第三章-简单随机抽样

合集下载

Chap03简单随机抽样

Chap03简单随机抽样

N i j
(Yi
Y
)(Yj
Y
)

1 nN
1
n 1 N 1
N i 1
(Yi
Y
)2
n 1 N 1

N i 1
(Yi
Y
2 )


1 n

N N
n

1 N 1
N i 1
(Yi
Y
)2
1 f S2
n
证明Ⅱ:仍引进随机变量 ai :
N 1 n 1

N n


n N
ˆ
f
E(ai )
n N

f
(3.5)
借助 ai ,样本均值 y 可以表示成:
y

1 n
N i 1
aiYi
(3.6)
E( y) 1
n
N
E(ai )Yi
i 1
1 n
n N
N
Yi
i 1
Y
推论: Y 的简单估计量Yˆ Ny 也是无偏的,即: E(Ny ) Y
所有可能的样本求平均: E( y)
N 1 y n

N n

个样本中,包含特定单元
Yi
的样
本数为

N 1 n 1
,也有同样多样
本含有任何其他单元,因此
y 1
n
( y1
y2

yn )

1 n

N 1 n 1
数,则编号为这些随机数的 n 个单元组成一个简单随机样本。
随机数的产生可使用随机数骰子或随机数表。
图 3.1 随机数骰子 随机数骰子:标上 0~9 数字的正 20 面体(每个数字出现在两面)

应用抽样技术课后习题答案

应用抽样技术课后习题答案

=(0.0907,0.4433)
N1的95%的置信区间为: (159,776) 95%的置信区间为 (159, 的置信区间为:
(3)N=1750,n=30, (3)N=1750,n=30,n1=8, t=1.96, p=0.267, q=1q=1-0.267=0.733 由此可计算得: t 2q 1.962 × 0.733 n0 = 2 = =1054.64 r p 0.01× 0.267 n = n0/[1+(n0—1)/N] = 1054.64/[1+1053.64/1750]=658.2942 = 659 计算结果说明,至少应抽取一个样本量为659的简单随机 样本,才能满足95%置信度条件下相对误差不超过10%的精度 要求。
t=1.96 (2)易知,N=1750,n=30, n = 8 1 n 8 N − n 1750 − 30 1− f p= 1 = = 0.267 = = = 0.03389 n −1 (n −1)N 29 ×1750 n 30
pq = p(1 − p) = 0.267 × 0.733 = 0.1957
5.5 证明:由(5.6)得:
V ( yR ) ≈ 1− f n (Yi − RX i )2 ∑
i =1 N
N −n 2 令 Sd = V , Nn
2 d
N −1
=
N −n 2 Sd Nn
则n(NV + S ) = NS ,
2 d
S 2 NSd 从而n = = V 2 2 NV + Sd Sd 1+ NV
第五章 比率估计与回归估计
5.2 N=2000, n=36, 1-α=0.95, t=1.96, ˆ f = n/N=0.018, v(R) = 0.000015359, ˆ se(R) =0.00392 置信区间为[40.93%,42.47%]。 置信区间为[40.93%,42.47%]。

第三章抽样的原理及类型

第三章抽样的原理及类型

五、抽样设计得原则
1、目得性原则 2、可行性原则 3、高效性原则
第三节 样本规模与抽样误差
一、 样本规模及其计算
1所、含定元义素:样得本多规少模。又确称定样样本本容规量模,就指是得每就一是项样具本体中 得社会调查所必须解决得问题之一。
不能少于100个元素
2、简单随机抽样中样本规模计算公式: a,推论总体平均数
4、 实际抽取样本
实际抽取样本得工作就就是在上述几个步 骤得基础上,严格按照所选定得抽样方法,从抽样 框中抽取一个个得抽样单位,构成样本。依据抽 样方法得不同,以及依据抽样框就是否可以事先 得到等因素,实际得抽样工作既可能在研究者到 达实地之前就完成,也可能需要到达实地后才能 完成。即既可能先抽好样本,再下去直接对预先 抽好得对象进行调查或研究;也可能一边抽取样 本一边就开始调查或研究。
继续保持安静
置信区间
指在一定得置信度下,样本统计值与总体 参数值之间得误差范围。反映得就是抽样得 精确性程度。
二、抽样得作用
向人们提供一种实现“由部分认识整 体”这一目标得途径和手段。
日常生活中得抽样
第二节 抽样得类型与抽样程序
一、抽样得类型 从大得方面看,各种抽样都可以归为概率
抽样与非概率抽样两大类,这就是两种有 着本质区别得抽样类型。
抽样
从组成某个整体得所有元素得集合中,按 一定得方式选择或抽取一部分元素得过程。
比如,从1000户家庭构成得总体中,按一定 得方式抽取一个由100户家庭构成得样本得 过程。
抽样单位
抽样单位就就是一次直接得抽样所使用得 基本单位。抽样单位与构成总体得元素有时 就是相同得,有时又就是不同得。
如从32万名大学生抽取1000大学生,单个 大学生既就是元素,又就是抽样单位;但就是,抽 取40个班级(假定正好就是1000名)时,抽样单位 与构成总体得元素就不一样了。

第三章-简单随机抽样

第三章-简单随机抽样
不放回也称不重复抽样,每次从总体中随机抽取 一个样本单位,经调查观测后,不再将该单位放 回总体参加下一次抽样,然后再在剩下的总体单 位中随机抽取下一个样本单位进行调查观测,直 到抽够n个样本单位为止。
N!
考虑顺序可能的样本为 N n !
每个样本被抽中的概率为 ( N n)! N!


s2 1358.41, v( y) (1 f )s2 / n 37.6444, se( y) 6.1355
对该校大学生某月电信消费人均支出额的估计为 53.64元,在置信度95%下,临界值1.96,可以说以 95%的把握说明该校大学生该月的人均支出在 [53.64+(-)1.96*6.1355],即41.61~65.67元。
n 1
2n
正态近似产生的误差 主要与nP有关,特别 当nP比较小时,产生 的误差甚大,在95% 置信度下,P<0.5时正 态分布需要的最小nP 值与n值如下表。
P
nP
0.5
0.4
0.3
0.2
0.1
0.05
0
n
15
30
20
50
24
80
40 200
60 600
70 1400
80 无穷
试以95%的置信度估计上例大学生月电信消费超 过80元的人数及其比例。
N n S2 N n
nN
为调查某校大学生的电信消费水平,在全 校N=15230名学生用简单随机抽样抽取 n=36名学生,调查上月电信支出数据。试 以95%的置信度估计该校大学生该月电信 消费的平均支出额。
样本序号 消费元/月 样本序号 消费
样本序号 消费
1
45
13

应用抽样技术_3版(李金昌主编)PPT模板

应用抽样技术_3版(李金昌主编)PPT模板

著名抽样专家简介
17
第十一章非抽样误差
第十一章非抽 样误差
0 1
第一节非抽样 误差构成
0 4
第四节计量误 差分析
0 2
第二节抽样框 误差分析
0 5
本章小结
0 3
第三节无回答 误差分析
0 6
思考与练习
第十一章非抽样误 差
著名抽样专家简介
18
主要参考文献
主要参考文献
19
封底
封底
感 谢 聆 听
第三版前言
07
第一章抽样技术概述
第一章抽样技 术概述
01 第一节什么是抽样 02 第二节抽样技术的
技术
产生与发展
03 第三节抽样技术的 04 本章小结
应用
05 思考与练习
06 著名抽样专家简介
08
第二章抽样技术基本概念
第二章抽样 技术基本概

0 1
第一节总体与 样本
0 4
第四节样本设 计
0 2
16
第十章其他抽样方法技术
第十章其他抽样方法技术
01
第一节样本轮 换
02
第二节双重抽 样
03
第三节随机化 装置
04
第四节交叉子 样本
05 本章小结
06
思考与练习
单击此处添加标题
单击此处添加文本具体内 容,简明扼要的阐述您的 观点。根据需要可酌情增 减文字,以便观者准确的 理解您传达的思想。
第十章其 他抽样方 法技术
第二节估计量 与抽样分布
0 5
本章小结
0 3
第三节抽样误 差与置信区间
0 6
思考与练习
第二章抽 样技术基 本概念

初级1 -第三章简单随机抽样

初级1 -第三章简单随机抽样
n
n
n 1 N 1 n N
n 1 N 1
二、实施方法 • 抽签 制作N个同质的签,充分混合。从中一次抽出n个签, 或者先抽出一个签但不放回,再抽下一个签直到抽 满n个签为止。抽出的这n个签对应的单元入选样本, 这是不放回简单随机抽样;若从充分混合的N个签 中抽取一个,记录后放回,再抽取下一个,如此进 行,直到抽满n个为止,则是放回简单随机抽样。 抽签法的实施起来比较麻烦,尤其是当总体单元数 N较大时,所以该方法的使用场合为当总体单元数 N比较小,签的制作比较方便时。
第三章 简单随机抽样

第一节
基本问题
一、什么是简单随机抽样
从 N个单元的总体中抽取 n个单元组成的样本。总体单元数为 N,
样本量为 n。 若抽样是放回的,每次都是从 个总体单元中随机抽取1个单元,独 立重复抽取n次,得到 个单元组成的样本,叫做放回简单随机抽样。 若抽样是不放回的,每次都是从剩下的总体单元中随机抽取1个单 元,相继依次抽取n次,得到n个单元组成的样本,叫做不放回简单 随机抽样。
精度margin of error
对精度的要求通常以允许最大绝对误差
差限)或允许最大相对误差 (相对误差限)来表 示。
r
d(绝对误
d 1 P
P r 1


样本量足够大时,可用正态分布近似
ˆ tS ˆ d t V
2
第三章 基本概念
N n N 1
N n N
为 修正系数
2
为 S 修正系数
n f ,称抽样比, N
2

N n 1 f 有限总体调整系数 故, N 2
S V ( y ) (1 f ) n

第三章 抽样设计

第三章  抽样设计

一、方便抽样
又称任意抽样。一般由调研人员从工作的 方便出发,在调研对象的范围内随意抽取 一定数量的样本进行调查。
最常用的两种方法是“街头拦截法” 最常用的两种方法是“街头拦截法”和 “空间抽样法” 空间抽样法” 特点: 节约费用和时间,但样本的信息不 适用于总体参数的推断。
注意:
方便抽样一般用于非正式的探索性调查, 只有在调查总体各单位之间的差异不大时, 抽取的样本才有较高的代表性。
抽取样本的数量
允许误差 % 1 2 3 4 5 6 7 可信程度(把握程度)% 95 99 9600 16589 2400 4147 1067 1849 600 1037 384 663 267 461 196 339
一、简单随机抽样
适用范围:调查总体中各个体之间差异程 度较小的情况下,或者调研对象不明,难 以分组、分类的情况。 常用方法: 1、抽签法 2、随机数表法
二、系统抽样
又称等距抽样,就是先将调查总体的各个 体按照一定的标志排列起来,然后按照固 定的顺序和一定间隔来抽取样本个体。
排队的标志有两种: 1、按调查项目有关的标志排队 2、按调查项目无关的标志排队
(独立控制配额)按年龄分组: 独立控制配额)按年龄分组:
按年龄分组 18-29岁 18-29岁 30-40岁 30-40岁 41-55岁 41-55岁 56岁 56岁 合计 人数 40 60 70 30 200
按性别分组
性别 人数 100 100 200


合计
相互控制配额抽样
合计 40 60 70 30 收入 性别 年龄 18-29岁 18-29岁 30-40岁 30-40岁 41-55岁 41-55岁 56岁以上 56岁以上 合计 高 男 3 6 6 3 18 女 4 5 6 3 18 中 男 7 11 13 6 37 女 8 11 13 5 37 低 男 9 13 16 7 45 女 9 14 16 6 45

第3章 抽样分布

第3章 抽样分布

样本方差s2
s2取值的概率
0.0 0.5
4/16 6/16
2
4.5
39
4/16
2/16
0.00 0.0 0.5 s的取值 2.0 4.5
(用Excel计算2分布的概率)
1. 利用Excel提供的CHIDIST统计函数,计算2分布 右单尾的概率值
2. 语法为 CHIDIST(x,df) ,其中 df 为自由度, x 是随 机变量的取值 3. 给定自由度和统计量取值的右尾概率,也可以利 用“插入函数”命令来实现 4. 计算自由度为8,统计量的取值大于10的概率
σ2 =1.25
23
x 2.5
x2 0.625
样本均值的抽样分布
当总体服从正态分布N(μ,σ2)时,来自该总体的所有 容量为n的样本的均值x也服从正态分布,x 的数 学期望为μ,方差为σ2/n。即x~N(μ,σ2/n)
=10
n=4 x 5 n =16 x 2.5
37
2分布
(图示)
选择容量为n 的 不同容量样本的抽样分布
n=1 n=4 n=10
总体
简单随机样本


计算样本方差s2
计算卡方值
n=20
2 = (n-1)s2/σ2
计算出所有的
2
2值
38
2分布
(例题的图示)
16个样本方差的分布
s取值的概率
0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05
13
三种不同性质的分布
1 2 3
14
总体分布 样本分布 抽样分布
总体分布
(population distribution)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
i
1931(元), y 53.64, (1 f ) / n 0.027712,


s 2 1358.41, v( y ) (1 f ) s 2 / n 37.6444, se( y ) 6.1355
对该校大学生某月电信消费人均支出额的估计为 53.64元,在置信度95%下,临界值1.96,可以说以 95%的把握说明该校大学生该月的人均支出在 [53.64+(-)1.96*6.1355],即41.61~65.67元。
一、确定样本量主要考虑因素
• 因素二:实际调查运作的机制。调查经费 能支持多大样本?允许调查持续的时间多 久?需要多少调查人员?多种约束条件。 • 能够量化的因素只有抽样精度和调查费用。 • 方案:总费用一定的条件下精度最高;或 者在满足一定精度要求的条件下使费用最 小。
• 费用公式:
C C0 cn
• 放回抽样的特点:同一个单位有可能在同一个样本 中重复出现。
(一)放回简单随机抽样
• 设总体有5个单位(1,2,3,4,5),按 放回简单随机抽样的方式抽取2个单位,若 考虑样本单位的顺序,则所有的可能样本 为25个,若不考虑样本单位的顺序,则所 有可能样本为15个。 • 不考虑顺序的放回简单随机抽样的估计量 方差大于或等于考虑顺序时的估计量的方 差。只讨论和使用考虑顺序的情形。


t
SE ( )



tCV ( ), 相对允许误差


CV ( )

SE ( )

,变异系数
SE ( )估计量的标准差
•达到要求精度,就是控制抽样误差,估计量的标准差 或变异系数都是n的函数,只要给定对精度的要求,就 可以求出最低样本量要求。
二、估计总体均值(总值)的样本 量确定
• 正态近似产生的误差 主要与nP有关,特别 当nP比较小时,产生 的误差甚大,在95%置 信度下,P<0.5时正态 分布需要的最小nP值 与n值如下表。
P 0.5
.05 0
20
24 40 60 70 80
50
80 200 600 1400 无穷
• 试以95%的置信度估计上例大学生月电信消费超过 80元的人数及其比例。
N 15230, n 36, n1 7, t 1.96, n1 1 f p 0.1944, 0.0285, pq 0.1566 n n 1 (1 f ) pq 1 0.0668, 0.0139,95%的P置信区间: n 1 2n (1 f ) pq 1 p (t + )=0.1944 (1.96*0.0668+0.0139) n 1 2n (0.0496, 0.3392) N1 95%的置信区间(0.0496 N , 0.3392 N ) (755,5166)
• 总体总值是总体均值N倍,N是常数,对样本量的 确定不起决定作用,只须估计总体均值的情形。
n0 N n 2 V ( y) S 可以推得n n0 nN 1 N 2 2 S n0 V ( y) V ( y)

• 无限总体或放回抽样情况下,n0为所确定的样本量。 • 不放回情况下,若总体单位N很大, n0/N<0.05, 以n0为近似的样本量。 • 不放回情况下,若总体单位N不大,用n的公式确 定样本量。 • n0>n,在同样精度要求下,放回比不放回需要的样 本量大。
C为总费用,C0为与样本量无关的固定费用, 包括管理人员的工资、调查表的设计、必要的 设备以及组织、宣传等固定费用,c为平均调查 一个样本的变动费用,包括调查表的印制、调查 员的工资和差旅费、礼品费以及调查本身的费用。 C-C0 n= c
tSE ( ) t V ( ) ,绝对允许误差
二、总体比例的简单估计量及性质
(一)简单估计量的定义 • 利用简单随机抽样抽取n个单位组成样本,其中n1 个单位具有某种属性,则样本比例是总体比例的简 n 单估计量。 yi n1 i 1 p y n n

N1 Np 是总体中具有某种属性单位的总个数

N1的简单估计量。
(二)估计量性质
1, 总体单元具有某种属性 Yi 0,总体单元不具有某种属性 N1 1 N P Yi Y N N i 1 N N1 Q 1 P N 总体比例是总体均值的一种特殊表现形式,对 总体比例的估计就是对总体均值的估计,对总体 中具有某种属性单位的总个数N1的估计就是对 总体总值估计的一个特例。
(二)不放回简单随机抽样
• 不放回也称不重复抽样,每次从总体中随机抽取 一个样本单位,经调查观测后,不再将该单位放 回总体参加下一次抽样,然后再在剩下的总体单 位中随机抽取下一个样本单位进行调查观测,直 到抽够n个样本单位为止。
• 考虑顺序可能的样本为
N! N n !
每个样本被抽中的概率为 ( N n )! N!
简单随机抽样
本章教学目的与要求
• 简单随机抽样是抽样中最基本、最成熟、 最简单的抽样设计方式,是所有概率抽样 方法发展、比较的基础。具体要求: • 通过学习,熟练掌握简单随机抽样的抽样 方式和样本抽选方法; • 熟知总体均值、总体总值和总体比例的简 单估计; • 掌握样本量的确定; • 了解子总体的估计。
V ( y)

的无偏估计。
(五)放回简单随机抽样的简单估 计
• 样本方差 的无偏估计量。
1 n s ( yi y) n 1 i 1 2
2 是无限总体方差
• 考虑顺序的放回简单随机抽样方差 V ( y ) 的无偏 估计是 s 2
v( y )

N 1 2 • 放回/不放回 S N 1 nN Deff 1 N n 2 N n S nN

•总体总值估计量的性质由总体均值估计量的性质 决定。简单随机抽样的 是 的无偏估计量。
Y
Y
•方差 V (Y ) 无偏估计为

2 N (1 f ) 2 2 v(Y ) N v( y ) s n
第三节 总体比例的简单估计
一、总体比例 • 总体中具有某种属性的单位占总体单位的比例或 具有某种属性单位的总个数,也称成数。 • 设总体有N个单位,具有某种属性的单位N1个, 不具有该属性的单位有N-N1个。
4 5 6 7 8 9 10 11 12
13 170 89 33 75 22 56 79 5
16 17 18 19 20 21 22 23 24
39 41 93 19 59 111 64 35 76
28 29 30 31 32 33 34 35 36
25 28 90 17 57 43 146 19 47
• p是P的无偏估计量。 • p的方差 PQ( N n) V ( p) n( N 1)
N1 Np是N1的无偏估计, 且
2 N PQ( N n) 2 V ( N1 ) V ( NP) N V ( p) n( N 1)
• V(p)的无偏估计量是v(p)
N n 1 f v( p) pq pq (n 1) N n 1 N ( N n) v( N1 ) pq是V( N1 )的无偏估计 n 1
• 当N,n,N-n都比较大时,以正态分布给出P及N1的近 似置信区间(置信度1-a)为
(1 f ) pq (1 f ) pq [p t , pt ] n 1 n 1 N ( N n) pq N ( N n) pq [ Np t , Np t ] n 1 n 1 离散二项分布调整为连续正态分布 (1 f ) pq 1 (1 f ) pq 1 [ p (t ), p (t )] n 1 2n n 1 2n N ( N n) pq N N ( N n) pq N [ Np (t ), Np (t )] n 1 2n n 1 2n
n
• 为调查某校大学生的电信消费水平,在全 校N=15230名学生用简单随机抽样抽取 n=36名学生,调查上月电信支出数据。试 以95%的置信度估计该校大学生该月电信消 费的平均支出额。
样本序号 消费元/月 1 2 3 45 36 7
样本序号 消费 13 14 15 48 53 24
样本序号 消费 25 26 27 83 51 33
(二)不放回简单随机抽样
• n 1/ C 每个样本被抽中的概率为 N
n C 不考虑样本单位顺序,可能的样本为 N
个。
• 虽然样本个数不同,但有同样的概率分布。
(二)不放回简单随机抽样
• 设总体有5个单位(1,2,3,4,5),按 不放回简单随机抽样的方式抽取2个单位, 若考虑样本单位的顺序,则所有可能样本 20个。若不考虑样本单位的顺序,所有可 能样本为10个。二者概率分布相同,不考 虑顺序的工作量小,所以对于不放回抽样, 只讨论不考虑顺序的不放回抽样。
CN 2
C
n N

N ( N 1)
对称性论证法 (三)简单估计量的方差

(四)简单估计量方差的无偏性 n 1 2 简单随机样本的方差 s ( yi y) 是总体方差 2 的无偏估计。 n 1 i 1 S
1 f 2是 v( y ) s n

1 f 2 V ( y) S n
第四节 样本量的确定
• 一、确定样本量主要考虑因素 • 样本量过大,容易产生非抽样误差,样本 量过小,产生抽样误差。 • 因素一:对抽样估计量精度的要求。精度 要求高,即要求抽样误差小,则必须样本 量大。总体单位调查标志的变异程度、总 体的大小、样本设计和所使用的估计量、 回答率等都是影响估计精度的因素。
第一节 抽样方式
• 简单随机抽样(simple random sampling): 也称纯随机抽样。对于大小为N的总体,抽 取样本量为n的样本,若全部可能的样本被 抽中的概率都相等,则称这样的抽样为简 单随机抽样。 • 可以分为放回和不放回抽样。
相关文档
最新文档