焦点,椭圆的离心率为e 1,则sin A +sin C sin B =1e 1,现将该命题类比到双曲线中,△ABC 的顶点B 在双曲线上,顶点A ,C 分别为双曲线的左、右焦点,设双曲线的方程为x 2a 22-y 2b 22=1(a 2>0,b 2>0),双曲线的离心率为e 2,则有________.答案 (1)P a h a +P b h b +P c h c +P dh d =1(2)|sin A -sin C |sin B =1e 2解析 (1)设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d =1.(2)因为△ABC 的顶点B 在双曲线x 2a 22-y 2b 22=1(a 2>0,b 2>0)上,顶点A ,C 分别是双曲线的左、右焦点,所以有|BA -BC |=2a 2, 所以1e 2=2a 22c 2=|BA -BC |AC,由正弦定理可得BC sin A =AC sin B =AB sin C ,所以|sin A -sin C |sin B =1e 2.感悟升华 1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.2.类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;实数的运算与向量的运算类比;圆锥曲线间的类比等.【训练2】(2020·赣州一模)我们把平面内与直线垂直的非零向量称为直线的法向量.在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-2,3)且法向量为n=(4,-1)的直线(点法式)方程为4×(x+2)+(-1)×(y-3)=0,化简得4x-y+11=0.类比以上方法,在空间直角坐标系中,经过点B(2,3,4)且法向量为n=(-1,-2,1)的平面(点法式)方程为________.答案x+2y-z-4=0解析将平面中的运算类比到空间中的运算得:经过点B(2,3,4)且法向量为n=(-1,-2,1)的平面(点法式)方程为(-1)×(x-2)+(-2)×(y-3)+1×(z-4)=0,化简得x+2y-z-4=0,即平面的方程为x+2y-z-4=0.考点三演绎推理【例4】(2020·河南六校联考)自主招生联盟成形于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.调查某高中学校学生自主招生报考的情况,得到如下结果:①报考“北约”联盟的学生,都没报考“华约”联盟;②报考“华约”联盟的学生,也报考了“京派”联盟;③报考“卓越”联盟的学生,都没报考“京派”联盟;④不报考“卓越”联盟的学生,就报考“华约”联盟.根据上述调查结果,下列结论错误的是()A.没有同时报考“华约”和“卓越”联盟的学生B.报考“华约”和“京派”联盟的考生一样多C.报考“北约”联盟的考生也报考了“卓越”联盟D.报考“京派”联盟的考生也报考了“北约”联盟答案 D解析设该校报考“北约”联盟,“华约”联盟,“京派”联盟和“卓越”联盟的学生分别为集合A,B,C,D,报考自主招生的总学生为U,则由题意,知A∩B=∅,B⊆C,D∩C=∅,∁U D=B,∴A⊆D,B=C,B∩D=∅.选项A,B∩D=∅,正确;选项B,B=C,正确;选项C,A⊆D,正确,故选D.感悟升华解决逻辑推理问题的两种方法:(1)假设反证法:先假设题中给出的某种情况是正确的,并以此为起点进行推理.如果推理导致矛盾,则证明此假设是错误的,再重新提出一个假设继续推理,直到得到符合要求的结论为止.(2)枚举筛选法:即不重复、不遗漏地将问题中的有限情况一一枚举,然后对各种情况逐个检验,排除一些不可能的情况,逐步归纳梳理,找到正确答案.【训练3】(1)(2019·全国Ⅱ卷)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙(2)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数;(ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________.②该小组人数的最小值为________.答案(1)A(2)①6②12解析(1)由于三人成绩互不相同且只有一个人预测正确,故若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,又假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.故选A.(2)设男学生人数为x ,女学生人数为y ,教师人数为z ,由已知得⎩⎪⎨⎪⎧x >y ,y >z ,2z >x ,且x ,y ,z 均为正整数.①当z =4时,8>x >y >4,∴x 的最大值为7,y 的最大值为6,故女学生人数的最大值为6. ②x >y >z >x 2,当x =3时,条件不成立,当x =4时,条件不成立,当x =5时,5>y >z >52,此时z =3,y =4.∴该小组人数的最小值为12.基础巩固一、选择题1.已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( ) A .a n =3n -1 B .a n =4n -3 C .a n =n 2 D .a n =3n -1答案 C解析 a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2.2.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( ) A .f (x ) B .-f (x ) C .g (x ) D .-g (x )答案 D解析 由已知得偶函数的导函数为奇函数,故g (-x )=-g (x ).3.(2020·合肥一模)2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”“国富民强”“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下:小明说:“鸿福齐天”是我制作的;小红说:“国富民强”不是小明制作的,就是我制作的;小金说:“兴国之路”不是我制作的.若三人的说法有且仅有一个是正确的,则“鸿福齐天”的制作者是()A.小明B.小红C.小金D.小金或小明答案 B解析依题意,三个人制作的所有情况如下所示:12345 6鸿福齐天小明小明小红小红小金小金国富民强小红小金小金小明小红小明兴国之路小金小红小明小金小明小红若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红,故选B.4.(2021·安徽六校测试)如图,第1个图形由正三角形扩展而成,共12个顶点.第n个图形由正n+2边形扩展而来,其中n∈N*,则第n个图形的顶点个数是()A.(2n+1)(2n+2) B.3(2n+2)C.2n(5n+1) D.(n+2)(n+3)答案 D解析(1)由已知中的图形可以得到:当n=1时,图形的顶点个数为12=3×4,当n=2时,图形的顶点个数为20=4×5,当n=3时,图形的顶点个数为30=5×6,当n=4时,图形的顶点个数为42=6×7,……由此可以推断:第n个图形的顶点个数为(n+2)(n+3),故选D.5.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,则P点的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列{a n}的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1(a>b>0)的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇答案 B解析从S1,S2,S3猜想出数列{a n}的前n项和S n,是从特殊到一般的推理,所以B是归纳推理,故应选B.6.“对数函数是非奇非偶函数,f(x)=log2|x|是对数函数,因此f(x)=log2|x|是非奇非偶函数”,以上推理()A.结论正确B.大前提错误C.小前提错误D.推理形式错误答案 C解析本命题的小前提是f(x)=log2|x|是对数函数,但是这个小前提是错误的,因为f(x)=log2|x|不是对数函数,它是一个复合函数,只有形如y=log a x(a>0且a≠1)的才是对数函数.故选C.7.若等差数列{a n}的前n项之和为S n,则一定有S2n-1=(2n-1)a n成立.若等比数列{b n}的前n项之积为T n,类比等差数列的性质,则有()A.T2n-1=(2n-1)+b n B.T2n-1=(2n-1)-b nC.T2n-1=(2n-1)b n D.T2n-1=b2n-1n答案 D解析 在等差数列{a n }中,a 1+a 2n -1=2a n , a 2+a 2n -2=2a n ,…,故有S 2n -1=(2n -1)a n , 在等比数列{b n }中,b 1b 2n -1=b 2n ,b 2·b 2n -2=b 2n ,…,故有T 2n -1=b 1b 2…b 2n -1=b 2n -1n. 8.(2020·昆明质检)斐波那契数列,又称黄金分割数列,指的是这样一个数列:1,1,2,3,5,8,13,21,34,55,89,…,在数学上,斐波那契数列{a n }定义为:a 1=1,a 2=1,a n +2=a n +a n +1,斐波那契数列有种看起来很神奇的巧合,如根据a n +2=a n +a n +1可得a n =a n +2- a n +1,所以a 1+a 2+…+a n =(a 3-a 2)+(a 4-a 3)+…+(a n +2-a n +1)=a n +2-a 2=a n +2-1,类比这一方法,可得a 21+a 22+…+a 210=( )A .714B .1 870C .4 895D .4 896答案 C解析 将a n +1=a n +2-a n 两边同乘a n +1,可得a 2n +1=a n +2a n +1-a n +1a n ,则a 21+a 22+…+a 210=a 21+(a 2a 3-a 2a 1)+(a 3a 4-a 2a 3)+…+(a 10a 11-a 9a 10)=1-a 2a 1+a 10a 11=1-1+55×89=4 895.故选C. 二、填空题9.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据以上式子可以猜想:1+122+132+…+12 0202<________. 答案4 0392 020解析 由题意得,不等式右边分数的分母是左边最后一个分数的分母的底数,分子是一个以3为首项,2为公差的等差数列中的项,可以推出1+122+132+…+1n 2<2n -1n ,所以1+122+132+…+12 0202<2 020×2-12 020=4 0392 020. 10.某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为________.答案 55解析 由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55.11.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线,则有如下命题:若P (x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________. 答案x 0x a 2-y 0y b 2=1 解析 类比椭圆的切点弦方程可得双曲线x 2a 2-y 2b 2=1的切点弦方程为x 0x a 2-y 0yb2=1.12.如下分组的正整数对:第1组为{(1,2),(2,1)},第2组为{(1,3),(3,1)},第3组为{(1,4),(2,3),(3,2),(4,1)},第4组为{(1,5),(2,4),(4,2),(5,1)},……,则第40组的第21个数对为________. 答案 (22,20)解析 由题意可得第1组数对中的各数的和为3,第2组数对中各数的和为4,第3组数对中各数的和为5,第4组数对中各数的和为6, ……第n 组数对中各数的和为n +2,且各个数对中无重复数字, 可得第40组数对中各数的和为42, 则第40组的第21个数对为(22,20).能力提升13.天干地支纪年法源于中国,中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,例如,第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,然后地支回到“子”重新开始,即“丙子”,以此类推.已知1949年为“己丑”年,那么到中华人民共和国成立70周年时为( ) A .“丙酉”年 B .“戊申”年 C .“己申”年 D .“己亥”年答案 D解析 中华人民共和国成立70周年时为2019年,从1949到2019共有71个数,若把天干排成一列,记为{a n },且a 1=“己”,则a 71=a 7×10+1=a 1=“己”;若把地支排成一列,记为{b n },且b 1=“丑”,则b 71=b 5×12+11=b 11=“亥”.所以中华人民共和国成立70周年时为“己亥”年,故选D.14.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+11+11+…中“…”代表无数次重复,但原式却是个定值,它可以通过方程1+1x =x求得x =5+12.类比上述过程,3+23+2…=( ) A .3 B .13+12C .6D .2 2答案 A解析 由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根), 令3+23+2…=m (m >0),则两边平方得,3+23+23+2…=m 2,即3+2m =m 2,解得m =3或m =-1(舍去).故选A. 15.(2021·武汉模拟)观察下列数表: 2 4 68 10 12 1416 18 20 22 24 26 28 30 …设数100为该数表中的第n 行,第m 列,则mn =________. 答案 114解析 观察数表可知第n 行的数的个数为a n =2n -1,则前n 行的所有数的个数之和S n =1-2n1-2=2n -1,数表中的数是由正偶数排列而成的,而数100是第50个数,令2n -1=50,解得5<n <6,则100在这个数表中的第6行,S 5=31,则100在这个数表中的第19列,即n =6,m =19,所以mn =6×19=114.16.(2021·豫南九校质量考评)已知函数f (x )=1x +1x +1+1x +2,由f (x -1)=1x -1+1x +1x +1是奇函数,可得函数f (x )的图象关于点(-1,0)对称,类比这一结论,可得函数g (x )=x +2x +1+x +3x +2+…+x +7x +6的图象关于点________对称.答案 ⎝⎛⎭⎫-72,6 解析 由题意得g (x )-6=x +2x +1-1+x +3x +2-1+x +4x +3-1+x +5x +4-1+x +6x +5-1+x +7x +6-1=1x +1+1x +2+1x +3+1x +4+1x +5+1x +6, 则g ⎝⎛⎭⎫x -72-6=1x -72+1+1x -72+2+1x -72+3+1x -72+4+1x -72+5+1x -72+6=1x -52+1x -32+1x -12+1x +12+1x +32+1x +52, 令g ⎝⎛⎭⎫x -72-6=h (x ), ∴h (-x )=1-x -52+1-x -32+1-x -12+1-x +12+1-x +32+1-x +52=-h (x ),∴h (x )是奇函数,∴函数g (x )=x +2x +1+x +3x +2+…+x +7x +6的图象关于点⎝⎛⎭⎫-72,6对称.。

2023年高考数学一轮复习(新高考地区专用)6-6 分布列基础(精练)(解析版)

2023年高考数学一轮复习(新高考地区专用)6-6 分布列基础(精练)(解析版)

6.6 分布列基础(精练)(基础版)1.(2022·云南·昆明市第一中学西山学校)国家“双减”政策落实之后,某市教育部门为了配合“双减”工作,做好校园课后延时服务,特向本市小学生家长发放调查问卷了解本市课后延时服务情况,现从中抽取100份问卷,统计了其中学生一周课后延时服务总时间(单位:分钟),并将数据分成以下五组:[)[)[)[)[]100,120,120,140,140,160,160,180,180,200,得到如图所示的频率分布直方图.(1)根据如图估计该市小学生一周课后延时服务时间的众数、平均数、中位数(保留小数点后一位);(2)通过调查分析发现,若服务总时间超过160分钟,则学生有不满情绪,现利用分层随机抽样的方法从样本问卷中随机抽取8份,再从抽取的8份问卷中抽取3份,记其中有不满情绪的问卷份数为X ,求X 的分布列及均值.【答案】(1)150,151,150.9;(2)分布列见解析,34.【解析】(1)众数:150;第1到5组频率分别为:0.05,0.15,0.55,0.2,0.05,平均数:1100.051300.151500.551700.21900.05151x =⨯+⨯+⨯+⨯+⨯=, 设中位数为x ,则中位数在第3组,则()0.21400.02750.5x +-⨯=,150.9x ≈; (2)用分层随机抽样抽取8份问卷,其中学生有不满情绪的有8×(0.2+0.05)=2份,∴X 的可能取值为0,1,2,∴()306238C C 5C 140P X ===,()216238C C 15C 281P X ===,()126238C C 3C 282P X ===,∴X 的分布列为:题组一 超几何分布∴()515330121428284E X =⨯+⨯+⨯=. 2.(2022·北京·高三专题练习)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X 表示学生的考核成绩,并规定85X >为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:.(1)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核为优秀的概率;(2)从图中考核成绩满足[]70,79X ∈的学生中任取3人,设Y 表示这3人中成绩满足8510X -≤的人数,求Y 的分布列和数学期望;(3)根据以往培训数据,规定当8510.510X P ⎛-⎫≤≥⎪⎝⎭时培训有效.请你根据图中数据,判断此次冰雪培训活动是否有效,并说明理由.【答案】(1)15(2)分布列见解析,()158E Y = (3)有效,理由见解析 【解析】(1)解:设该名学生的考核成绩优秀为事件A ,由茎叶图中的数据可知,30名同学中,有6名同学的考核成绩为优秀,故()15P A =. (2)解:由8510X -≤可得7595X ≤≤,所以,考核成绩满足[]70,79X ∈的学生中满足8510X -≤的人数为5,故随机变量Y 的可能取值有0、1、2、3,()3338C 10C 56P Y ===,()213538C C 151C 56P Y ===,()123538C C 152C 28P Y ===,()3538C 53C 28P Y ===,所以,随机变量Y 的分布列如下表所示:因此,()115155150123565628288E Y =⨯+⨯+⨯+⨯=. (3)解:由85110X -≤可得7595X ≤≤,由茎叶图可知,满足7595X ≤≤的成绩有16个, 所以851610.51030X P ⎛-⎫≤=≥⎪⎝⎭,因此,可认为此次冰雪培训活动有效. 3.(2022·宁夏中卫·三模(理))共享电动车(sharedev )是一种新的交通工具,通过扫码开锁,实现循环共享.某记者来到中国传媒大学探访,在校园喷泉旁停放了10辆共享电动车,这些电动车分为荧光绿和橙色两种颜色,已知从这些共享电动车中任取1辆,取到的是橙色的概率为0.4P =,若从这些共享电动车中任意抽取3辆.(1)求取出的3辆共享电动车中恰好有一辆是橙色的概率;(2)求取出的3辆共享电动车中橙色的电动车的辆数X 的分布列与数学期望. 【答案】(1)12;(2)分布列见解析,数学期望为65.【解析】(1)因为从10辆共享电动车中任取一辆,取到橙色的概率为0.4,所以橙色的电动车有4辆,荧光绿的电动车有6辆.记A 为“从中任取3辆共享单车中恰好有一辆是橙色”,则()2164310C C 1C 2P A ⨯==. (2)随机变量X 的所有可能取值为0,1,2,3.所以()3064310C C 10C 6P X ⨯===,()2164310C C 11C 2P X ⨯===, ()()1264310C C 32C 10P X P A ⨯====,()0364310C C 13C 30P X ⨯===.所以分布列为数学期望()1131601236210305E X =⨯+⨯+⨯+⨯=.4.(2022·广东·华南师大附中三模)“双减”政策实施后,为了解某地中小学生周末体育锻炼的时间,某研究人员随机调查了600名学生,得到的数据统计如下表所示:(1)估计这600名学生周末体育锻炼时间的平均数t ;(同一组中的数据用该组区间的中点值作代表) (2)在这600人中,用分层抽样的方法,从周末体育锻炼时间在[)40,60内的学生中抽取15人,再从这15人中随机抽取3人,记这3人中周末体育锻炼时间在[)50,60内的人数为X ,求X 的分布列以及数学期望()E X . 【答案】(1)58.5;(2)分布列答案见解析,数学期望:95.【解析】(1)估计这600名学生周末体育锻炼时间的平均数 350.1450.2550.3650.15750.15850.158.5t =⨯+⨯+⨯+⨯+⨯+⨯=.(2)依题意,周末体育锻炼时间在[)40,50内的学生抽6人,在[)50,60内的学生抽9人,则()363154091C P X C ===,()216931527191C C P X C ===,()12693152162455C C P X C ===,()3931512365C P X C ===,故X 的分布列为: 则()42721612901239191455655E X =⨯+⨯+⨯+⨯=. 5.(2022·云南保山·模拟预测(理))某高中学校为了解学生的课外体育锻炼时间情况,在全校学生中随机抽取了200名学生进行调查,并将数据分成六组,得到如图所示的频率分布直方图.将平均每天课外体育锻炼时间在[40,60)上的学生评价为锻炼达标,将平均每天课外体育锻炼时间在[0,40)上的学生评价为锻炼不达标(1)根据频率分布直方图估计这200名学生每天课外体育锻炼时间的众数、中位数;(2)为了了解学生课外体育锻炼时间不达标的原因,从上述锻炼不达标的学生中按分层抽样的方法抽取10人,再从这10人中随机抽取3人,记这三人中每天课外体育锻炼时间在[0,20)的人数为ξ,求ξ的分布列和数学期望.【答案】(1)中位数为28.125,众数等于25(2)分布列见解析,0.9【解析】(1)众数就是直方图中最高矩形底边中点的横坐标,则样本众数等于25.由频率分布直方图可得,在[0,10)上的频率为0.08,在[10,20)上的频率为0.16,在[20,30)上的频率为0.32,0.080.160.50.080.160.32<<+++,则中位数在区间[20,30)上.设中位数为0x ,则()00.24200.0320.5+-⨯=x ,028.125x =,即样本中位数为28.125.(2)根据题意,在[0,10),[10,20),[20,30),[30,40)上抽取的人数分别为1,2,4,3,其中在[0,20)上抽取的人数为3,则0ξ=,1,2,3.3127373310103576321(0),(1),1202412040ξξ⨯========C C C P P C C , 2133733310102171(2),(3)12040120C C C P P C C ξξ=====⨯==. 从而得到随机变量ξ的分布列如下表:随机变量ξ的期望72171()01230.9244040120E ξ=⨯+⨯+⨯+⨯=6.(2022·北京市朝阳区人大附中朝阳分校模拟预测)自“新型冠状肺炎”疫情爆发以来,科研团队一直在积极地研发“新冠疫苗”.在科研人员不懈努力下,我国公民率先在2020年年末开始使用安全的新冠疫苗,使我国的“防疫”工作获得更大的主动权.研发疫苗之初,为了测试疫苗的效果,科研人员以白兔为实验对象,进行了一些实验:(1)实验一:选取10只健康白兔,编号1至10号,注射一次新冠疫苗后,再让它们暴露在含有新冠病毒的环境中,实验结果发现:除2号、3号、7号和10号四只白兔仍然感染了新冠病毒,其他白兔未被感染.现从这10只白兔中随机抽取3只进行研究,将仍被感染的白兔只数记作X ,求X 的分布列和数学期望.(2)实验二:疫苗可以再次注射第二针、加强针,但两次疫苗注射时间间隔需大于三个月.科研人员对白兔多次注射疫苗后,每次注射的疫苗对白兔是否有效互相不影响.试问:若将实验一中未被感染新冠病毒的白兔的频率当做疫苗的有效率,那么一只白兔注射两次疫苗后的有效率能否保证达到90%?如若可以,请说明理由;若不可以,请你参考上述实验给出注射疫苗后有效率在90%以上的建议. 【答案】(1)分布列见解析;数学期望()65E X =; (2)无法保证;建议:需要将注射一次疫苗的有效率提高到90%以上. 【解析】(1)由题意得:X 所有可能的取值为0,1,2,3,()3631020101206C P X C ∴====;216431060111202C C P XC ; 1264310363212010C C P X C ;3431041312030C P XC ; X ∴的分布列为:∴数学期望()1131601236210305E X =⨯+⨯+⨯+⨯=; (2)由已知数据知:实验一中未被感染新冠病毒的白兔的频率为0.6,则注射一次疫苗的有效率为0.6, ∴一只白兔注射两次疫苗的有效率为:()2110.60.8484%90%--==<, ∴无法保证一只白兔注射两次疫苗后的有效率达到90%;设每支疫苗有效率至少达到x 才能满足要求,()21190%x ∴--≥,解得:0.990%x ≥=,∴需要将注射一次疫苗的有效率提高到90%以上才能保证一只白兔注射两次疫苗后的有效率达到90%.7.(2022·全国·高三专题练习(理))高二年级某班学生在数学校本课程选课过程中,已知第一小组与第二小组各有六位同学.每位同学都只选了一个科目,第一小组选《数学运算》的有1人,选《数学解题思想与方法》的有5人,第二小组选《数学运算》的有2人,选《数学解题思想与方法》的有4人,现从第一、第二两小组各任选2人分析选课情况.(1)求选出的4 人均选《数学解题思想与方法》的概率;(2)设ξ为选出的4个人中选《数学运算》的人数,求ξ的分布列和数学期望. 【答案】(1)415(2)分布列见解析,期望为1 【解析】(1)解:设“从第一小组选出的2人选《数学解题思想与方法》”为事件A ,“从第二小组选出的2人选《数学解题思想与方法》”为事件B ,由于事 件A 、B 相互独立,且22542266C C 22(),()C 3C 5P A P B ====, 所以选出的4人均选《数学解题思想与方法》的概率为224()()()3515P A B P A P B ⋅=⋅=⨯=.(2)解:由题意,随机变量ξ可能的取值为0,1,2,3,可得4(0)15P ξ==,211125524422226666C C C C C 22(1)C C C C 45P ξ==⋅+⋅=,152266C 11(3)C C 45P ξ==⋅=,2(2)1(0)(1)(3)9P P P P ξξξξ==-=-=-==, 所以随机变量ξ的分布列为:ξ0 1 23 P415224529145所以随机变量ξ的数学期望 42221012311545945E ξ=⨯+⨯+⨯+⨯=. 1.(2022·北京·人大附中三模)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图: 组号分组频数1[)0,262 [)2,48题组二 二项分布每周课外阅读时间小于6小时的学生我们称之为“阅读小白”,大于等于6小时且小于12小时的学生称之为“阅读新手”,阅读时间大于等于12小时的学生称之为“阅读达人”.(1)从样本中随机选取一名学生,已知这名学生的阅读时间大于等于6小时,问这名学生是“阅读达人”概率; (2)从该校学生中选取3人,用样本的频率估计概率,记这3人中“阅读新手和阅读小白”的人数和为X ,求X 的分布列和数学期望;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.(只需写出结论) 【答案】(1)1069(2)分布列答案见解析,()2710E X =(3)第4组【解析】(1)解:从样本中随机选取一名学生,其中阅读时间大于等于6小时的学生人数为1003169-=, “阅读达人”的学生人数为10,故所求概率为1069. (2)解:从该校学生中任选一人,该学生是“阅读小白”或“阅读新人”的概率为90910010=, 所以,9~3,10X B ⎛⎫ ⎪⎝⎭,则()3110101000P X ⎛⎫=== ⎪⎝⎭,()397293101000P X ⎛⎫=== ⎪⎝⎭,()21391271C 10101000P X ⎛⎫==⋅⋅= ⎪⎝⎭,()223912432C 10101000P X ⎛⎫==⋅⋅= ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:()927310100E X =⨯=. (3)解:样本中的100名学生该周课外阅读时间的平均数为10.0630.0850.1770.2290.25110.12130.06150.02170.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=7.68.因此,样本中的100名学生该周课外阅读时间的平均数在第4组.2.(2022·安徽·合肥一六八中学模拟预测(理))《关于加快推进生态文明建设的意见》,正式把“坚持绿水青山就是金山银山”的理念写进中央文件,成为指导中国加快推进生态文明建设的重要指导思想.为响应国家号召,某市2020年植树节期间种植了一批树苗,2022年市园林部门从这批树苗中随机抽取100棵进行跟踪检测,得到树高的频率分布直方图如图所示:(1)求树高在225-235cm 之间树苗的棵数,并求这100棵树苗树高的平均值;(2)若将树高以等级呈现,规定:树高在185-205cm 为合格,在205-235为良好,在235-265cm 为优秀.视该样本的频率分布为总体的频率分布,若从这批树苗中机抽取3棵,求树高等级为优秀的棵数ξ的分布列和数学期望.【答案】(1)15;220.5(2)分布列见解析;期望为0.6【解析】(1)树高在225-235cm 之间的棵数为:()10010.00530.0150.02000250.011015⎡⎤⨯-⨯++++⨯=⎣⎦..树高的平均值为:0.051900.152000.22100.252200.152300.12400.052500.05260220.5⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(2)由(1)可知,树高为优秀的概率为:0.10.050.050.2++=, 由题意可知()~3,0.2B ξ,则ξ的所有可能取值为0,1,2,3,()0330C 0.80.512P ξ===, ()1231C 0.80.20.384P ξ==⨯=, ()2232C 0.80.20.096P ξ==⨯=,()3333C 0.20.008P ξ===,故ξ的分布列为:因为()~3,0.2B ξ,所以()30.20.6E ξ=⨯=3.(2022·新疆克拉玛依·三模(理))第24届北京冬季奥林匹克运动会于2022年2月4日至2月20日在北京和张家口联合举办.这是中国历史上第一次举办冬季奥运会,它掀起了中国人民参与冬季运动的大热潮.某市举办了中学生滑雪比赛,从中抽取40名学生的测试分数绘制成茎叶图和频率分布直方图如下,后来茎叶图受到了污损,可见部分信息如图.(1)求频率分布直方图中的a 值,并根据直方图估计该市全体中学生的测试分数的中位数和平均数(同一组中的数据以这组数据所在区间中点的值作代表,结果保留一位小数);(2)将频率作为概率,若从该市全体中学生中抽取4人,记这4人中测试分数不低于90分的人数为X ,求X 的分布列及数学期望.【答案】(1)0.02a =,中位数为74.3,平均数为74.5;(2)分布列见解析,25.【解析】(1)由频率分布直方图和茎叶图知,测试分数在[50,60),[60,70),[70,80),[90,100]的频率依次为:0.1,0.25,0.35,0.1,因此,测试分数位于[)80,90的频率为10.10.250.350.10.2----=,则0.20.0210a ==, 显然测试分数的中位数t 在区间[70,80)内,则有:()700.0350.50.10.25t -⨯=--,解得:74.3t ≈, 测试分数的平均数为:550.1650.25750.35850.2950.174.5⨯+⨯+⨯+⨯+⨯=. (2)测试分数不低于90分的频率为110,X 的所有可能值是:0,1,2,3,4, 显然1(4,)10XB ,()4419C ()(),N,41010k k k P X k k k -==∈≤, 所以X 的分布列为:数学期望()124105E X =⨯=. 4.(2022·全国·模拟预测)为了中国经济的持续发展制定了从2021年2025年发展纲要,简称“十四五”规划,为了普及“十四五”的知识,某党政机关举行“十四五”的知识问答考试,从参加考试的机关人员中,随机抽取100名人员的考试成绩的部分频率分布直方图,其中考试成绩在[)70,80上的人数没有统计出来.(1)估算这次考试成绩的平均分数;(2)把上述的频率看作概率,把考试成绩的分数在[]80,100的学员选为“十四五”优秀宣传员,若从党政机关所有工作人员中,任选3名工作人员,其中可以作为优秀宣传员的人数为ξ,求ξ的分布列与数学期望.【答案】(1)70.5(2)分布列见解析,数学期望为0.9【解析】(1)设分数在[)70,80内的频率为x ,根据频率分布直方图得,()0.010.0150.020.0250.005101x ++++⨯+=,解得0.25x =,可知分数在[)70,80内的频率为0.25,则考试成绩的平均分数为450.10550.15650.2750.25850.25950.0570.5⨯+⨯+⨯+⨯+⨯+⨯=.(2)根据频率分布直方图可知考试成绩在[]80,100的频率为()0.0250.005100.3+⨯=,则0,1,2,3ξ=.()003334300.30.71000P C ξ==⨯=,()12344110.30.71000P C ξ==⨯=()22318920.30.71000P C ξ==⨯=,()3332730.31000P C ξ===,故随机变量ξ的分布列为因为该分布为二项分布,所以该随机变量的数学期望为()30.30.9E ξ=⨯=.5.(2022·江苏苏州·模拟预测)如图,在数轴上,一个质点在外力的作用下,从原点O 出发,每次等可能地向左或向右移动一个单位,质点到达位置的数字记为X .(1)若该质点共移动2次,位于原点O 的概率;(2)若该质点共移动6次,求该质点到达数字X 的分布列和数学期望. 【答案】(1)12;(2)分布列见解析,0.【解析】(1)质点移动2次,可能结果共有224⨯=种,若质点位于原点O ,则质点需要向左、右各移动一次,共有12C 2=种,故质点位于原点O 的概率2142P ==. (2)质点每次移动向左或向右,设事件A 为“向右”,则A 为“向左”,故1()()2P A P A ==, 设Y 表示6次移动中向左移动的次数,则1(6,)2Y B ,质点到达的数字62X Y =-,所以06611(6)(0)C ()264P X P Y =====,16613(4)(1)C ()232P X P Y =====,266115(2)(2)C ()264P X P Y =====, 36615(0)(3)C ()216P X P Y =====,466115(2)(4)C ()264P X P Y =-====, 56613(4)(5)C ()232P X P Y =-====,66611(6)(6)C ()264P X P Y =-====, 所以X 的分布列为:1()(62)2()626602E X E Y E Y =-=-+=-⨯⨯+=.6.(2022·北京通州·模拟预测)第24届冬季奥林匹克运动会,于2022年2月在北京市和张家口市联合举行.某校寒假期间组织部分滑雪爱好者参加冬令营集训.训练期间,冬令营的同学们都参加了“单板滑雪”这个项目相同次数的训练测试,成绩分别为A 、B 、C 、D 、E 五个等级,分别对应的分数为5、4、3、2、1.甲、乙两位同学在这个项目的测试成绩统计结果如图所示.(1)根据上图判断,甲、乙两位同学哪位同学的单板滑雪成绩更稳定?(结论不需要证明) (2)求甲单板滑雪项目各次测试分数的众数和平均数;(3)若甲、乙再同时参加两次测试,设甲的成绩为4分并且乙的成绩为3分或4分的次数为X ,求X 的分布列(频率当作概率使用).【答案】(1)乙比甲的单板滑雪成绩更稳定 (2)众数为3分,平均数为2.9分 (3)分布列答案见解析【解析】(1)解:由图可知,乙比甲的单板滑雪成绩更稳定.(2)解:因为甲单板滑雪项目测试中4分和5分成绩的频率之和为0.325, 3分成绩的频率为0.375,所以,甲单板滑雪项目各次测试分数的众数为3分,测试成绩2分的频率为10.20.3750.250.0750.1----=,所以,甲单板滑雪项目各次测试分数的平均数为10.220.130.37540.2550.075 2.9⨯+⨯+⨯+⨯+⨯=. (3)解:由题意可知,在每次测试中,甲的成绩为4分,并且乙的成绩为3分或4分的概率为30.250.375216⨯⨯=, 依题意,3~2,16X B ⎛⎫ ⎪⎝⎭,所以,()2131********P X ⎛⎫=== ⎪⎝⎭,()12313391C 1616128P X ==⋅⋅=,()239216256P X ⎛⎫=== ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:X0 1 2 P1692563912892561.(2022·全国·高三专题练习(理))冰壶是2022年2月4日至2月20日在中国举行的第24届冬季奥运会的比赛项目之一.冰壶比赛的场地如图所示,其中左端(投掷线MN 的左侧)有一个发球区,运动员在发球区边沿的投掷线MN 将冰壶掷出,使冰壶沿冰道滑行,冰道的右端有一圆形的营垒,以场上冰壶最终静止时距离营垒区圆心O 的远近决定胜负,甲、乙两人进行投掷冰壶比赛,规定冰壶的重心落在圆O 中,得3分,冰壶的重心落在圆环A 中,得2分,冰壶的重心落在圆环B 中,得1分,其余情况均得0分.已知甲、乙投掷冰壶的结果互不影响,甲、乙得3分的概率分别为13,14;甲、乙得2分的概率分别为25,12;甲、乙得1分的概率分别为15,16.(1)求甲所得分数大于乙所得分数的概率;(2)设甲、乙两人所得的分数之差的绝对值为X ,求X 的分布列和期望.题组三 独立重复实验【答案】(1)1130(2)分布列见解析,期望为:169180【解析】(1)由题意知甲得0分的概率为1211135515---=,乙得0分的概率为1111142612---=,甲所得分数大于乙所得分数分为:甲得3分乙得2或1或0分,甲得2分乙得1或0分,甲得1分乙得0分所以所求概率为1121111(1)()3456125123011⨯-+⨯++⨯=.(2)X 可能取值为0,1,2,3,()11211111290345256151290P X ==⨯+⨯+⨯+⨯=()112111111111++35565251283246121805P X ==⨯+⨯+⨯+⨯⨯⨯=()11111121231215180P X ==⨯+⨯+⨯+⨯=()11211121545334P X ==⨯+⨯=所以,随机变量X 的分布列为:所以()298331216918001239018018405E X =⨯+⨯+⨯+⨯= 2.(2022·全国·高三专题练习(理))为弘扬奥运精神,某校开展了“冬奥”相关知识趣味竞赛活动.现有甲、乙两名同学进行比赛,共有两道题目,一次回答一道题目.规则如下:∴抛一次质地均匀的硬币,若正面向上,则由甲回答一个问题,若反面向上,则由乙回答一个问题.∴回答正确者得10分,另一人得0分;回答错误者得0分,另一人得5分.∴若两道题目全部回答完,则比赛结束,计算两人的最终得分.已知甲答对每道题目的概率为45,乙答对每道题目的概率为35,且两人每道题目是否回答正确相互独立.(1)求乙同学最终得10分的概率;(2)记X 为甲同学的最终得分,求X 的分布列和数学期望. 【答案】(1)37100(2)分布列见解析,X 的数学期望为10【解析】(1)记“乙同学最终得10分”为事件A ,则可能情况为甲回答两题且错两题;甲、乙各答一题且各对一题;乙回答两题且对一题错一题, 则()1111141313123722252525252525100P A =⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=,所以乙同学得10分的概率是37100. (2)甲同学的最终得分X 的所有可能取值是0,5,10,15,20. ()1111111313131640225252525252510025P X ==⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯==,()111213121645222525252510025P X ==⨯⨯⨯⨯+⨯⨯⨯⨯==,()141114*********102225252525252510025P X ==⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯==,()1412164152252510025P X ==⨯⨯⨯⨯==,()141416420252510025P X ==⨯⨯⨯==.X 的分布列为()4191105101520102525252525E X =⨯+⨯+⨯+⨯+⨯=,所以X 的数学期望为10. 3.(2022·青海·海东市第一中学模拟预测(理))“民族要复兴,乡村必振兴”,为了加强乡村振兴宣传工作,让更多的人关注乡村发展,某校举办了有关城乡融合发展、人与自然和谐共生的知识竞赛.比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行,每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为35,且相互间没有影响.(1)求选手甲被淘汰的概率;(2)设选手甲在初赛中答题的个数为X ,试求X 的分布列和数学期望. 【答案】(1)9923125(2)分布列见解析,2541625【解析】(1)设“选手甲被淘汰”为事件A ,因为甲答对每个题的概率均为35,所以甲答错每个题的概率均为25.则甲答了3题都错,被淘汰的概率为33328C 5125⎛⎫= ⎪⎝⎭;甲答了4个题,前3个1对2错,被淘汰的概率为22323272C 555625⎛⎫⨯⨯= ⎪⎝⎭;甲答了5个题,前4个2对2错,被淘汰的概率为2224322432C 5553125⎛⎫⎛⎫⋅⨯= ⎪⎪⎝⎭⎝⎭. 所以选手甲被海的概率()87243299212562531253125P A =++=. (2)易知X 的可能取值为3,4,5,对应甲被淘汰或进入复赛的答题个数,则()3333333273C C 5525P X ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭,()2222333232322344C C 555555625P X ⎛⎫⎛⎫==⨯⨯+⨯⨯=⎪ ⎪⎝⎭⎝⎭, ()2224322165C 55625P X ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭. X 的分布列为则()7234216256225413456255625E X =⨯+⨯+⨯=. 4.(2022·湖南·长沙一中模拟预测)某靶场有A ,B 两种型号的步枪可供选用,其中甲使用A B ,两种型号的步枪的命中率分别为14,13;,(1)若出现连续两次子弹脱靶或者子弹打光耗尽的现象便立刻停止射击,若击中标靶至少3次,则可以获得一份精美礼品,若甲使用B 型号的步枪,并装填5发子弹,求甲获得精美礼品的概率;(2)现在A B ,两把步枪中各装填3发子弹,甲打算轮流使用A B ,两种步枪进行射击,若击中标靶,则继续使用该步枪,若未击中标靶,则改用另一把步枪,甲首先使用A 种型号的步枪,若出现连续两次子弹脱靶或者其中某一把步枪的子弹打光耗尽的现象便立刻停止射击,记X 为射击的次数,求X 的分布列与数学期望. 【答案】(1)1381(2)分布列见解析;X 的数学期望为3512.【解析】(1)甲击中5次的概率为513⎛⎫ ⎪⎝⎭1243=,甲击中4次的概率为14511C (1)()33-⋅10243=,甲击中3次的概率为()322511C 3133⎛⎫⎛⎫-⋅- ⎪⎪⎝⎭⎝⎭28243=, 所以甲获得精美礼品的概率为11028391324324324324381++==. (2)X 的所有可能取值为2,3,4,5,(2)P X =11(1)(1)43=--321432=⨯=,(3)P X ==111113(1)(1)14434416⨯--+⨯⨯=,(4)P X ==1111111(1)1(1)(1)(1)4334334-⨯⨯⨯+-⨯⨯-⨯-524=,11111111(5)(1)(1)1(1)(1)144334334P X ==⨯-⨯⨯-⨯+-⨯⨯-⨯⨯1111(1)14433+⨯-⨯⨯⨯548=,所以X 的分布列为:所以1355()23452162448E X =⨯+⨯+⨯+⨯3512=. 5.(2022·全国·二模(理))“百年征程波澜壮阔,百年初心历久弥坚”.为庆祝中国建党一百周年,哈市某高中举办了“学党史、知党情、跟党走”的党史知识竞赛.比赛分为初赛和决赛两个环节,通过初赛选出两名同学进行最终决赛.若该高中A ,B 两名学生通过激烈的竞争,取得了初赛的前两名,现进行决赛.规则如下:设置5轮抢答,每轮抢到答题权并答对则该学生得1分,答错则对方得1分.当分差达到2分或答满5轮时,比赛结束,得分高者获胜.已知A ,B 每轮均抢答且抢到答题权的概率分别为23,13,A ,B 每一轮答对的概率都为12,且两人每轮是否回答正确均相互独立. (1)求经过2轮抢答A 赢得比赛的概率;:(2)设经过抢答了X 轮后决赛结束,求随机变量X 的分布列和数学期望.【答案】(1)14(2)分布列见解析;期望为134【解析】(1)记事件C 为“经过2轮抢答A 赢得比赛” A 学生每轮得一分的概率()2111132322P A =⨯+⨯=,B 学生每轮得一分的概率()1121132322P B =⨯+⨯=,()21124P C ⎛⎫== ⎪⎝⎭,所以经过2轮抢答A 赢得比赛的概率为14.(2)X 的可能取值为2,4,5.2轮比赛甲赢或乙赢的概率为()2221122C 22P X ⎛⎫=== ⎪⎝⎭,4轮比赛甲赢或乙赢的概率为()121111142C 22224P X ==⨯⨯⨯=, 5轮比赛甲赢或乙赢的概率为()11151424P X ==--=.X 的分布列为:()111132452444E X =⨯+⨯+⨯=,数学期望为134.6.(2022·湖南·长沙市明德中学二模)沙滩排球是一项每队由两人组成的两队在由球网分开的沙地上进行比赛的运动.它有多种不同的比赛形式以适应不同人、不同环境下的比赛需求.国家沙滩排球队为备战每年一次的世界沙滩排球巡回赛,在文昌高隆沙湾国家沙滩排球训练基地进行封闭式训练.在某次训练中,甲、乙两队进行对抗赛,每局依次轮流发球(每队不能连续发球),连续赢得2个球的队获胜并结束该局比赛,并且每局不得超过5个球.通过对甲、乙两队过去对抗赛记录的数据分析,甲队发球甲队赢的概率为23,乙队发球甲队赢的概率为12,每一个球的输赢结果互不影响,已知某局甲先发球. (1)求该局第二个球结束比赛的概率;(2)若每赢1个球记2分,每输一个球记0分,记该局甲队累计得分为ξ,求ξ的分布列及数学期望. 【答案】(1)12(2)分布列见解析,18754【解析】(1)记:“甲队发球甲队赢”为事件A ,“乙队发球甲队赢”为事件B ,“第二个球结束比赛”为事件C ,则()23P A =,()12P B =,()()1132P A P B ==,,C AB AB =,因为事件AB 与AB 互斥,所以()()()()P C P ABAB P AB P AB ==+()()()()P A P B P A P B =+2111132322=⨯+⨯=,所以该局第二个球结束比赛的概率为12.(2)依题意知随机变量ξ的所有可能取值为0246,,, ()()()()1110326P P AB P A P B ξ====⨯=;()()()()2P P ABA ABAB P ABA P ABAB ξ===+21111115323323236=⨯⨯+⨯⨯⨯=; ()()4P P AB ABAABABAABABA ξ==()()()()P AB P ABA P ABABA P ABABA=+++21112111112121153++=323233232332323108=⨯+⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯; ()()()()()6P P ABAB ABABA ABABA P ABAB P ABABA P ABABAξ===++21212121211112113232323233232354=⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=. 所以ξ的分布列为ξ0 2 46 P16536531081154故数学期望()15531118702466361085454E ξ=⨯+⨯+⨯+⨯=. 1.(2022·江苏省木渎高级中学模拟预测)2012年国家开始实施法定节假日高速公路免费通行政策,某收费站统计了2021年中秋节前后车辆通行数量,发现该站近几天车辆通行数量2100(,)0N ξσ~,若()(1200,80)01200P a P b ξξ>=<<=,则当82ab b a ≥+时下列说法正确的是( )A .12a =B .14b =C .34a b +=D .12a b -=【答案】C【解析】因2100(,)0N ξσ~,且()(1200,80)01200P a P b ξξ>=<<=,则有122b a +=,即21a b =-,不等式82ab b a ≥+为:24(1)1(21)0b b b -≥⇔-≤,则12b =,14a =, 所以34a b +=,14a b -=-,A ,B ,D 均不正确,C 正确.故选:C2.(2022·江苏·高三专题练习)随机变量()2,XN μσ,已知其概率分布密度函数22()21()e2x f x μσσπ-=在2x =处取得最大值为12π,则(0)P X >=( )附:()0.6827,(22)0.9545P X P X μσμσμσμσ-≤≤+=-≤≤+=. A .0.6827 B .0.84135C .0.97725D .0.9545【答案】B【解析】由题意2μ=,1122σππ=,2σ=,所以2(2)41()e2x f x π-=, (022)0.6827P X ≤≤=,所以1(0)(10.6827)0.158652P X <=-=, (0)10.158650.84135P X ≥=-=.故选:B .3.(2022·河南安阳·模拟预测(理))某房产销售公司有800名销售人员,为了了解销售人员上一个季度的房屋销量,公司随机选取了部分销售人员对其房屋销量进行了统计,得到上一季度销售人员的房屋销量题组四 正态分布(20,4)X N ,则全公司上一季度至少完成22套房屋销售的人员大概有( )附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.A .254人B .127人C .18人D .36人【答案】B 【解析】因为(20,4)X N ,所以20μ=,2σ=,所以()1()10.6827220.1586522P X P X μσμσ--<≤+-≥===所以全公司上一季度至少完成22套房屋销售的人员大概有8000.15865127⨯≈(人);故选:B4.(2022·广东·大埔县虎山中学高三阶段练习)(多选)已知某校高三年级有1000人参加一次数学模拟考试,现把这次考试的分数转换为标准分,标准分的分数转换区间为(]60,300,若使标准分X 服从正态分布N()180,900,()0.6826P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,3309().973P X μσμσ-<≤+=,则( )A .这次考试标准分超过180分的约有450人B .这次考试标准分在(]90,270内的人数约为997C .甲、乙、丙三人恰有2人的标准分超过180分的概率为38D .()2402700.0428P X <≤= 【答案】BC【解析】依题意得180μ=,2900σ=,30σ=,因为()()11802P X P X μ>=>=, 所以这次考试标准分超过180分的约有110005002⨯=人,故A 不正确;()()90270180330180330P X P X <≤=-⨯<≤+⨯(33)P X μσμσ=-<≤+=0.9973,所以这次考试标准分在(]90,270内的人数约为10000.9973997⨯≈人,故B 正确; 依题意可知,每个人的标准分超过180分的概率为12,所以甲、乙、丙三人恰有2人的标准分超过180分的概率为223113C 1228⎛⎫⎛⎫⋅⋅-= ⎪⎪⎝⎭⎝⎭,故C 正确; ()240270P X <≤()180230180330P X =+⨯<≤+⨯()23P X μσμσ=+<≤+。

高考数学第一轮复习概率专项练习(含答案)

高考数学第一轮复习概率专项练习(含答案)

高考数学第一轮复习概率专项练习(含答案)高考数学第一轮复习概率专项练习(含答案)概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。

以下是高考数学第一轮复习概率专项练习,请考生掌握。

一、选择题1.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 69471417 4698 0371 6233 2616 8045 6011 36619597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为()A.0.852B.0.819 2C.0.8D.0.75答案:D 命题立意:本题主要考查随机模拟法,考查考生的逻辑思维能力.解题思路:因为射击4次至多击中2次对应的随机数组为7140,1417,0371,6011,7610,共5组,所以射击4次至少击中3次的概率为1-=0.75,故选D.2.在菱形ABCD中,ABC=30,BC=4,若在菱形ABCD内任取一C. 1/3D.1/4答案:B 解题思路:由题意知投掷两次骰子所得的数字分别为a,b,则基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个.而方程x2-ax+2b=0有两个不同实根的条件是a2-8b0,因此满足此条件的基本事件有:(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共有9个,故所求的概率为=.5.在区间内随机取两个数分别为a,b,则使得函数f(x)=x2+2ax-b2+2有零点的概率为()A.1-B.1-C.1-D.1-答案:B 解题思路:函数f(x)=x2+2ax-b2+2有零点,需=4a2-4(-b2+0,即a2+b22成立.而a,b[-],建立平面直角坐标系,满足a2+b22的点(a,b)如图阴影部分所示,所求事件的概率为P===1-,故选B.6.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于()A.5/6B.11/12C. 1/2D.3/4答案:B 解题思路:将同色小球编号,从袋中任取两球,所有基本事件为:(红,白1),(红,白2),(红,黑1),(红,黑2),(红,黑3),(白1,白2),(白1,黑1),(白1,黑2),(白1,黑3),(白2,黑1),(白2,黑2),(白2,黑3),(黑1,黑2),(黑1,黑3),(黑2,黑3),共有15个基本事件,而为一白一黑的共有6个基本事件,所以所求概率P==.故选B.二、填空题7.已知集合表示的平面区域为,若在区域内任取一点P(x,y),则点P的坐标满足不等式x2+y22的概率为________. 答案:命题立意:本题考查线性规划知识以及几何概型的概率求解,正确作出点对应的平面区域是解答本题的关键,难度中等.解题思路:如图阴影部分为不等式组表示的平面区域,满足条件x2+y22的点分布在以为半径的四分之一圆面内,以面积作为事件的几何度量,由几何概型可得所求概率为=.8.从5名学生中选2名学生参加周六、周日社会实践活动,学生甲被选中而学生乙未被选中的概率是________.答案:命题立意:本题主要考查古典概型,意在考查考生分析问题的能力.解题思路:设5名学生分别为a1,a2,a3,a4,a5(其中甲是a1,乙是a2),从5名学生中选2名的选法有(a1,a2),(a1,a3) ,(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5),共10种,学生甲被选中而学生乙未被选中的选法有(a1,a3),(a1,a4),(a1,a5),共3种,故所求概率为.9.已知函数f(x)=kx+1,其中实数k随机选自区间,则对x[-1,1],都有f(x)0恒成立的概率是________.答案:命题立意:本题主要考查几何概型,意在考查数形结合思想.解题思路:f(x)=kx+1过定点(0,1),数形结合可知,当且仅当k[-1,1]时满足f(x)0在x[-1,1]上恒成立,而区间[-1,1],[-2,1]的区间长度分别是2,3,故所求的概率为.10.若实数m,n{-2,-1,1,2,3},且mn,则方程+=1表示焦点在y轴上的双曲线的概率是________.解题思路:实数m,n满足mn的基本事件有20种,如下表所示.-2 -1 1 2 3 -2 (-2,-1) (-2,1) (-2,2) (-2,3) -1 (-1,-2) (-1,1) (-1,2) (-1,3) 1 (1,-2) (1,-1) (1,2) (1,3) 2 (2,-2) (2,-1) (2,1) (2,3) 3 (3,-2) (3,-1) (3,1) (3,2) 其中表示焦点在y轴上的双曲线的事件有(-2,1),(-2,2),(-2,3),(-1,1),(-1,2),(-1,3),共6种,因此方程+=1表示焦点在y轴上的双曲线的概率为P==.三、解答题11.袋内装有6个球,这些球依次被编号为1,2,3,,6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出1个球,求其重量大于其编号的概率;(2)如果不放回地任意取出2个球,求它们重量相等的概率. 命题立意:本题主要考查古典概型的基础知识,考查考生的计算能力.解析:(1)若编号为n的球的重量大于其编号,则n2-6n+12n,即n2-7n+120.解得n3或n4.所以n=1,2,5,6.所以从袋中任意取出1个球,其重量大于其编号的概率P==.(2)不放回地任意取出2个球,这2个球编号的所有可能情形为:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6.共有15种可能的情形.设编号分别为m与n(m,n{1,2,3,4,5,6},且mn)的球的重量相等,则有m2-6m+12=n2-6n+12,即有(m-n)(m+n-6)=0.所以m=n(舍去)或m+n=6.满足m+n=6的情形为1,5;2,4,共2种情形.故所求事件的概率为.12.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取一个球,将其编号记为a,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为b,求关于x的一元二次方程x2+2ax+b2=0有实根的概率;(2)先从袋中随机取一个球,该球的编号记为m,将球放回袋中,然后从袋中随机取一个球,该球的编号记为n.若以(m,n)作为点P的坐标,求点P落在区域内的概率.命题立意:(1)不放回抽球,列举基本事件的个数时,注意不要出现重复的号码;(2)有放回抽球,列举基本事件的个数时,可以出现重复的号码,然后找出其中随机事件含有的基本事件个数,按照古典概型的公式进行计算.解析:(1)设事件A为方程x2+2ax+b2=0有实根.当a0,b0时,方程x2+2ax+b2=0有实根的充要条件为ab.以下第一个数表示a的取值,第二个数表示b的取值.基本事件共12个:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件A中包含6个基本事件:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3).事件A发生的概率为P(A)==.(2)先从袋中随机取一个球,放回后再从袋中随机取一个球,点P(m,n)的所有可能情况为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.落在区域内的有(1,1),(2,1),(2,2),(3,1),共4个,所以点P落在区域内的概率为.13.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.命题立意:本题以频率分布直方图为载体,考查概率、统计等基础知识,考查数据处理能力、推理论证能力和运算求解能力,考查数形结合、化归与转化等数学思想方法.解析:(1)由已知,得10(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.(2)根据频率分布直方图可知,成绩不低于60分的频率为1-10(0.005+0.01)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为6400.85=544.(3)易知成绩在[40,50)分数段内的人数为400.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为400.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记这2名学生的数学成绩之差的绝对值不大于10为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个.所以所求概率为P(M)=.14.新能源汽车是指利用除汽油、柴油之外其他能源的汽车,包括燃料电池汽车、混合动力汽车、氢能源动力汽车和太阳能汽车等,其废气排放量比较低,为了配合我国节能减排战略,某汽车厂决定转型生产新能源汽车中的燃料电池轿车、混合动力轿车和氢能源动力轿车,每类轿车均有标准型和豪华型两种型号,某月的产量如下表(单位:辆):燃料电池轿车混合动力轿车氢能源动力轿车标准型 100 150 y 豪华型 300 450 600 按能源类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中燃料电池轿车有10辆.(1)求y的值;(2)用分层抽样的方法在氢能源动力轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆轿车,求至少有1辆标准型轿车的概率;(3)用随机抽样的方法从混合动力标准型轿车中抽取10辆进行质量检测,经检测它们的得分如下:9.3,8.7,9.1,9.5,8.8,9.4,9.0,8.2,9.6,8.4.把这10辆轿车的得分看作一个样本,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.4的概率.命题立意:本题主要考查概率与统计的相关知识,考查学生的运算求解能力以及分析问题、解决问题的能力.对于第(1)问,设该厂这个月生产轿车n辆,根据分层抽样的方法在这个月生产的轿车中抽取50辆,其中有燃料电池轿车10辆,列出关系式,得到n的值,进而得到y值;对于第(2)问,由题意知本题是一个古典概型,用列举法求出试验发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果;对于第(3)问,首先求出样本的平均数,求出事件发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果.解析:(1)设该厂这个月共生产轿车n辆,由题意,得=,n=2 000,y=2 000-(100+300)-150-450-600=400.(2)设所抽样本中有a辆标准型轿车,由题意得a=2.因此抽取的容量为5的样本中,有2辆标准型轿车,3辆豪华型轿车,用A1,A2表示2辆标准型轿车,用B1,B2,B3表示3辆豪华型轿车,用E表示事件在该样本中任取2辆轿车,其中至少有1辆标准型轿车,则总的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10个,事件E包含的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个,故所求概率为P(E)=.(3)样本平均数=(9.3+8.7+9.1+9.5+8.8+9.4+9.0+8.2+9.6+8.4)=9.设D表示事件从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.4,则总的基本事件有10个,事件D包括的基本事件有9.3,8.7,9.1,8.8,9.4,9.0,共6个.所求概率为P(D)==.高考数学第一轮复习概率专项练习及答案解析的全部内容就是这些,查字典数学网希望考生可以取得优异的成绩。

高考数学一轮复习专题训练—幂函数与二次函数

高考数学一轮复习专题训练—幂函数与二次函数

幂函数与二次函数考纲要求 1.了解幂函数的概念;结合函数y =x ,y =x 2,y =x 3,y =x 12,y =1x 的图象,了解它们的变化情况;2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题. 知识梳理 1.幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数. (2)常见的五种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点.(2)二次函数的图象和性质函数 y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)图象 (抛物线)定义域 R值域 ⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a对称轴 x =-b2a顶点 坐标 ⎝⎛⎭⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数 单调性在⎝⎛⎦⎤-∞,-b 2a 上是减函数; 在⎣⎡⎭⎫-b2a ,+∞上是增函数 在⎝⎛⎦⎤-∞,-b2a 上是增函数; 在⎣⎡⎭⎫-b2a ,+∞上是减函数1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎪⎨⎪⎧a >0,Δ<0时,恒有f (x )>0;当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.3.(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限;(2)幂函数的图象过定点(1,1),如果幂函数的图象与坐标轴相交,则交点一定是原点.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)函数y =2x 13是幂函数.( )(2)当α>0时,幂函数y =x α在(0,+∞)上是增函数.( )(3)二次函数y =ax 2+bx +c (a ≠0)的两个零点可以确定函数的解析式.( ) (4)二次函数y =ax 2+bx +c (x ∈[a ,b ])的最值一定是4ac -b 24a.( )答案 (1)× (2)√ (3)× (4)×解析 (1)由于幂函数的解析式为f (x )=x α,故y =2x 13不是幂函数,(1)错误. (3)确定二次函数的解析式需要三个独立的条件,两个零点不能确定函数的解析式. (4)对称轴x =-b 2a ,当-b2a 不在给定定义域内时,最值不是4ac -b 24a,故(4)错误.2.已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α=( )A.12B.1C.32D.2答案 C解析 因为f (x )=k ·x α是幂函数,所以k =1. 又f (x )的图象过点⎝⎛⎭⎫12,22,所以⎝⎛⎭⎫12α=22, 所以α=12,所以k +α=1+12=32.3.已知函数f (x )=-2x 2+mx +3(0≤m ≤4,0≤x ≤1)的最大值为4,则m 的值为________. 答案 2 2解析 f (x )=-2x 2+mx +3=-2⎝⎛⎭⎫x -m 42+m 28+3,∵0≤m ≤4,∴0≤m4≤1,∴当x =m4时,f (x )取得最大值,∴m 28+3=4,解得m =2 2.4.(2021·全国大联考)不等式(x 2+1)12>(3x +5)12的解集为( ) A.⎣⎡⎭⎫-53,-1∪(4,+∞) B.(-1,4)C.(4,+∞)D.(-∞,-1)∪(4,+∞)答案 A解析 不等式(x 2+1)12>(3x +5)12等价于x 2+1>3x +5≥0, 解得-53≤x <-1或x >4.所以原不等式的解集为⎣⎡⎭⎫-53,-1∪(4,+∞). 5.(2020·贵阳质检)若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是( ) A.(-∞,40]B.[40,64]C.(-∞,40]∪[64,+∞)D.[64,+∞)答案 C解析 f (x )图象的对称轴x =k8,且f (x )在[5,8]上是单调函数, ∴k 8≥8或k8≤5,解之得k ≥64或k ≤40. 6.(2018·上海卷)已知α∈⎩⎨⎧-2,-1,-12,⎭⎬⎫12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______. 答案 -1解析 由y =x α为奇函数,知α取-1,1,3. 又y =x α在(0,+∞)上递减, ∴α<0,取α=-1.考点一 幂函数的图象和性质1.若幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的大致图象是( )答案 C解析 设幂函数的解析式为y =x α, 因为幂函数y =f (x )的图象过点(4,2), 所以2=4α,解得α=12.所以y =x ,其定义域为[0,+∞),且是增函数,当0<x <1时,其图象在直线y =x 的上方,对照选项,C 正确.2.已知函数f (x )=(m 2-m -1)·x m 2-2m -3是幂函数,且在(0,+∞)上递减,则实数m =( )A.2B.-1C.4D.2或-1答案 A解析 依幂函数定义,m 2-m -1=1,∴m =2或m =-1, 当m =2时,f (x )=x-3在(0,+∞)上是减函数,当m =-1时,f (x )=x 0=1在(0,+∞)上不是减函数,舍去. ∴m =2.3.(2021·衡水中学调研)已知点(m ,8)在幂函数f (x )=(m -1)x n 的图象上,设a =f ⎝⎛⎭⎫13,b =f (ln π),c =f (2-12),则a ,b ,c 的大小关系是( ) A.a <c <b B.a <b <cC.b <c <aD.b <a <c答案 A解析 由于f (x )=(m -1)x n 为幂函数, 所以m -1=1,则m =2,f (x )=x n . 又点(2,8)在函数f (x )=x n 的图象上,所以8=2n ,知n =3,故f (x )=x 3,且在R 上是增函数, 又ln π>1>2-12=22>13, 所以f (ln π)>f (2-12)>f ⎝⎛⎭⎫13,则b >c >a .4.(2021·郑州质检)幂函数f (x )=(m 2-3m +3)x m 的图象关于y 轴对称,则实数m =________. 答案 2解析 由幂函数定义,知m 2-3m +3=1,解得m =1或m =2, 当m =1时,f (x )=x 的图象不关于y 轴对称,舍去, 当m =2时,f (x )=x 2的图象关于y 轴对称, 因此m =2.感悟升华 1.对于幂函数图象的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.3.在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴. 考点二 二次函数的解析式【例1】 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解 法一 (利用“一般式”) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7. 法二 (利用“顶点式”) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12,所以m =12.又根据题意,函数有最大值8,所以n =8, 所以y =f (x )=a ⎝⎛⎭⎫x -122+8. 因为f (2)=-1,所以a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, 所以f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 法三 (利用“零点式”)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-(-a )24a =8.解得a =-4或a =0(舍).故所求函数的解析式为f (x )=-4x 2+4x +7.感悟升华 求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:【训练1】 (1)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0),且有最小值-1,则f (x )=________.(2)已知二次函数f (x )的图象经过点(4,3),在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 答案 (1)x 2+2x (2)x 2-4x +3解析 (1)设函数的解析式为f (x )=ax (x +2)(a ≠0), 所以f (x )=ax 2+2ax , 由4a ×0-4a 24a =-1,得a =1,所以f (x )=x 2+2x .(2)因为f (2-x )=f (2+x )对x ∈R 恒成立, 所以y =f (x )的图象关于x =2对称.又y =f (x )的图象在x 轴上截得的线段长为2, 所以f (x )=0的两根为2-22=1或2+22=3.所以二次函数f (x )与x 轴的两交点坐标为(1,0)和(3,0). 因此设f (x )=a (x -1)(x -3). 又点(4,3)在y =f (x )的图象上, 所以3a =3,则a =1.故f (x )=(x -1)(x -3)=x 2-4x +3. 考点三 二次函数的图象和性质角度1 二次函数的图象【例2】 (1)如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b . 其中正确的是( ) A.②④B.①④C.②③D.①③(2)设函数f (x )=x 2+x +a (a >0),若f (m )<0,则( ) A.f (m +1)≥0 B.f (m +1)≤0C.f (m +1)>0D.f (m +1)<0答案 (1)B (2)C解析 (1)因为图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确. 对称轴为x =-1,即-b2a =-1,2a -b =0,②错误.结合图象,当x =-1时,y >0,即a -b +c >0,③错误. 由对称轴为x =-1知,b =2a .根据抛物线开口向下,知a <0,所以5a <2a , 即5a <b ,④正确.(2)因为f (x )的对称轴为x =-12,f (0)=a >0,所以f (x )的大致图象如图所示.由f (m )<0,得-1<m <0,所以m +1>0>-12,所以f (m +1)>f (0)>0.感悟升华 1.研究二次函数图象应从“三点一线一开口”进行分析,“三点”中有一个点是顶点,另两个点是图象上关于对称轴对称的两个点,常取与x 轴的交点;“一线”是指对称轴这条直线;“一开口”是指抛物线的开口方向.2.求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件.角度2 二次函数的单调性与最值【例3】 (2021·西安模拟)已知f (x )=ax 2-2x (0≤x ≤1),求f (x )的最小值. 解 (1)当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.(2)当a >0时,f (x )=ax 2-2x 图象开口方向向上,且对称轴为x =1a.①当1a ≤1,即a ≥1时,f (x )=ax 2-2x 图象的对称轴在[0,1]内,∴f (x )在⎣⎡⎦⎤0,1a 上递减,在⎣⎡⎦⎤1a ,1上递增.∴f (x )min =f ⎝⎛⎭⎫1a =1a -2a =-1a. ②当1a >1,即0<a <1时,f (x )=ax 2-2x 图象的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减.∴f (x )min =f (1)=a -2.(3)当a <0时,f (x )=ax 2-2x 的图象的开口方向向下,且对称轴x =1a <0,在y 轴的左侧,∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1,-1a,a ≥1.感悟升华 (1)闭区间上二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合图象,根据函数的单调性及分类讨论的思想求解.(2)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.无论哪种类型,解题的关键都是图象的对称轴与区间的位置关系,当含有参数时,要依据图象的对称轴与区间的位置关系进行分类讨论.角度3 二次函数中的恒成立问题【例4】 设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围;(2)对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.解 (1)要使mx 2-mx -1<0恒成立,若m =0,显然-1<0,满足题意;若m ≠0,得⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0, 即-4<m <0.∴-4<m ≤0.∴所求m 的取值范围是(-4,0].(2)法一 要使f (x )<-m +5在x ∈[1,3]上恒成立.就要使m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数,∴g (x )max =g (3)=7m -6<0,∴0<m <67; 当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,∴g (x )max =g (1)=m -6<0,得m <6,∴m <0.综上所述,m 的取值范围是⎝⎛⎭⎫-∞,67. 法二 当x ∈[1,3]时,f (x )<-m +5恒成立,即当x ∈[1,3]时,m (x 2-x +1)-6<0恒成立.∵x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又m (x 2-x +1)-6<0,∴m <6x 2-x +1. ∵函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,∴只需m <67即可. 综上所述,m 的取值范围是⎝⎛⎭⎫-∞,67. 感悟升华 由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否易分离.其中分离参数的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .【训练2】 (1)(2021·长春五校联考)已知二次函数f (x )满足f (3+x )=f (3-x ),若f (x )在区间[3,+∞)上单调递减,且f (m )≥f (0)恒成立,则实数m 的取值范围是( )A.(-∞,0]B.[0,6]C.[6,+∞)D.(-∞,0]∪[6,+∞)(2)已知函数f (x )=x 2-x +1,在区间[-1,1]上f (x )>2x +m 恒成立,则实数m 的取值范围是________.答案 (1)B (2)(-∞,-1)解析 (1)设f (x )=ax 2+bx +c (a ,b ,c ∈R ,且a ≠0),∵f (3+x )=f (3-x ),∴a (3+x )2+b (3+x )+c =a (3-x )2+b (3-x )+c ,∴x (6a +b )=0,∴6a +b =0,∴f (x )=ax 2-6ax +c =a (x -3)2-9a +c .又∵f (x )在区间[3,+∞)上单调递减,∴a <0,∴f (x )的图象是以直线x =3为对称轴,开口向下的抛物线,∴由f(m)≥f(0)恒成立,得0≤m≤6,∴实数m的取值范围是[0,6].(2)f(x)>2x+m等价于x2-x+1>2x+m,即x2-3x+1-m>0,令g(x)=x2-3x+1-m,要使g(x)=x2-3x+1-m>0在[-1,1]上恒成立,只需使函数g(x)=x2-3x+1-m在[-1,1]上的最小值大于0即可.∵g(x)=x2-3x+1-m在[-1,1]上单调递减,∴g(x)min=g(1)=-m-1.由-m-1>0,得m<-1.因此满足条件的实数m的取值范围是(-∞,-1).(3)设函数f(x)=x2-2x+2,x∈[t,t+1],t∈R,求函数f(x)的最小值.解f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,函数图象的对称轴为x=1.当t+1≤1,即t≤0时,函数图象如图(1)所示,函数f(x)在区间[t,t+1]上为减函数,所以最小值为f(t+1)=t2+1;当t<1<t+1,即0<t<1时,函数图象如图(2)所示,在对称轴x=1处取得最小值,最小值为f(1)=1;当t≥1时,函数图象如图(3)所示,函数f(x)在区间[t,t+1]上为增函数,所以最小值为f(t)=t2-2t+2.综上可知,当t≤0时,f(x)min=t2+1,当0<t<1时,f (x )min =1,当t ≥1时,f (x )min =t 2-2t +2.A 级 基础巩固一、选择题1.若幂函数f (x )=(m 2-4m +4)·xm 2-6m +8在(0,+∞)上为增函数,则m 的值为( )A.1或3B.1C.3D.2答案 B解析 由题意得m 2-4m +4=1,m 2-6m +8>0,解得m =1.2.(2021·河南名校联考)函数y =1-|x -x 2|的图象大致是( )答案 C解析 ∵当0≤x ≤1时,y =x 2-x +1=⎝⎛⎭⎫x -122+34,又当x >1或x <0时,y =-x 2+x +1=-⎝⎛⎭⎫x -122+54,因此,结合图象,选项C 正确. 3.(2020·成都诊断)已知幂函数y =f (x )的图象过点⎝⎛⎭⎫12,22,则log 4f (2)的值为( ) A.14B.-14C.2D.-2答案 A解析 设幂函数为f (x )=x α,由于点⎝⎛⎭⎫12,22在幂函数的图象上,所以22=⎝⎛⎭⎫12α,解得α=12,则f (x )=x 12,故log 4f (2)=log 4212=14.4.(2021·西安检测)已知函数f (x )=x -3,若a =f (0.60.6),b =f (0.60.4),c =f (0.40.6),则a ,b ,c 的大小关系是( )A.a <c <bB.b <a <cC.b <c <aD.c <a <b 答案 B解析 ∵0.40.6<0.60.6<0.60.4,又y =f (x )=x -3在(0,+∞)上是减函数,∴b <a <c .5.已知在(-∞,1]上递减的函数f (x )=x 2-2tx +1,且对任意的x 1,x 2∈[0,t +1],总有|f (x 1)-f (x 2)|≤2,则实数t 的取值范围是( )A.[-2,2]B.[1,2]C.[2,3]D.[1,2]答案 B解析 由于f (x )=x 2-2tx +1的图象的对称轴为x =t ,又y =f (x )在(-∞,1]上是减函数,所以t ≥1.则在区间[0,t +1]上,f (x )max =f (0)=1,f (x )min =f (t )=t 2-2t 2+1=-t 2+1,要使对任意的x 1,x 2∈[0,t +1],都有|f (x 1)-f (x 2)|≤2,只需1-(-t 2+1)≤2,解得-2≤t ≤ 2.又t ≥1,∴1≤t ≤ 2.6.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a ,y =x b 的图象三等分,即有BM =MN =NA ,那么a -1b =( )A.0B.1C.12D.2 答案 A解析 BM =MN =NA ,点A (1,0),B (0,1),所以M ⎝⎛⎭⎫13,23,N ⎝⎛⎭⎫23,13, 将两点坐标分别代入y =x a ,y =x b ,得a =log 1323,b =log 2313,∴a -1b =log 1323-1log 2313=0. 二、填空题7.已知函数f (x )为幂函数,且f (4)=12,则当f (a )=4f (a +3)时,则实数a =________. 答案 15解析 设f (x )=x α,则4α=12,所以α=-12. 因此f (x )=x -12,从而a -12=4(a +3)-12,解得a =15. 8.(2021·青岛联考)已知函数f (x )=x 2-2ax +b (a >1)的定义域和值域都为[1,a ],则b =________.答案 5解析 f (x )=x 2-2ax +b 的图象关于x =a 对称,所以f (x )在[1,a ]上为减函数,又f (x )的值域为[1,a ],所以⎩⎪⎨⎪⎧f (1)=1-2a +b =a ,f (a )=a 2-2a 2+b =1. 消去b ,得a 2-3a +2=0,解得a =2(a >1),从而得b =3a -1=5.9.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 的值都有f (x )>0,则实数a 的取值范围为________.答案 ⎝⎛⎭⎫12,+∞解析 由题意得a >2x -2x 2对1<x <4恒成立, 又2x -2x 2=-2⎝⎛⎭⎫1x -122+12,14<1x<1, ∴⎝⎛⎭⎫2x -2x 2max =12,∴a >12. 三、解答题10.已知函数f (x )=x 2+2ax +3,x ∈[-4,6].(1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4,故a 的取值范围是(-∞,-6]∪[4,+∞).11.已知二次函数f (x )=ax 2+bx +1(a ,b ∈R 且a ≠0),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间;(2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的取值范围.解 (1)由题意知⎩⎪⎨⎪⎧a >0,-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎪⎨⎪⎧a =1,b =2. 所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝⎛⎭⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1, 故k 的取值范围是(-∞,1). B 级 能力提升12.(2021·江南十校调研)已知幂函数f (x )=mx 1+n 是定义在区间[-2,n ]上的奇函数,设a =f ⎝⎛⎭⎫sin 2π7,b =f ⎝⎛⎭⎫cos 2π7,c =f ⎝⎛⎭⎫tan 2π7,则( ) A.b <a <cB.c <b <aC.b <c <aD.a <b <c 答案 A解析 根据f (x )=mx 1+n 是幂函数,且在区间[-2,n ]上是奇函数,得m =1,且-2+n =0,解得n =2,∴f (x )=x 3,且在定义域[-2,2]上是单调增函数.又0<π4<2π7<π2,∴cos 2π7<sin 2π7<1<tan 2π7, ∴f ⎝⎛⎭⎫cos 2π7<f ⎝⎛⎭⎫sin 2π7<f ⎝⎛⎭⎫tan 2π7,即b <a <c . 13.(2019·上海春招)如图,正方形OABC 的边长为a (a >1),函数y =3x 2的图象交AB 于点Q ,函数y =x -12的图象交BC 于点P ,则当|AQ |+|CP |最小时,a 的值为________.答案 3解析 依题意得Q ⎝⎛⎭⎫a 3,a ,P ⎝⎛⎭⎫a ,1a ,则|AQ |+|CP |=a 3+1a =a 3+1a ,记a =t (t >1),f (t )=|AQ |+|CP |,则f (t )=t 3+1t ,所以f (t )=t 3+1t ≥213, 当且仅当t 3=1t ,即t 2=3时取等号,此时a = 3. 14.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.解 (1)设f (x )=ax 2+bx +c (a ≠0),由f (x +1)-f (x )=2x ,得2ax +a +b =2x .所以,2a =2且a +b =0,解得a =1,b =-1,又f (0)=1,所以c =1.因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方,所以在[-1,1]上,x 2-x +1>2x +m 恒成立;即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝⎛⎭⎫x -322-54, 因为g (x )在[-1,1]上的最小值为g (1)=-1,所以m <-1.故实数m 的取值范围为(-∞,-1).。

高考数学一轮复习专题训练—绝对值不等式

高考数学一轮复习专题训练—绝对值不等式

绝对值不等式考纲要求1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-b|≤|a-c|+|c-b|(a,b,c∈R);2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-c|+|x-b|≥a.知识梳理1.绝对值三角不等式定理1:如果a,b是实数,那么|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-b|≤|a-c|+|c-b|,当且仅当(a-c)(c-b)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集.不等式a>0a=0a<0|x|<a {x|-a<x<a}∅∅|x|>a {x|x>a或x<-a}{x|x∈R且x≠0}R(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法.①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法.①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.1.利用绝对值不等式的几何意义解决问题能有效避免分类讨论不全面的问题;若用零点分段法求解,要掌握分类讨论的标准,做到不重不漏.2.绝对值三角不等式|a±b|≤|a|+|b|,从左到右是一个放大过程,从右到左是缩小过程,证明不等式可以直接用,也可利用它消去变量求最值.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)若|x|>c的解集为R,则c≤0.()(2)不等式|x-1|+|x+2|<2的解集为∅.()(3)对|a+b|≥|a|-|b|当且仅当a>b>0时等号成立.()(4)对|a|-|b|≤|a-b|当且仅当|a|≥|b|时等号成立.()(5)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.()答案(1)×(2)√(3)×(4)×(5)√2.不等式|x-1|-|x-5|<2的解集是()A.(-∞,4) B.(-∞,1) C.(1,4) D.(1,5)答案 A解析①当x≤1时,原不等式可化为1-x-(5-x)<2,∴-4<2,不等式恒成立,∴x≤1.②当1<x<5时,原不等式可化为x-1-(5-x)<2,∴x<4,∴1<x<4,③当x≥5时,原不等式可化为x-1-(x-5)<2,该不等式不成立.综上,原不等式的解集为(-∞,4).3.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是________.答案(-∞,-3]∪[3,+∞)解析由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴|x+1|+|x-2|的最小值为3,要使原不等式有解,只需|a|≥3,即a≥3或a≤-3.4.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________. 答案 2解析 因为|kx -4|≤2,所以-2≤kx -4≤2,所以2≤kx ≤6.因为不等式的解集为{x |1≤x ≤3},所以k =2.5.(2021·天津联考)若对任意的x ∈R ,不等式|x -1|-|x +2|≤|2a -1|恒成立,则实数a 的取值范围为________.答案 (-∞,-1]∪[2,+∞)解析 ∵y =|x -1|-|x +2|≤|(x -1)-(x +2)|=3, ∴要使|x -1|-|x +2|≤|2a -1|恒成立, 则|2a -1|≥3,2a -1≥3或2a -1≤-3, 即a ≥2或a ≤-1,∴实数a 的取值范围是(-∞,-1]∪[2,+∞). 6.(2021·郑州质量预测)已知函数f (x )=|x +1|-a |x -1|. (1)当a =-2时,解不等式f (x )>5; (2)若f (x )≤a |x +3|恒成立,求a 的最小值. 解 (1)当a =-2时,f (x )=⎩⎪⎨⎪⎧1-3x ,x ≤-1,-x +3,-1<x ≤1,3x -1,x >1.当x ≤-1时,由1-3x >5,得x <-43;当-1<x ≤1时,无解;当x >1时,由3x -1>5,得x >2. 故f (x )>5的解集为⎝⎛⎭⎫-∞,-43∪(2,+∞). (2)由f (x )≤a |x +3|得a ≥|x +1||x -1|+|x +3|,由|x -1|+|x +3|≥2|x +1|, 得|x +1||x -1|+|x +3|≤12,故a ≥12(当且仅当x ≥1或x ≤-3时等号成立),故a 的最小值为12.考点一 绝对值不等式的解法【例1】 (2020·全国Ⅰ卷)已知函数f (x )=|3x +1|-2|x -1|.(1)画出y =f (x )的图象; (2)求不等式f (x )>f (x +1)的解集.解 (1)由题设知f (x )=⎩⎪⎨⎪⎧-x -3,x ≤-13,5x -1,-13<x ≤1,x +3,x >1.画出y =f (x )的图象如图(1)所示.图(1)(2)函数y =f (x )的图象向左平移1个单位长度后得到函数y =f (x +1)的图象,如图(2)所示.图(2)易得y =f (x )的图象与y =f (x +1)的图象的交点坐标为⎝⎛⎭⎫-76,-116. 由图象可知,当且仅当x <-76时,y =f (x )的图象在y =f (x +1)的图象上方. 故不等式f (x )>f (x +1)的解集为⎝⎛⎭⎫-∞,-76. 【例2】 (2021·驻马店联考)已知函数f (x )=|x +a |+|2x -1|(a ∈R). (1)当a =-1时,求不等式f (x )≥2的解集; (2)若f (x )≤2x 的解集包含⎣⎡⎦⎤12,34,求a 的取值范围.解 (1)当a =-1时,不等式f (x )≥2可化为|x -1|+|2x -1|≥2, 当x ≤12时,不等式为1-x +1-2x ≥2,解得x ≤0;当12<x <1时,不等式为1-x +2x -1≥2,无解; 当x ≥1时,不等式为x -1+2x -1≥2,解得x ≥43.综上,原不等式的解集为(-∞,0]∪⎣⎡⎭⎫43,+∞.(2)因为f (x )≤2x 的解集包含⎣⎡⎦⎤12,34,所以不等式可化为|x +a |+2x -1≤2x ,即|x +a |≤1.解得-a -1≤x ≤-a +1,由题意知⎩⎨⎧-a +1≥34,-a -1≤12,解得-32≤a ≤14.所以实数a 的取值范围是⎣⎡⎦⎤-32,14. 感悟升华 1.用零点分段法解绝对值不等式的步骤(1)求零点;(2)划区间、去绝对值符号;(3)分别解去掉绝对值的不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端点值.2.含绝对值的函数本质上是分段函数,绝对值不等式可利用分段函数的图象的几何直观性求解,体现了数形结合的思想.【训练1】 (2019·全国Ⅱ卷)已知f (x )=|x -a |x +|x -2|(x -a ). (1)当a =1时,求不等式f (x )<0的解集; (2)若x ∈(-∞,1)时,f (x )<0,求a 的取值范围. 解 (1)当a =1时,f (x )=|x -1|x +|x -2|(x -1). 当x <1时,f (x )=-2(x -1)2<0; 当x ≥1时,显然f (x )≥0.所以,不等式f (x )<0的解集为(-∞,1).(2)当a <1时,若a ≤x <1,则f (x )=(x -a )x +(2-x )(x -a )=2(x -a )≥0,不合题意;所以a ≥1, 当a ≥1,x ∈(-∞,1)时,f (x )=(a -x )x +(2-x )(x -a )=2(a -x )(x -1)<0. 所以,a 的取值范围是[1,+∞). 考点二 绝对值不等式性质的应用【例3】 设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .证明 由|x -1|<a 3可得|2x -2|<2a 3,|2x +y -4|≤|2x -2|+|y -2|<2a 3+a3=a .【例4】 若f (x )=⎪⎪⎪⎪3x +1a +3|x -a |的最小值为4,求a 的值. 解 因为f (x )=⎪⎪⎪⎪3x +1a +3|x -a |≥⎪⎪⎪⎪⎝⎛⎭⎫3x +1a -3x -3a =⎪⎪⎪⎪1a +3a ,由⎪⎪⎪⎪1a +3a =4得a =±1或a =±13.感悟升华 1.求含绝对值的函数最值时,常用的方法有三种: (1)利用绝对值的几何意义.(2)利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥|a |-|b |. (3)利用零点分区间法.2.含绝对值不等式的证明中,关键是绝对值三角不等式的活用. 【训练2】 设函数f (x )=x 2-x -15,且|x -a |<1. (1)解不等式|f (x )|>5;(2)求证:|f (x )-f (a )|<2(|a |+1).(1)解 因为|x 2-x -15|>5,所以x 2-x -15<-5或x 2-x -15>5,即x 2-x -10<0或x 2-x -20>0,解得1-412<x <1+412或x <-4或x >5,所以不等式|f (x )|>5的解集为⎩⎨⎧⎭⎬⎫x |x <-4或1-412<x <1+412或x >5.(2)证明 因为|x -a |<1,所以|f (x )-f (a )|=|(x 2-x -15)-(a 2-a -15)|=|(x -a )(x +a -1)|=|x -a |·|x +a -1|<1·|x +a -1|=|x -a +2a -1|≤|x -a |+|2a -1|<1+|2a -1|≤1+|2a |+1=2(|a |+1),即|f (x )-f (a )|<2(|a |+1). 考点三 绝对值不等式的综合应用 角度1 绝对值不等式恒成立问题【例5】 (2021·陇南二诊)已知a ≠0,函数f (x )=|ax -1|,g (x )=|ax +2|. (1)若f (x )<g (x ),求x 的取值范围;(2)若f (x )+g (x )≥|2×10a -7|对x ∈R 恒成立,求a 的最大值与最小值之和. 解 (1)因为f (x )<g (x ), 所以|ax -1|<|ax +2|,两边同时平方得a 2x 2-2ax +1<a 2x 2+4ax +4, 即6ax >-3,当a >0时,x >-12a ,即x 的取值范围是⎝⎛⎭⎫-12a ,+∞;当a <0时,x <-12a ,即x 的取值范围是⎝⎛⎭⎫-∞,-12a . (2)因为f (x )+g (x )=|ax -1|+|ax +2|≥|(ax -1)-(ax +2)|=3, 所以f (x )+g (x )的最小值为3,所以|2×10a -7|≤3,则-3≤2×10a -7≤3, 解得lg 2≤a ≤lg 5,故a 的最大值与最小值之和为lg 2+lg 5=lg 10=1. 角度2 绝对值不等式能成立问题【例6】 (2021·东北三省三校联考)已知函数f (x )=|2x +a |+1. (1)当a =2时,解不等式f (x )+x <2;(2)若存在a ∈⎣⎡⎦⎤-13,1时,使不等式f (x )≥b +|2x +a 2|的解集非空,求b 的取值范围. 解 (1)当a =2时,函数f (x )=|2x +2|+1, 不等式f (x )+x <2化为|2x +2|<1-x . 当1-x ≤0时,即x ≥1时,该不等式无解. 当1-x >0时,原不等式化为x -1<2x +2<1-x . 解之得-3<x <-13.综上,原不等式的解集为⎩⎨⎧⎭⎬⎫x -3<x <-13.(2)由f (x )≥b +|2x +a 2|, 得b ≤|2x +a |-|2x +a 2|+1,设g (x )=|2x +a |-|2x +a 2|+1,则不等式的解集非空,即不等式有解, 所以不等式等价于b ≤g (x )max .由g (x )≤|(2x +a )-(2x +a 2)|+1=|a 2-a |+1, 所以b ≤|a 2-a |+1.由题意知存在a ∈⎣⎡⎦⎤-13,1,使得上式成立,而函数h (a )=|a 2-a |+1在a ∈⎣⎡⎦⎤-13,1上的最大值为h ⎝⎛⎭⎫-13=139, 所以b ≤139,即b 的取值范围是⎝⎛⎦⎤-∞,139. 感悟升华 1.不等式恒成立问题,存在性问题都可以转化为最值问题解决.2.(1)在例6第(1)问,可作出函数y =|2x +2|与y =1-x 的图象,观察、计算边界,直观求得不等式的解集.(2)第(2)问把不等式解集非空,转化为求函数的最值.存在性问题转化方法:f (x )>a 有解⇔f (x )max >a ;f (x )<a 有解⇔f (x )min <a . 【训练3】 (2021·呼和浩特模拟)已知函数f (x )=|2x -a |+2|x +1|. (1)当a =1时,解关于x 的不等式f (x )≤6;(2)已知g (x )=|x -1|+2,若对任意x 1∈R ,都存在x 2∈R ,使得f (x 1)=g (x 2)成立,求实数a 的取值范围.解 (1)当a =1时,f (x )=|2x -1|+2|x +1|,则f (x )=⎩⎪⎨⎪⎧-4x -1,x <-1,3,-1≤x ≤12,4x +1,x >12.当x <-1时,由-4x -1≤6,得-74≤x <-1;当-1≤x ≤12时,f (x )≤6恒成立;当x >12时,由4x +1≤6,得12<x ≤54.综上,f (x )≤6的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-74≤x ≤54. (2)∵对任意x 1∈R ,都存在x 2∈R ,使得f (x 1)=g (x 2)成立, ∴{y |y =f (x )}⊆{y |y =g (x )}. 又f (x )=|2x -a |+2|x +1|≥|2x -a -(2x +2)| =|a +2|,g (x )=|x -1|+2≥2, ∴|a +2|≥2,解得a ≤-4或a ≥0,∴实数a 的取值范围是(-∞,-4]∪[0,+∞).1.(2020·全国Ⅱ卷)已知函数f (x )=|x -a 2|+|x -2a +1|. (1)当a =2时,求不等式f (x )≥4的解集; (2)若f (x )≥4,求a 的取值范围. 解 (1)当a =2时,f (x )=⎩⎪⎨⎪⎧7-2x ,x ≤3,1,3<x ≤4,2x -7,x >4.因此,不等式f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤32或x ≥112. (2)因为f (x )=|x -a 2|+|x -2a +1|≥|a 2-2a +1|=(a -1)2, 故当(a -1)2≥4,即|a -1|≥2时,f (x )≥4. 所以当a ≥3或a ≤-1时,f (x )≥4.当-1<a <3时,f (a 2)=|a 2-2a +1|=(a -1)2<4. 所以a 的取值范围是(-∞,-1]∪[3,+∞). 2.已知f (x )=|x +1|-|ax -1|.(1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解 (1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.则当x ≥1时,f (x )=2>1恒成立,所以x ≥1; 当-1<x <1时,f (x )=2x >1, 所以12<x <1;当x ≤-1时,f (x )=-2<1.故不等式f (x )>1的解集为⎩⎨⎧⎭⎬⎫x |x >12. (2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,|ax -1|<1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <2a , 所以2a≥1,故0<a ≤2. 综上,a 的取值范围为(0,2].3.(2021·安徽江南十校模拟)已知函数f (x )=|x -1|+|x +2|.(1)求不等式f (x )<x +3的解集;(2)若不等式m -x 2-2x ≤f (x )在R 上恒成立,求实数m 的取值范围.解 (1)当x <-2时,f (x )<x +3可化为1-x -x -2<x +3,解得x >-43,无解; 当-2≤x ≤1时,f (x )<x +3可化为1-x +x +2<x +3,解得x >0,故0<x ≤1; 当x >1时,f (x )<x +3可化为x -1+x +2<x +3,解得x <2,故1<x <2. 综上可得,f (x )<x +3的解集为(0,2).(2)不等式m -x 2-2x ≤f (x )在R 上恒成立,可得m ≤x 2+2x +f (x )恒成立, 即m ≤[]x 2+2x +f x min .y =x 2+2x =(x +1)2-1的最小值为-1,此时x =-1.f (x )=|x -1|+|x +2|≥|x -1-x -2|=3,当且仅当-2≤x ≤1时,取得等号, 则[x 2+2x +f (x )]min =-1+3=2,所以m ≤2,即m 的取值范围是(-∞,2].4.已知f (x )=|x +1|+|x -m |.(1)若f (x )≥2,求m 的取值范围;(2)已知m >1,若∃x ∈(-1,1),f (x )≥x 2+mx +3成立,求m 的取值范围. 解 (1)因为f (x )=|x +1|+|x -m |≥|m +1|,所以只需|m +1|≥2,所以m +1≥2或m +1≤-2,解得m ≥1或m ≤-3,即m 的取值范围为(-∞,-3]∪[1,+∞).(2)因为m >1,所以当x ∈(-1,1)时,f (x )=m +1,所以f (x )≥x 2+mx +3,即m ≥x 2+mx +2,所以m (1-x )≥x 2+2,m ≥x 2+21-x , 令g (x )=x 2+21-x =1-x 2-21-x +31-x =(1-x )+31-x-2(-1<x <1). 因为-1<x <1,所以0<1-x <2,所以(1-x )+31-x≥23(当且仅当x =1-3时取“=”), 所以g (x )min =23-2,所以m ≥23-2.故实数m 的取值范围是[23-2,+∞).5.(2021·南昌摸底测试)已知f (x )=|2x +1|+|x -1|.(1)求不等式f (x )≥2的解集;(2)若f (x )≥a |x |恒成立,求a 的取值范围.解 (1)∵f (x )=|2x +1|+|x -1|≥2,①当x ≤-12时,⎩⎪⎨⎪⎧ x ≤-12,-2x -1-x +1≥2⇒x ≤-23; ②当-12<x <1时,⎩⎪⎨⎪⎧ -12<x <1,2x +1-x +1≥2⇒0≤x <1;③当x ≥1时,⎩⎪⎨⎪⎧x ≥1,2x +1+x -1≥2⇒x ≥1. 综上所述,f (x )≥2的解集为⎝⎛⎦⎤-∞,-23∪[0,+∞). (2)由题意知|2x +1|+|x -1|≥a |x |恒成立,①当x =0时,2≥a ·0恒成立,得a ∈R ;②当x ≠0时,|2x +1|+|x -1||x |=⎪⎪⎪⎪2+1x +⎪⎪⎪⎪1-1x ≥a 恒成立, 因为⎪⎪⎪⎪2+1x +⎪⎪⎪⎪1-1x ≥⎪⎪⎪⎪2+1x+1-1x =3,所以a ≤3. 综上所述,符合条件的实数a 的取值范围是(-∞,3].6.(2021·长春模拟)已知函数f (x )=|x +2|+|x -1|-a .(1)当a =4时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,设a 的最大值为s ,当正数m ,n 满足12m +n +2m +3n =s 时,求3m +4n 的最小值.解 (1)当a =4时,|x +2|+|x -1|-4≥0,当x <-2时,-x -2-x +1-4≥0,解得x ≤-52; 当-2≤x ≤1时,x +2-x +1-4≥0,解得x ∈∅;当x >1时,x +2+x -1-4≥0,解得x ≥32. ∴函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-52或x ≥32. (2)∵函数f (x )的定义域为R ,∴|x +2|+|x -1|-a ≥0对任意的x ∈R 恒成立,∴a ≤|x +2|+|x -1|对任意的x ∈R 恒成立,又|x +2|+|x -1|≥|x +2-x +1|=3,∴a ≤3,∴s =3,∴12m +n +2m +3n=3,且m >0,n >0, ∴3m +4n =(2m +n )+(m +3n )=13[(2m +n )+(m +3n )]·⎝⎛⎭⎫12m +n +2m +3n =13⎣⎢⎡⎦⎥⎤3+22m +n m +3n +m +3n 2m +n ≥13(3+22)=1+223,当且仅当m =1+2215,n =3+215时取等号, ∴3m +4n 的最小值为1+223.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广州仲元中学高三数学专题训练测试系列(数列)时间:120分钟 分值:150分一、选择题(每小题5分,共60分)1.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=( )A .138B .135C .95D .23解析:由a 2+a 4=4,a 3+a 5=10可得d =3,a 1=-4,所以S 10=-4×10+10×92×3=95.答案:C2.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( )A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列解析:设{a n }的公差为d ,则d =1,设c n =a 2n -1+2a 2n ,则c n +1=a 2n +1+2a 2n +2,c n +1-c n =a 2n +1+2a 2n +2-a 2n -1-2a 2n =6d =6,选择C.答案:C3.在等差数列{a n }中,已知a 1=13,a 1+a 2+a 3+a 4+a 5=20,那么a 3等于( )A .4B .5C .6D .7解析:a 1+a 2+a 3+a 4+a 5=5a 3=20,a 3=4. 答案:A4.等差数列{a n }的公差d ≠0,a 1≠d ,若这个数列的前40项和是20m ,则m 等于( ) A .a 1+a 20 B .a 5+a 17 C .a 27+a 35 D .a 15+a 26 解析:S 40=40(a 1+a 40)2=20(a 1+a 40)=20m ,m =a 1+a 40=a 15+a 26. 答案:D5.在等比数列{a n }中,若a 5+a 6=a (a ≠0),a 15+a 16=b ,则a 25+a 26的值是( )A.ba B.b 2a 2 C.b 2aD.b a 2 解析:记等比数列{a n }的公比为q ,依题意得a 15+a 16=a 5q 10+a 6q 10=(a 5+a 6)q 10,q 10=a 15+a 16a 5+a 6=b a,a 25+a 26=a 5q 20+a 6q 20=(a 5+a 6)q 20=a ×(b a )2=b 2a ,选C.答案:C6.在等比数列{a n }中,若a 1+a 2+a 3+a 4=158,a 2a 3=-98,则1a 1+1a 2+1a 3+1a 4=( )A.53B.35C .-53D .-35解析:依题意,设公比为q ,则q ≠1,因此⎩⎪⎨⎪⎧a 1(1-q 4)1-q=158 ①a 21q 3=-98②,又1a 1,1a 2,1a 3,1a 4构成以1a 1为首项,以1q 为公比的等比数列,所以1a 1+1a 2+1a 3+1a 4=1a 1[1-(1q )4]1-1q =(1-q 4)a 1q 3(1-q ),①÷②得(1-q 4)a 1q 3(1-q )=-53,即1a 1+1a 2+1a 3+1a 4=-53,选择C.答案:C7.(2010·江西九校联考)设{a n }是等比数列,S n 是{a n }的前n 项和,对任意正整数n ,有a n +2a n +1+a n +2=0,又a 1=2,则S 101=( )A .200B .2C .-2D .0解析:设等比数列{a n }的公比为q ,因为对任意正整数,有a n +2a n +1+a n +2=0,a n +2a n q +a n q 2=0,因为a n ≠0,所以1+2q +q 2=0,q =-1,S101=2×(1+1)1+1=2,选择B. 答案:B8.(2010·西安八校二联)已知等比数列{a n }的公比q <0,其前n 项和为S n ,则a 9S 8与a 8S 9的大小关系是( )A .a 9S 8>a 8S 9B .a 9S 8<a 8S 9C .a 9S 8=a 8S 9D .a 9S 8与a 8S 9的大小关系与a 1的值有关解析:依题意得,a 9S 8-a 8S 9=a 1q 8·a 1(1-q 8)1-q -a 1q 7·a 1(1-q 9)1-q =-a 21q 7>0,因此a 9S 8>a 8S 9,选A.答案:A9.已知等比数列{a n }的各项均为正数,数列{b n }满足b n =ln a n ,b 3=18,b 6=12,则数列{b n }前n 项和的最大值等于( )A .126B .130C .132D .134解析:∵{a n }是各项不为0的正项等比数列, ∴b n =ln a n 是等差数列.又∵b 3=18,b 6=12,∴b 1=22,d =-2, ∴S n =22n +n (n -1)2×(-2)=-n 2+23n ,∴(S n )max =-112+23×11=132. 答案:C10.(2009·安徽蚌埠测验)数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项等于( ) A .42 B .45C .48D .51解析:将数列分段,第1段1个数,第2段2个数,…,第n 段n 个数,设a 1000=k ,则a 1000在第k 个数段,由于第k 个数段共有k 个数,则由题意k 应满足1+2+…+(k -1)<1000≤1+2+…+k ,解得k =45.答案:B11.(2010·湖北八校联考)在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”.下列是对“等差比数列”的判断:①k 不可能为0②等差数列一定是等差比数列 ③等比数列一定是等差比数列 ④等差比数列中可以有无数项为0 其中正确的判断是( )A .①②B .②③C .③④D .①④解析:依题意,∵a n +2-a n +1a n +1-a n=k (n ∈N *),∴k ≠0,①正确,排除B ,C 选项,又由于公差是0的等差数列不是等差比数列,②错误,排除A ,选择D.答案:D12.(2009·湖北高考)设x ∈R ,记不超过x 的最大整数为[x ],令{x }=x -[x ],则{5+12},[5+12],5+12( )A .是等差数列但不是等比数列B .是等比数列但不是等差数列C .既是等差数列又是等比数列D .既不是等差数列也不是等比数列 解析:由题意,记a 1={5+12}=5+12-[5+12]=5+12-1=5-12,a 2=[5+12]=1,a 3=5+12,若为等差数列,则2a 2=a 1+a 3,不满足;若为等比数列,则(a 2)2=a 1a 3,有12=5-12×5+12,∴是等比数列但非等差数列,选B. 答案:B二、填空题(每小题4分,共16分)13.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差d =__________. 解析:由a 4+a 6=6,得a 5=3,又S 5=5(a 1+a 5)2=10,∴a 1=1.∴4d =a 5-a 1=2,d =12.答案:1214.(2009·重庆一诊)已知数列{a n }是等比数列,且a 4·a 5·a 6·a 7·a 8·a 9·a 10=128,则a 15·a 2a 10=__________.解析:设等比数列{a n }的公比为q ,则依题意得a 71·q 42=128,a 1·q 6=2,a 7=2,a 15·a 2a 10=a 2·q 5=a 7=2. 答案:215.把100个面包分给5个人,使每人所得的面包数成等差数列,且使较多的三份之和的13等于较少的两份之和,则最少的一份面包个数是__________. 解析:设构成等差数列的五个数为a -2d ,a -d ,a ,a +d ,a +2d ,则⎩⎪⎨⎪⎧5a =1003(a +d )=3(2a -3d )解得⎩⎪⎨⎪⎧a =20d =5,则最少的一份为a -2d =10. 答案:1016.数列{a n }中,a 1=3,a n -a n a n +1=1(n =1,2,…),A n 表示数列{a n }的前n 项之积,则A 2005=__________.解析:可求出a 1=3,a 2=23,a 3=-12,a 4=3,a 5=23,a 6=-12,…,数列{a n }每3项重复一次,可以理解为周期数列,由2005=668×3+1且a 1×a 2×a 3=-1,则A 2005=(a 1×a 2×a 3)…(a 2002×a 2003×a 2004)×a 2005=(a 1×a 2×a 3)668a 1=3.答案:3三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.(12分)S n 是无穷等比数列{a n }的前n 项和,公比q ≠1,已知1是12S 2和13S 3的等差中项,6是2S 2和3S 3的等比中项.(1)求S 2和S 3的值;(2)求此数列的通项公式; (3)求此数列的各项和S .解:(1)由题意知⎩⎪⎨⎪⎧12S 2+13S 3=22S 2·3S 3=36,解得S 2=2,S 3=3.(2)⎩⎪⎨⎪⎧a 1+a 1q =2a 1+a 1q +a 1q 2=3,解得⎩⎪⎨⎪⎧ a 1=4q =-12或⎩⎪⎨⎪⎧a 1=1q =1(舍去). ∴a n =4·(-12)n -1.(3)∵|q |=|-12|=12<1.∴S =41-(-12)=83.18.(12分)已知函数f (x )=x3x +1,数列{a n }满足a 1=1,a n +1=f (a n )(n ∈N *).(1)求证:数列{1a n }是等差数列;(2)记S n (x )=x a 1+x 2a 2+…+eq \f(x n ,a n ),求S n (x ).(1)证明:∵a n +1=f (a n ),∴a n +1=a n3a n +1.∴1a n +1=1a n +3,即1a n +1-1a n =3. ∴{1a n }是以1a 1=1为首项,3为公差的等差数列. ∴1a n =1+3(n -1)=3n -2. (2)解:S n (x )=x +4x 2+7x 3+…+(3n -2)x n ,①当x =1时,S n (x )=1+4+7+…+(3n -2)=n (1+3n -2)2=n (3n -1)2.当x ≠1时,xS n (x )=x 2+4x 3+…+(3n -5)x n +(3n -2)x n +1,②①-②,得(1-x )S n (x )=x +3x 2+3x 3+…+3x n -(3n -2)x n +1=3(x +x 2+…+x n )-2x -(3n -2)x n +1=3x (1-x n )1-x-2x -(3n -2)x n +1,S n (x )=3x -3x n +1(1-x )2-2x +(3n -2)x n +11-x.19.(12分)(2010·东城一模)已知递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2、a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =log 2a n +1,S n 是数列{b n }的前n 项和,求使S n >42+4n 成立的n 的最小值.解:(1)设等比数列{a n }的公比为q ,依题意有2(a 3+2)=a 2+a 4,①又a 2+a 3+a 4=28,将①代入得a 3=8.所以a 2+a 4=20.于是有⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8,解得⎩⎪⎨⎪⎧a 1=2,q =2,或⎩⎪⎨⎪⎧a 1=32,q =12.又{a n }是递增的,故a 1=2,q =2. 所以a n =2n .(2)b n =log 22n +1=n +1,S n =n 2+3n2.故由题意可得n 2+3n2>42+4n ,解得n >12或n <-7.又n ∈N *,所以满足条件的n 的最小值为13.20.(12分)商学院为推进后勤社会化改革,与桃园新区商定:由该区向建设银行贷款500万元在桃园新区为学院建一栋可容纳一千人的学生公寓,工程于2002年初动工,年底竣工并交付使用,公寓管理处采用收费还建行贷款(年利率5%,按复利计算),公寓所收费用除去物业管理费和水电费18万元,其余部分全部在年底还建行贷款.(1)若公寓收费标准定为每生每年800元,问到哪一年可偿还建行全部贷款?(2)若公寓管理处要在2010年底把贷款全部还清,则每生每年的最低收费标准是多少元?(精确到元)(参考数据:lg1.7343=0.2391,lg1.05=0.0212,1.058=1.4774)解:依题意,公寓2002年底建成,2003年开始使用.(1)设公寓投入使用后n 年可偿还全部贷款,则公寓每年收费总额为1000×800元=800000元=80万元,扣除18万元,可偿还贷款62万元.依题意有62[1+(1+5%)+(1+5%)2+…+(1+5%)n -1]≥500(1+5%)n +1. 化简得62(1.05n -1)≥25×1.05n +1, ∴1.05n ≥1.7343.两边取对数整理得n ≥lg1.7343lg1.05=0.23910.0212=11.28,∴取n =12(年).∴到2014年底可全部还清贷款. (2)设每生每年的最低收费标准为x 元,∵到2010年底公寓共使用了8年,依题意有(1000x10000-18)[1+(1+5%)+(1+5%)2+…+(1+5%)7]≥500(1+5%)9.化简得(0.1x -18)1.058-11.05-1≥500×1.059.∴x ≥10(18+25×1.0591.058-1)=10(18+25×1.05×1.47741.4774-1)=10×(18+81.2)=992(元)故每生每年的最低收费标准为992元.21.(12分)若公比为c 的等比数列{a n }的首项a 1=1,且a n =a n -1+a n -22(n =3,4,…).(1)求c 的值.(2)求数列{na n }的前n 项和S n .解:(1)由题设,当n ≥3时,a n =c 2a n -2, a n -1=ca n -2,a n =a n -1+a n -22=1+c2a n -2,∴c 2=1+c2. 解得c =1或c =-12.(2)当c =1时{a n }是一个常数数列,a n =1.此时S n =1+2+3+…+n =n (n +1)2.当c =-12时,a n =(-12)n -1(n ∈N *).此时S n =1+2(-12)+3(-12)2+…+n (-12)n -1.①-12S n =-12+2(-12)2+3(-12)3+…+(n -1)(-12)n -1+n (-12)n .②①-②,得(1+12)S n =1+(-12)+(-12)2+…+(-12)n -1-n (-12)n =1-(-12)n1+12-n (-12)n .∴S n =19[4-(-1)n 3n +22n -1].22.(14分)(2009·陕西高考)(理)已知数列{x n }满足x 1=12,x n +1=11+x n,n ∈N *.(1)猜想数列{x 2n }的单调性,并证明你的结论;(2)证明:|x n +1-x n |≤16(25)n -1.(文)已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式.解:(理)(1)由x 1=12及x n +1=11+x n得x 2=23,x 4=58,x 6=1321.由x 2>x 4>x 6猜想,数列{x 2n }是递减数列. 下面用数学归纳法证明: ①当n =1时,已证命题成立.②假设当n =k 时命题成立,即x 2k >x 2k +2, 易知x n >0,那么x 2k +2-x 2k+4=11+x 2k +1-11+x 2k +3=x 2k +3-x 2k +1(1+x 2k +1)(1+x 2k +3)=x 2k -x 2k +2(1+x 2k )(1+x 2k +1)(1+x 2k +2)(1+x 2k +3)>0,即x 2(k +1)>x 2(k +1)+2,也就是说,当n =k +1时命题也成立.结合①和②知,命题成立.(2)当n =1时,|x n +1-x n |=|x 2-x 1|=16,结论成立;当n ≥2时,易知0<x n -1<1,∴1+x n -1<2,x n =11+x n -1>12,∴(1+x n )(1+x n -1)=(1+11+x n -1)(1+x n -1)=2+x n -1≥52,∴|x n +1-x n |=|11+x n -11+x n -1|=|x n -x n -1|(1+x n )(1+x n -1)≤25|x n -x n -1|≤(25)2|x n -1-x n -2|≤…≤(25)n-1|x 2-x 1|=16(25)n -1. (文)(1)b 1=a 2-a 1=1,当n ≥2时,b n =a n +1-a n =a n -1+a n 2-a n =-12(a n -a n -1)=-12b n -1,∴{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =(-12)n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+(-12)+…+(-12)n -2=1+1-(-12)n -11-(-12)=1+23[1-(-12)n -1]=53-23(-12)n -1,当n =1时,53-23(-12)1-1=1=a 1.∴a n =53-23(-12)n -1(n ∈N *).。

相关文档
最新文档