空间与图形测试题

合集下载

人教版四年级上册数学 总复习 空间与图形 专项练习

人教版四年级上册数学   总复习   空间与图形   专项练习

空间与图形过关测试卷一.我会填。

(28分)1.电动伸缩门利用了平行四边形()的特点。

2.一组对边平行,另一组对边不平行的四边形是()。

3.在时钟上,时针与分针成90°是()时与()时;时针和分针形成平角的时刻是()时。

4.一个教室的面积约是50平方米,200个这样的教室面积约是()公顷。

5.两条平行线之间的距离是5厘米,在这两条平行线之间画一条垂直线段,这条垂直线段长()厘米。

6.如图,已知∠1与∠2组成的角是平角,且.∠1=40°,那么∠2=()。

7.∠1与46°的角的和是一个直角,∠1=()。

8.如图,直线a和直线b相交成直角,()是直线b的垂线,垂足是()。

9.在同一平面内,如果甲、乙两条直线都与第三条直线相交成直角,那么甲、乙两条直线就()。

10.如图,已知∠1=∠2=45°,则∠3=(),∠4=()。

二.我是小法官。

(对的打“✔”,错的打“×”)(5分)1.两个锐角的度数和一定比直角大。

()2.平行四边形的高有无数条,而梯形的高只有两条。

()3.一台计算机屏幕的面积大约是780公顷。

()4.在同一平面内,两条直线不平行就相交。

()5.两条直线相交,如果其中一个角是锐角,那么其他三个角中一定有两个是钝角。

()三.对号入座。

(把正确答案的序号填在括号里)(10分)1.在下列说法中错误的是()。

A.正方形相邻的两条边互相垂直B.平行四边形具有稳定性C.长方形是特殊的平行四边形2.同一平面内,与一条直线的距离为2厘米的点有()个。

A.1B.2C.无数3.一个超市的占地面积约是160()。

A.平方米B.平方千米C.公顷4.从3:00到3:15,分针转动了()度。

A.15B.60C.905.下面各组直线中,不相交的是()。

四.画一画。

(30分)1.先画一个边长2厘米的正方形。

2.量出∠1的度数,填到括号里,再画出一个比∠1大45°的角。

3.下面有四个点,经过其中两点画直线,你能画几条?请画出来。

六年级下册总复习《空间与图形》测试

六年级下册总复习《空间与图形》测试

六年级下册总复习《空间与图形》测试卷一、填空(每空2分,共30分)1、通过一张纸上的一点能画条直线,通过一张纸上的两点能画条直线。

2、从直线外一点到这条直线可以画无数条线段,其中最短的是和这条直线的线段。

3、圆的半径扩大2倍,它的周长扩大倍,面积扩大倍。

4、圆的周长与直径的比是。

5、一个圆环,外圆半径是6厘米,内圆半径是4厘米,这个圆环的面积是平方厘米。

6、把一个长10厘米,宽8厘米的长方形纸剪成一个最大的圆,这圆的周长是厘米,面积是平方厘米。

7、做一节底面直径为20厘米,长90厘米的烟囱,至少需要平方分米的铁皮。

8、一座台钟的时针长5厘米,经过6小时,时针尖端移动了厘米。

9、一个圆柱和一个圆锥等底等高,已知圆柱比圆锥的体积大2.6立方分米,这个圆柱的体积是立方分米,圆锥的体积是立方分米。

10、一张长方形纸上下对折,再左右对折,得到新图形的面积是原来正方形的,它的周长是原来正方形的。

二、判断(每题1分,共5分)1、在同一平面内,两条直线不相交就一定平行。

()2、一个正方形,边长增加3厘米,面积就增加9平方厘米。

()3、用10倍的放大镜看一个5°的角,看到的角是50°。

()4、用同样长的绳子在钉子板上绕出的正方形和长方形周长相等,面积也相等。

()5、圆柱的高一定,圆柱的侧面积与底面直径成正比例。

()三、选择(每题2分,共14分)1、大圆周长与小圆周长的比是3:2,大圆面积与小圆面积比()A3:2B2:3 C9:4D4:92、甲、乙两人各把一张长12厘米,宽8厘米的长方形纸用不同的方法围成一个圆筒(接头处不重叠),那么围成的两个圆筒()A侧面积一定相等B高一定相等C体积一定相等D侧面积和高都相等3、周长相等的正方形和圆,面积比较大的是()。

A、一样大B、正方形C、圆D、无法确定4、一个用立方块搭成的立体图形,贝贝从前面看到的图形是,从上面看到的是,那么搭成这样一个立体图形最少要()个小立方块。

2021-2022年六年级数学小升初专题复习训练—空间与图形:周长、面积与体积(1)(通用含解析)

2021-2022年六年级数学小升初专题复习训练—空间与图形:周长、面积与体积(1)(通用含解析)

小升初数学专题复习训练—空间与图形周长、面积与体积(1)知识点复习一.长方形的周长【知识点归纳】周长:图形一周的长度,就是图形的周长;周长的长度等于图形所有边的和.一般用字母C来表示.计算方法:①周长=长+宽+长+宽②周长=长×2+宽×2③周长=(长+宽)×2.【命题方向】例1:用一根长38厘米的铁丝围长方形,使它们的长和宽都是整厘米数,可以有()种围法.A、7B、8C、9D、10分析:要求有几种围法,应依据长方形的周长公式,求出长和宽的和,再据条件“长和宽都是整数”进行推算即可.解:长方形的周长=(长+宽)×2所以长与宽之和是:38÷2=19(厘米)由此可知:1+18=19、2+17=19、3+16=19、4+15=19、5+14=196+13=19、7+12=19、8+11=19、9+10=19.一共有9种方法.故选:C.点评:此题主要考查长方形的周长公式及整数的加减问题,依据题目条件,可以推算出结果.例2:一个周长为20米的长方形,如果把它的长和宽都增加5米,那么它的周长增加()A、10米B、20米C、30米D、40米分析:抓住“长和宽都增加5米”,那么周长就增加了2个(5+5)的长度.由此计算得出即可选择正确答案.解:(5+5)×2=10×2=20(米);答:那么它的周长增加20米.故选:B.点评:此题考查了长方形的周长公式的灵活应用.二.正方形的周长【知识点归纳】正方形周长是围成正方形的边长总和,由于正方形的特征是4条边都相等,所以正方形周长=边长×4.用字母表示为c=4a.【命题方向】例1:正方形的边长是周长的()A、B、C、D、分析:因为正方形的周长是四条边的和,并且正方形的4条边都相等,所以正方形的边长是周长的.解:正方形的周长=边长×4,所以正方形的边长是周长的.故选:A.点评:此题主要考查正方形的边长和周长的关系,根据正方形周长是边长的4倍即可得出二者的关系.例2:一个边长2分米的正方形,如果在四个角各剪去一个边长为2厘米的小正方形,那么它周长与原来比,结果是()A、减小B、不变C、增加分析:正方形对边相等,所以减去后周长不变.解:因为正方形对边相等,所以减去后周长不变.故选:B.点评:此题考查学生对空间的想象力.三.梯形的周长【知识点归纳】梯形的周长=两腰长度+上底+下底.【命题方向】分析:因为梯形的周长=两腰长度+上底+下底,又根据等腰梯形的特点,两腰相等,所以一条腰的长度=(周长-上底-下底)÷2,计算即可.解:(30-8-10)÷2,=12÷2,=6(厘米).答:每条腰长6厘米.故答案为:6.点评:解决本题的关键是明确梯形的周长=两腰长度+上底+下底,由于两腰长度相等,所以一条腰的长度=(周长-上底-下底)÷2.四.圆、圆环的周长【知识点归纳】圆的周长=πd=2πr,半圆的周长等于圆周长一半加上直径,即;半圆周长=πr+2r.圆环的周长等于两个圆的周长,即:圆环的周长=πd1+πd2=2πr1+2πr2.【命题方向】例1:车轮滚动一周,所行的路程是求车轮的()A、直径B、周长C、面积分析:车轮滚动一周,所行的路程就是这个车轮的周长,可采用化曲为直的方法进行计算.解:车轮滚动一周所行的路程就是车轮一周的长度,即周长.答:车轮滚动一周,所行的路程是求车轮的周长.故选:B.点评:此题主要考查的是利用圆的周长求车轮的所行路程.例2:如图,一个半圆形的半径是r,它的周长是()A、2πr×B、πr+rC、(π+2)rD、πr2.分析:根据半圆的周长公式:C=πr+2r,可求半圆的周长.解:πr+2r=(π+2)r.答:半圆的周长是(π+2)r.故选:C.点评:考查了半圆的周长.解题的关键是理解和掌握它们的计算公式,同时不要错误的以为半圆的周长是圆的周长的一半.五.长方形、正方形的面积【知识点归纳】长方形面积=长×宽,用字母表示:S=ab正方形面积=边长×边长,用字母表示:S=a2.【命题方向】例1:一个长方形的周长是48厘米,长和宽的比是7:5,这个长方形的面积是多少?分析:由于长方形的周长=(长+宽)×2,所以用48除以2先求出长加宽的和,再根据长和宽的比是7:5,把长看作7份,宽看作5份,长和宽共7+5份,由此求出一份,进而求出长和宽分别是多少,最后根据长方形的面积公式S=ab求出长方形的面积即可.解:一份是:48÷2÷(7+5),=24÷12,=2(厘米),长是:2×7=14(厘米),宽是:2×5=10(厘米),长方形的面积:14×10=140(平方厘米),点评:本题考查了按比例分配的应用,同时也考查了长方形的周长公式与面积公式的灵活运用.答:这个长方形的面积是140平方厘米.例2:小区前面有一块60米边长的正方形空坪,现要在空坪的中间做一个长32米、宽28米的长方形花圃,其余的植上草皮.(如图)①花圃的面积是多少平方米?②草皮的面积是多少平方米?分析:(1)长方形的面积=长×宽,代入数据即可求解;(2)草皮的面积=正方形的面积-长方形的面积,利用正方形和长方形的面积公式即可求解.解:(1)32×28=896(平方米);(2)60×60-896,=3600-896,=2704(平方米);答:花圃的面积是896平方米,草皮的面积是2704平方米.点评:此题主要考查正方形和长方形的面积的计算方法.六.梯形的面积【知识点归纳】梯形面积=(上底+下底)×高÷2.【命题方向】例1:一个果园近似梯形,它的上底120m,下底180m,高60m.如果每棵果树占地10m2,这个果园共有果树多少棵?分析:根据梯形的面积公式S=(a+b)×h÷2,求出果园的面积,再除以10就是这个果园共有果树的棵数.解:(120+180)×60÷2÷10,=300×60÷2÷10,=18000÷20,=900(棵),答:这个果园共有果树900棵.点评:本题主要是利用梯形的面积公式S=(a+b)×h÷2与基本的数量关系解决问题.七.圆、圆环的面积【知识点归纳】圆的面积公式:S=πr2圆环的面积等于大圆的面积减去小圆的面积即可得,公式:S=πr22-πr12=π(r22-r12)【命题方向】例1:因为大圆的半径和小圆的直径相等,所以大圆面积是小圆面积的()A、2倍B、4倍C、D、分析:大圆的半径和小圆的直径相等,说明大圆的半径是小圆的半径的2倍,利用圆的面积公式和积的变化规律即可推理得出正确答案进行选择.解:大圆的半径和小圆的直径相等,说明大圆的半径是小圆的半径的2倍,圆的面积=πr2,根据积的变化规律可得,r扩大2倍,则r2就会扩大2×2=4倍,所以大圆的面积是小圆的面积的4倍.故选:B.点评:此题考查了积的变化规律在圆的面积公式中的灵活应用,这里可以得出结论:半径扩大几倍,圆的面积就扩大几倍的平方.例2:在图中,正方形的面积是100平方厘米,那么这个圆的面积是多少平方厘米?周长呢?分析:看图可知:正方形的边长等于圆的半径,先利用正方形的面积公式求出正方形的边长,即得出圆的半径,由此根据圆的周长和面积公式即可列式解答.解:因为10×10=100,所以正方形的边长是10厘米,所以圆的面积是:3.14×10×10=314(平方厘米);周长是:3.14×10×2=62.8(厘米),答:这个圆的面积是314平方厘米,周长是62.8厘米.点评:此题考查圆的周长与面积公式的计算应用,关键是结合图形,利用正方形的面积公式求出正方形的边长,即这个圆的半径.同步测试一.选择题(共8小题)1.某等腰梯形的上底为6cm,一腰长8cm,下底长11cm,则梯形的周长是()A.25 cm B.33 cm C.17 cm2.边长是1000米的正方形菜地的面积是()A.1000000米B.1平方千米C.1000平方米3.如图,一只蚂蚁从起点沿着长方形的边向前爬行.它要爬行()分米才能回到起点.A.20B.40C.604.如图,长方形的面积和圆的面积相等如果圆的周长是314m,那么长方形的周长是()m.A.7850B.157C.4145.画一个周长为37.68厘米的圆,圆规两脚间的距离为()厘米.A.2B.6C.46.正方形的边长扩大到4倍,它的周长扩大到()倍.A.4B.8C.不变7.长方形菜地长是20米,宽是长的,求这块菜地周长算式正确的是()A.20×B.20××20C.D.8.一个梯形的上底扩大到原来的3倍,下底也扩大到原来的3倍,高不变,则面积扩大到原来的()倍.A.9B.6C.3二.填空题(共8小题)9.如图中长方形的周长是厘米.10.小朋友绕绿地一周,走了米.11.画圆时,圆规两脚之间叉开得越大,画出的圆会;如果圆规两脚之间的距离是2.5厘米,画出的圆的直径是厘米.它的周长是厘米.12.一块长方形菜地,长是15m,宽是长的,该菜地的面积是.13.一个正方形的周长是28厘米,它的边长增加3厘米,那么它的周长增加厘米.14.直径为8cm的半圆,周长是cm,面积是cm2.(π取3.14)15.一个直角梯形的高是6厘米,如果把它的上底向一端延长2厘米就成为一个正方形,这个梯形的面积是平方厘米.16.如图,正方形的面积10m2,那么圆的面积是m2.三.判断题(共5小题)17.梯形的面积等于平行四边形面积的一半..(判断对错)18.一个长400米,宽250米的长方形花坛,占地面积是10公顷.(判断对错)19.一个圆的直径增加2厘米,它的周长将增加2π厘米.(判断对错)20.两个直径是2cm的圆的面积之和,与一个直径是4cm的圆面积相等.(判断对错)21.一个长方形的周长是16厘米,把它剪成两个完全相同的长方形,每个长方形的周长都是8厘米.(判断对错)四.操作题(共3小题)22.作图题:在下面的正方形中画一个最大的圆,并求出圆的面积.23.张大爷在小河边围了一块梯形菜地.菜地上底长5米,下底长12米,两腰各长7米,他只用了19米长的篱笆.你知道他是怎么圈的吗?画一画.24.按要求作答.(1)用圆规画出图2的图形.(2)计算出图2阴影部分的周长.(π取3.14)五.应用题(共7小题)25.小兰的妈妈准备靠墙做一个长方形的菜地,要用栅栏围起来.这块菜地的长是8米,宽是5米.请问一共有几种方法,分别要准备多长的栅栏?(方法一)列式:(方法二)列式:26.一块正方形菜地,一面靠墙,三面用篱笆围起来.篱笆长24米,你知道这块正方形菜地的边长是多少米吗?27.李阿姨到超市买了一个圆形杯垫,它的周长是25.12厘米,它的面积是多少平方厘米?28.如图,红红家在院墙边围一个梯形花坛,围花坛的篱笆总长是56m,求这个花坛的面积.29.如图,王大爷靠墙围了一个半径为10m的半圆形养鸡场,并在它的外围铺了一条2m宽的小路,这条小路的面积是多少平方米?(π取3)30.一个等腰梯形,下底比上底长10厘米,上底和一条腰的长是86厘米,这个梯形的周长是多少厘米?31.有一张长1.3米,宽1.2米的长方形纸板,要剪成面积为0.36平方米的正方纸板,能剪出几块?参考答案与试题解析一.选择题(共8小题)1.【分析】首先要明确:等腰梯形的两条腰的长度相等,然后根据梯形的周长=上底+下底+两条腰的长度,据此即可解答.【解答】解:6+11+8×2=6+11+16=33(厘米)答:这个梯形的周长是33厘米.故选:B.【点评】本题考查了梯形周长公式的灵活应用.2.【分析】1000米=1千米,根据长方形的面积公式求解即可.【解答】解:1000米=1千米1×1=1(平方千米)答:边长是1000米的正方形菜地的面积是1平方千米.故选:B.【点评】解决本题关键是熟练掌握长度单位的换算和正方形的面积公式.3.【分析】一只蚂蚁沿着一个长12分米,宽8分米的长方形的边爬行,它爬回到起点的长度与长方形的周长相等,根据长方形的周长公式计算即可.【解答】解:2×(8+12)=2×20=40(分米)答:它要爬40分米才能回到起点.故选:B.【点评】此题考查了长方形的周长计算,长方形的周长公式:C=2(a+b).4.【分析】根据题意可知:长方形的宽等于圆的半径,根据圆的周长公式:C=2πr,那么r=C÷2π,再根据圆的面积公式:S=πr2,求出圆的面积,已知圆的面积和长方形的面积相等,用长方形的面积除以宽求出长,然后根据长方形的周长公式:C=(a+b)×2,把数据代入公式解答.【解答】解:314÷3.14÷2=50(m)3.14×502=3.14×2500=7850(m2)7850÷50=157(m)(157+50)×2=207×2=414(m)答:长方形的周长是414m.故选:C.【点评】此题主要考查圆的周长公式、面积公式、长方形的面积公式、周长公式的灵活运用,关键是熟记公式.5.【分析】根据圆的周长公式:C=2πr,那么r=C÷2π,把数据代入公式解答.【解答】解:37.68÷3.14÷2=6(厘米)答:圆规两脚间的距离为6厘米.故选:B.【点评】此题主要考查圆周长搜狗的灵活运用,关键是熟记公式.6.【分析】根据积的变化规律和正方形的周长进行解答,正方形的周长:C=4a,根据积的变化规律知:一个因数不变,另一个因扩大或缩小几倍,积也扩大或缩小几倍,据此解答.【解答】解:正方形的周长:C=4a,边长扩大4倍,另一个因数不变,积也扩大4倍,所以它的周长扩大到4倍.故选:A.【点评】本题主要考查了学生根据积的变化规律和正方形的周长公式解答问题的能力.7.【分析】把长看作单位“1”,宽是,长与宽的和是长的(1+),所以用长乘(1+)求出长与宽的和,再根据长方形的周长C=(a+b)×2,用长与宽的和乘,即可求解.【解答】解:20×(1+)×2=20××2=35×2=70(米)答:它的周长是70米.故选:D.【点评】此题主要考查长方形的周长公式的灵活应用,关键是先计算出长方形的宽.8.【分析】根据题意可知,梯形的上底和下底都扩大3倍,也就是说(上底+下底)的和扩大了3倍,高不变,它的面积一定也扩大了3倍.【解答】解:设上底为a,下底为b,高为h,原来的面积是:S=(a+b)×h÷2;扩大后的面积是:(a×3+b×3)×h÷2=(a+b)×3×h÷2=[(a+b)×h÷2]×3;所以一个梯形的上底扩大到原来的3倍,下底也扩大到原来的3倍,高不变,则面积扩大到原来的3倍.故选:C.【点评】本题用到的知识点是:S=(a+b)×h÷2;两个加数都扩大几倍,它们的和也扩大几倍.二.填空题(共8小题)9.【分析】观察图形,长方形的长等于3个圆的半径,长方形的宽等于圆的直径,求出长和宽,根据长方形的周长公式C=(a+b)×2.【解答】解:(4.2×3+4.2×2)×2=(12.6+8.4)×2=21×2=42(厘米)答:长方形的周长是42厘米.故答案为:42.【点评】本题主要是利用长方形的周长公式、圆与长方形的关系解答.10.【分析】用正六边形的边长×6,列式计算即可求解.【解答】解:4×6=24(米)答:走了24米.故答案为:24.【点评】本题关键是熟悉正六边形的特征,正六边形的6条边长度都相等.11.【分析】画圆时,圆规两脚之间叉开得大小,就是这个圆的半径,半径越大,画出的圆会越大,根据画圆的方法可知这个圆的半径是2.5厘米,利用圆的直径与圆的半径的关系,圆的周长公式即可计算.【解答】解:根据题干分析可得:画圆时,圆规两脚之间叉开得越大,画出的圆会越大;2.5×2=5(厘米)3.14×5=15.7(厘米)答:画圆时,圆规两脚之间叉开得越大,画出的圆会越大;如果圆规两脚之间的距离是2.5厘米,画出的圆的直径是5厘米.它的周长是15.7厘米.故答案为:越大;5;15.7.【点评】此题考查了圆的画法以及圆的周长=2πr的计算应用.12.【分析】根据题干,先求出这个长方形菜地的宽是15×=12米,再根据长方形的面积=长×宽,代入数据计算即可解答问题.【解答】解:15×=12(米)15×12=180(平方米)答:该菜地的面积是180平方米.故答案为:180平方米.【点评】此题主要考查了长方形的面积公式的计算应用,熟记公式即可解答问题.13.【分析】因为正方形的4条边的长度都相等,正方形每条边增加3厘米,那么正方形的周长就增加4个3厘米,根据正方形的周长公式:C=4a,把数据代入公式解答.【解答】解:3×4=12(厘米)答:它的周长增加12厘米.故答案为:12.【点评】此题主要考查正方形周长公式的灵活运用,关键是熟记公式.14.【分析】此题是求出直径为8厘米的半圆的周长与面积,利用半圆的周长=所在圆的周长÷2+直径;半圆的面积=所在圆的面积÷2,即可解答.【解答】解:3.14×8÷2+8=12.56+8=20.56(厘米)3.14×(8÷2)2÷2=3.14×16÷2=25.12(平方厘米)答:周长是20.56厘米,面积是25.12平方厘米.故答案为:20.56;25.12.【点评】此题考查半圆的周长与面积计算方法;注意半圆的周长=所在圆的周长÷2+直径,容易漏掉直径.15.【分析】根据“一个直角梯形的高是6厘米,如果把它的上底向一端延长2厘米就成为一个正方形”,可知这个梯形的上底是6﹣2=4厘米,下底是6厘米.然后再根据梯形的面积公式进行计算.【解答】解:(6﹣2+6)×6÷2=10×6÷2=30(平方厘米)答:这个梯形的面积是30平方厘米.故答案为:30.【点评】此题考查了梯形面积的计算方法.16.【分析】根据图示可知,圆的半径与正方形的边长相等设圆的半径为r,则r2=10,利用圆的面积公式:S=πr2,则圆的面积为:3.14×10=31.4(平方米).【解答】解:3.14×10=31.4(平方米)答:圆的面积是31.4m2.故答案为:31.4.【点评】本题主要考查圆与圆环的面积,关键利用圆与正方形的关系做题.三.判断题(共5小题)17.【分析】缺少关键条件,梯形的面积是和它等底等高的平行四边形面积的一半.【解答】解:因为梯形的面积是和它等底等高的平行四边形面积的一半.故答案为:×.【点评】此题主要考查梯形的面积是和它等底等高的平行四边形面积的一半.18.【分析】根据长方形的面积公式:S=ab,把数据代入公式求出花坛的面积与10公顷进行比较.【解答】解:400×250÷10000=100000÷100000=10(公顷)答:这个花坛的占地面积是10公顷.因此,一个长400米,宽250米的长方形花坛,占地面积是10公顷.这种说法是正确的.故答案为:√.【点评】此题主要考查长方形面积公式的灵活运用,关键是熟记公式,注意:面积单位相邻单位之间的进率及换算.19.【分析】圆的周长计算公式是C=πd,假设原来的直径是a厘米,如果直径增加了2厘米,则直径增加2厘米后的直径是(a+2)厘米,由此可得原来的周长是aπ(厘米),而现在的周长是(a+2)π=(aπ+2π)(厘米)所以周长增加了aπ+2π﹣aπ=2π(厘米),据此即可判断.【解答】解:假设原来的直径是a厘米,则直径增加2厘米后的直径是(a+2)厘米原来的周长是aπ(厘米)现在的周长是(a+2)π=(aπ+2π)(厘米)所以周长增加了aπ+2π﹣aπ=2π(厘米)所以一个圆的直径增加2厘米,它的周长将增加2π厘米,原题说法正确.故答案为:√.【点评】本题考查圆的周长的计算,在圆中,如果是圆的直径增加n,则其周长增加nπ,周长增加的值与原来圆的直径大小无关.20.【分析】根据圆的面积公式:S=πr2,把数据分别代入公式求出它们的面积后进行比较即可.【解答】解:3.14×(2÷2)2×2=3.14×1×2=6.28(平方厘米)3.14×(4÷2)2=3.14×4=12.56(平方厘米)6.28平方厘米≠12.56平方厘米.因此,两个直径是2cm的圆的面积之和,与一个直径是4cm的圆面积相等.这种说法是错误的.故答案为:×.【点评】此题主要考查圆面积公式的灵活运用,关键是熟记公式.21.【分析】如图所示,将长方形剪成两个两个完全相同的长方形,有以下两种剪法,所得到的两个长方形的周长都比原长方形的一半多一个长或宽,所以周长都应大于(16÷2)厘米.【解答】解:如图所示:将长方形剪成两个两个完全相同的长方形,有两种剪法,所得到的两个长方形的周长都比原长方形的一半多一个长或宽,所以周长都应大于:16÷2=8(厘米).故题干的说法是错误的.故答案为:×.【点评】解答此题的关键是:利用直观作图,即可求得每个小长方形的周长.四.操作题(共3小题)22.【分析】(1)正方形内最大的圆,是以正方形的中心为圆心,以正方形的边长为直径的圆,据此即可画出;(2)知道正方形的边长,进而求出圆的半径,然后依据圆面积公式求出圆的面积;【解答】解:(1)以正方形的中心为圆心,以正方形的边长为直径画圆,如下图所示;(2)圆的半径为:3÷2=1.5(cm)圆的面积为:3.14×1.52=3.14×2.25=7.065(平方厘米)答:圆的面积是7.065平方厘米.【点评】此题考查了正方形内最大圆的特点,另外也考查了圆的面积公式的灵活应用.23.【分析】根据梯形周长的意义,梯形的周长是指围成这个梯形的4条边的长度和,已知这个梯形的上底是5米,下底是12米,两条腰各是7米,一边靠河用了19米长的篱笆,由此可知,梯形的下底靠河,据此解答即可.【解答】解:如图:5+7×2=5+14=19(米)答:他是梯形的下底靠河圈的.【点评】此题考查的目的是理解掌握等腰梯形的特征,梯形周长的意义及应用.24.【分析】(1)用圆规画出图形即可;(2)根据半圆的周长公式C=πd÷2+d列式计算即可求解.【解答】解:(1)如图所示:(2)3.14×2÷2×2+2×2=6.28+4=10.28(cm)答:图2阴影部分的周长是10.28cm.【点评】考查了圆的周长,关键是熟练掌握半圆的周长公式.五.应用题(共7小题)25.【分析】两种方法:若长边靠墙,则栅栏长等于长+宽×2;若宽边靠墙,则栅栏长等于长×2+宽;据此计算即可解答问题.【解答】解:(方法一)列式:8+5+5=18(米)(方法二)列式:8+8+5=21(米)答:共有两种方法,要准备18米或者21米的栅栏.【点评】此题主要考查长方形的周长公式的实际应用,要注意一边靠墙的情况.26.【分析】正方形菜地,一面靠墙,三面用篱笆围起来,篱笆长24米,24米就是这个正方形3条边的长,用24除以3可求出一条边的长,据此解答.【解答】解:24÷3=8(米)答:这块正方形菜地的边长是8米.【点评】本题的重点是让学生理解:24米就是这个正方形3条边的长,即可求出这个正方形的边长.27.【分析】根据圆的周长公式:C=2πr,那么r=C÷2π,据此求出半径,再根据圆面积公式:S=πr2,把数据代入公式解答.【解答】解:25.12÷2÷3.14=4(厘米)3.14×42=3.14×16=50.24(平方厘米)答:它的面积是50.24平方厘米.【点评】此题主要考查圆的周长公式、面积公式的灵活运用,关键是熟记公式.28.【分析】观图可知:围成的图形是一个直角梯形,因为围花坛的篱笆长56m,用篱笆长减去20米,就是上底与下底的和,由此根据梯形的面积公式S=(a+b)h÷2,列式解答即可.【解答】解:(56﹣20)×20÷2=36×20÷2=720÷2=360(平方米)答:这个花坛的面积是360平方米.【点评】解答此题的关键是根据题意求出梯形的上底与下底的和,然后利用梯形的面积公式解答.29.【分析】求小路的面积即求半环形的面积,需知道内圆半径(已知)和外圆半径(未知),内圆半径加上小路的宽即外圆半径,根据环形面积公式s=π(R2﹣r2),代入公式计算出面积,再运用圆环的面积除以2即可得到这条小路的面积.【解答】解:10+2=12(米)3×(122﹣102)÷2=3×44÷2=66(平方米)答:这条小路的面积是66平方米.【点评】此题主要考查环形的面积公式及其计算,根据s=π(R2﹣r2)计算比较简便,注意本题是半圆环,面积要除以2.30.【分析】由“一个等腰梯形,下底比上底长10厘米,上底和一条腰的长是86厘米”可知:下底和另一条腰的长的和应是(86+10)厘米,再根据等腰梯形周长的意义,用上底加下底再加两个腰的长度就是这个梯形的周长.【解答】解:86+86+10=182(米)答:这个梯形的周长是182厘米.【点评】本题主要考查了梯形的周长的计算方法,即把四条边的长度加起来.31.【分析】根据题干,面积是0.36平方米的正方形的边长是0.6米,以长为边可以剪出1.3÷0.6≈2块,以宽为边可以剪出1.2÷0.6=2块,所以一共可以剪出2×2=4块,据此即可解答问题.【解答】解:因为0.62=0.36所以面积是0.36平方米的正方形的边长是0.6米以长为边可以剪出1.3÷0.6≈2(块)以宽为边可以剪出1.2÷0.6=2(块)所以一共可以剪出2×2=4(块)答:能剪出4块.【点评】解答此题关键是明确沿着长与宽各能剪出几个小正方形,据此即可解答问题.。

新人教版六年级下册数学总复习专题五――空间与图形的试题及答案个人整理

新人教版六年级下册数学总复习专题五――空间与图形的试题及答案个人整理

创新与拓展: 通过解决开放 性问题,激发 学生的创新思 维和拓展学生 的解题思路。
实际应用举例
建筑设计:利用空间与图形知识进行建筑设计和规划,确保建筑物的安全 性和美观性。
机械制造:在制造和设计机械零件时,需要运用空间与图形的知识来确保 零件的精确度和稳定性。
航天科技:在航天领域中,空间与图形的知识是必不可少的,如卫星轨道 的设计、航天器的定位等。
01
添加章节标题
空间与图形试题回
02

回顾各类题型
填空题:考察学 生对空间与图形 基本概念和性质 的掌握情况。
选择题:测试学 生对空间与图形 相关问题的判断 和推理能力。
计算题:要求学 生运用几何知识 进行计算和证明, 考察学生的计算 能力和对几何图 形的理解。
作图题:要求学 生根据题意绘制 图形,考察学生 的空间想象能力 和作图技能。
答案解析的要点:强调了解题的关键点和易错点,帮助学生避免常见错误,提高解题的准确性 和效率。
答案解析的深度:对每个答案进行了深入的剖析和解释,不仅提供了正确的答案,还解释了为 什么这样做,以及如何理解和应用相关知识。
答案解析的全面性:涵盖了新人教版六年级下册数学总复习专题五――空间与图形的所有试题, 确保学生能够全面掌握相关知识和技能。
答案:192
题目:一个正方体的棱长是4厘米,它的表面积是多 少平方厘米. 答案:96
答案:96
YOUR LOGO
T:在地理信息系统中,空间与图形知识用于地图制作、地理 数据的分析和可视化等。
综合题解析练习
题目:一个长方体的体积是45立方分米,它的底 面积是9平方分米,它的高是多少分米? 答案:5 答案:5
题目:一个正方体的棱长总和是48厘米,它的表面积 是多少平方厘米. 答案:96

2020年小升初数学专题复习训练—空间与图形:周长、面积与体积(2)(知识点总结+同步测试)

2020年小升初数学专题复习训练—空间与图形:周长、面积与体积(2)(知识点总结+同步测试)

2020年小升初数学专题复习训练—空间与图形周长、面积与体积(2)知识点复习一.平行四边形的面积【知识点归纳】平行四边形面积=底×高,用字母表示:S=ah.(a表示底,h表示高)【命题方向】例1:一个平行四边形相邻两条边分别是6厘米、4厘米,量得一条边上的高为5厘米,这个平行四边形的面积是()平方厘米.A、24B、30C、20D、120分析:根据平行四边形的特点可知,底边上的高一定小于另一条斜边,所以高为5厘米对应的底为4厘米,利用面积公式计算即可.解:4×5=20(平方厘米);答:这个平行四边形的面积是20平方厘米.故选:C.点评:此题主要考查平行四边形的特点,分析出相对应的底和高,据公式解答即可.例2:一个平行四边形的底扩大3倍,高扩大2倍,面积就扩大()A、5倍B、6倍C、不变分析:平行四边形面积=底×高底扩大3倍,高扩大2倍,则面积扩大了3×2=6倍.解:因为平行四边形面积=底×高,底扩大3倍,高扩大2倍,则面积扩大了3×2=6(倍),故选:B.点评:本题考查了平行四边形的面积公式.二.三角形的周长和面积【知识点归纳】三角形的周长等于三边长度之和.三角形面积=底×高÷2.【命题方向】例1:4个完全相同的正方形拼成一个长方形.(如图)图中阴影三角形的面积的大小是A、甲>乙>丙B、乙>甲>丙C、丙>甲>乙D、甲=乙=丙分析:因为三角形的面积=底×高÷2,且图中三个阴影三角形等底等高,所以图中阴影三角形的面积都相等.解:因为三角形的面积=底×高÷2,且图中三个阴影三角形等底等高,所以图中阴影三角形的面积都相等.故选:D.点评:此题主要考查等底等高的三角形面积相等.例2:在如图的梯形中,阴影部分的面积是24平方分米,求梯形的面积.分析:由图形可知,阴影部分三角形的高与梯形的高相等,已知三角形的面积和底求出三角形的高,再根据梯形的面积公式s=(a+b)h÷2,计算梯形的面积即可.解:24×2÷8=48÷8=6(分米);(8+10)×6÷2=18×6÷2=54(平方分米);答:梯形的面积是54平方分米.点评:此题解答根据是求出三角形的高(梯形的高),再根据梯形的面积公式解答即可.三.组合图形的面积【知识点归纳】方法:①“割法”:观察图形,把图形进行分割成容易求得的图形,再进行相加减.②“补法”:观察图形,给图形补上一部分,形成一个容易求得的图形,再进行相加减.③“割补结合”:观察图形,把图形分割,再进行移补,形成一个容易求得的图形.【命题方向】例1:求图中阴影部分的面积.(单位:厘米)分析:根据图所示,可把组合图形分成一个直角梯形和一个圆,阴影部分的面积等于梯形的面积减去圆的面积再加上圆的面积减去三角形面积的差,列式解答即可得到答案.解:[(5+8+5)×5÷2-×3.14×52]+(×3.14×52-5×5÷2),=[18×5÷2-0.785×25]+(0.785×25-25÷2),=[90÷2-19.625]+(19.625-12.5),=[45-19.625]+7.125,=25.375+7.125,=32.5(平方厘米);答:阴影部分的面积为32.5平方厘米.点评:此题主要考查的是梯形的面积公式(上底+下底)×高÷2、三角形的面积公式底×高÷2和圆的面积公式S=πr2的应用.四.长方体和正方体的表面积【知识点归纳】长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【命题方向】例1:如果一个正方体的棱长扩大到原来的2倍,那么它的表面积就扩大到原来的()倍.A、2B、4C、6D、8分析:正方体的表面积=棱长×棱长×6,设原来的棱长为a,则扩大后的棱长为2a,分别代入正方体的表面积公式,即可求得面积扩大了多少.解:设原来的棱长为a,则扩大后的棱长为2a,原正方体的表面积=a×a×6=6a2,新正方体的表面积=2a×2a×6=24a2,所以24a2÷6a2=4倍,故选:B.点评:此题主要考查正方体表面积的计算方法.例2:两个表面积都是24平方厘米的正方体,拼成一个长方体.这个长方体的表面积是()平方厘米.A、48B、44C、40D、16分析:两个表面积都是24平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.解:24÷6=4(平方厘米),4×10=40(平方厘米);答:长方体的表面积是40平方厘米.故选:C.点评:此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.五.长方体和正方体的体积【知识点归纳】长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【命题方向】例1:一个正方体的棱长扩大3倍,体积扩大()倍.A、3B、9C、27分析:正方体的体积等于棱长的立方,它的棱长扩大几倍,则它的体积扩大棱长扩大倍数的立方倍,据此规律可得.解:正方体的棱长扩大3倍,它的体积则扩大33=27倍.故选:C.点评:此题考查正方体的体积及其棱长变化引起体积的变化.例2:一只长方体的玻璃缸,长8分米,宽6分米,高4分米,水深2.8分米.如果投入一块棱长为4分米的正方体铁块,缸里的水溢出多少升?分析:根据题意知用水的体积加铁块的体积,再减去玻璃缸的容积,就是溢出水的体积.据此解答.解:8×6×2.8+4×4×4-8×6×4,=134.4+64-192,=6.4(立方分米),=6.4(升).答:向缸里的水溢出6.4升.点评:本题的关键是让学生理解:溢出水的体积=水的体积+铁块的体积-玻璃缸的容积,这一数量关系.六.圆柱的侧面积、表面积和体积【知识点归纳】圆柱的侧面积=底面的周长×高,用字母表示:S侧=Ch(C表示底面的周长,h表示圆柱的高),或S侧=2πrh圆柱的底面积=πr2圆柱的表面积=侧面积+两个底面积,用字母表示:S表=2πr2+2πrh圆柱的体积=底面积×高,用字母表示:V=πr2h.【命题方向】例1:做一个铁皮烟囱需要多少铁皮,就是求烟囱的()A、表面积B、体积C、侧面积分析:根据圆柱体的侧面积的定义知道,圆柱侧面积是指将一个圆柱体沿高展开后得到的长方形的面积,做一个铁皮烟囱实际就是做一个没有上、下底面的圆柱体,要求铁皮的多少就是求烟囱的侧面积.解:因为,烟囱是通风的,是没有上下两个底的,所以,做一个铁皮烟囱需要多少铁皮,就是求烟囱的侧面积,故选:C.点评:此题主要考查了圆柱体的侧面积的意义,及在生活中的实际应用.例2:一个圆柱形量杯底面周长是25.12厘米,高是10厘米,把它装满水后,再倒入一个长10厘米,宽8厘米的长方体容器中,水面高多少厘米?分析:由题意可知,把圆柱形容器中的水倒入长方体容器中,只是形状改变了,但是水的体积不变.因此,先根据圆柱的容积(体积)公式v=sh,求出圆柱形容器中水的体积,再除以长方体容器的底面积.由此列式解答.解:3.14×(25.12÷3.14÷2)2×10÷(10×8),=3.14×42×10÷80,=3.14×16×10÷80,=502.4÷80,=6.28(厘米);答:水面高6.28厘米.点评:此题属于圆柱和长方体的容积的实际应用,首先根据圆柱的容积(体积)公式求出水的体积,再用水的体积除以长方体容器的底面积.据出解决问题.七.圆锥的体积【知识点归纳】圆锥体积=×底面积×高,用字母表示:V=Sh=πr2h,(S表示底面积,h表示高)【命题方向】例1:把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将()A、扩大3倍B、缩小3倍C、扩大6倍D、缩小6倍分析:根据题意知道,在捏橡皮泥的过程中,它的总体积不变,再根据等底等高的圆锥形和圆柱形的关系,即可得到答案.解:根据等底等高的圆锥形的体积是圆柱形体积的,又因为,在捏橡皮泥的过程中,它的总体积不变,所以,把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将扩大3倍;故选:A.点评:解答此题的关键是,根据题意,结合等底等高的圆锥形的体积是圆柱形体积的,即可得到答案.例2:一个圆锥形小麦堆,高1米,底面周长18.84米,如果每立方米小麦重0.75吨,这堆小麦大约有多少吨?分析:根据圆锥的底面周长求出底面半径,再代入圆锥的体积公式求出体积,进而求得重量即可.解:r=C÷2π,=18.84÷(2×3.14),=3(米);V锥=πr2h,=×3.14×32×1,=×3.14×9×1,=9.42(立方米);9.42×0.75=7.065(吨);答:这堆小麦大约有7.065吨.点评:此题考查了圆锥的体积公式的实际应用.同步测试一.选择题(共10小题)1.压路机的前轮转动一周所压过的路面面积是指()A.前轮的表面积B.前轮的侧面积C.前轮的底面积2.在长12厘米,宽10厘米,高8厘米的长方体中切出一个体积最大的圆柱,这个圆柱的体积是()立方厘米.A.1130.4B.602.88C.628D.904.323.下面说法正确的是()A.圆锥的体积等于圆柱体积的B.把0.56扩大到它的100倍是56C.书的总页数一定,未读的页数与已读的页数成正比例4.把一个棱长1厘米的正方体切成两个完全一样的长方体后,表面积比原来增加()A.50%B.C.5.一底面是正方形的长方体,把它的侧面展开后,正好是一个边长为8分米的正方形,原来长方体的体积是()立方分米.A.32B.64C.166.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.1207.奇思用和两种图形拼成了一个图案(如图),这个图案的面积是()dm2.A.10B.8C.68.如图梯形中有()对面积相等的三角形.A.1B.2C.3D.49.一个三角形和一个平行四边形的底相等,面积也相等,已知平行四边形的高是4厘米,那么三角形的高是()A.8厘米B.4厘米C.2厘米D.16厘米10.平行四边形如图所示,计算其面积的算式可以是()A.24×21B.14×16C.21×16二.填空题(共8小题)11.如图,平行四边形的高是4厘米,它的面积是平方厘米.12.如图中,圆的直径是8厘米,那么图中阴影部分的面积是平方厘米.13.把一个圆柱的侧面展开是一个正方形,这个圆柱的底面直径是4厘米,圆柱的高是厘米.(π取3.14)14.一个圆锥体积是12cm3,底面积是1.2cm2,高是cm.15.一个等腰三角的周长是16厘米,底边是4厘米,腰长是厘米.16.一个三角形和与它等底等高的平行四边形面积和是240平方米,三角形面积是平方米.17.一个长方体的长是10厘米,宽是5厘米,它的高是2厘米.这个长方体的表面积是平方厘米,体积是立方厘米.18.一个正方体,如果高减少3厘米,就变成了一个长方体(如图).这时表面积比原来减少48平方厘米,原来正方体的体积是立方厘米.三.判断题(共5小题)19.一根圆木的长一定,它的体积和横截面积成正比例.(判断对错)20.一块长方体的橡皮泥捏成一个正方体,体积发生了变化.(判断对错)21.图中阴影部分的面积是大平行四边形面积的一半.(判断对错)22.两个三角形相比较,高越长面积就越大.(判断对错)23.圆柱的体积一定比圆锥的体积大,圆锥的体积一定比圆柱的体积小.(判断对错)四.计算题(共5小题)24.计算出下面图形的面积.(单位:厘米)25.已知:直角三角形如图所示,若以AC为轴旋转一周得一个几何体,求这个几何体的体积.26.求阴影部分的面积.(π取3.14)27.计算下面长方体的表面积和正方体的体积.(单位:厘米)28.(表面积和体积)五.应用题(共7小题)29.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?30.小明家一面外墙墙皮脱落,要重新粉刷,每平方米需要用0.5千克涂料.如果涂料的价格是每千克15元,粉刷这面墙需要多少元?31.一块三角形的地,底是600米,高是450米,这块地的面积是多少公顷?32.一个圆锥形沙堆,高1.5米,底面周长是18.84米,如果每立方米沙子重500千克,那么这堆沙子共重多少千克?33.一根圆柱形实心钢管,它的横截面周长是25.12cm,那么它的横截面面积是多少?34.一个长方体的食品盒,长8厘米,宽8厘米,高12厘米,如果围着它贴一圈商标(上、下面不贴),这张商标纸的面积至少有多少平方厘米?35.王大爷家有一块菜地(如图).(1)这块菜地的面积是多少平方米?(2)如果每平方米收青菜12千克,这块菜地一共收青菜多少千克?参考答案与试题解析一.选择题(共10小题)1.【分析】压路机的前轮是圆柱形,压路机的前轮转动一周所压过的路面积是指前轮的侧面积.【解答】解:压路机的前轮转动一周所压过的路面面积是指前轮的侧面积.故选:B.【点评】压路机的前轮的形状是圆柱,这个圆柱是侧躺在地面,转动一周,所压过的面正好是圆柱的侧面.2.【分析】要使削成的圆柱的体积最大,也就是用10厘米作为圆柱的底面直径,8厘米作为圆柱的高,根据圆柱的体积公式:V=Sh,把数据代入公式解答.【解答】解:以10厘米为底面直径,高是8厘米;3.14×(10÷2)2×8=3.14×25×8=78.5×8=628(立方厘米答:这个圆柱体的体积是628立方厘米.故选:C.【点评】解答此题的关键是,如何将一个长方体削成一个最大的圆柱,并找出它们之间的联系,再根据相应的公式解决问题.3.【分析】A.因为等底等高的圆锥的体积是圆柱体积的,所以圆锥体积是圆柱体积的.这种说法是错误的.B.根据小数点的位置移动引起小数大小变化的规律,把一个小数扩大100倍,也就是把这个小数的小数点向右移动两位,即0.56 扩大100倍是56.因此,把0.56扩大到它的100倍是56.这种说法是正确的.C.因为未读的页数+已读的页数=一本书的总页数,所以书的总页数一定,未读的页数与已读的页数不成正比例.因此,书的总页数一定,未读的页数与已读的页数成正比例.这种说法是错误的.据此判断.【解答】解:A.因为等底等高的圆锥的体积是圆柱体积的,所以圆锥体积是圆柱体积的.这种说法是错误的.B.根据小数点的位置移动引起小数大小变化的规律,把一个小数扩大100倍,也就是把这个小数的小数点向右移动两位,即0.56 扩大100倍是56.因此,把0.56扩大到它的100倍是56.这种说法是正确的.C.因为未读的页数+已读的页数=一本书的总页数,所以书的总页数一定,未读的页数与已读的页数不成正比例.因此,书的总页数一定,未读的页数与已读的页数成正比例.这种说法是错误的.故选:B.【点评】此题考查的目的是理解掌握等底等高的圆柱与圆锥体积之间的关系及应用;小数点的网址移动引起小数大小变化规律的应用;比例的意义及应用.4.【分析】把正方体切成完全一样的两块长方体后,它的表面积比原来增加了2个正方体的面的面积,正方体有6个面,由此即可解答问题.【解答】解:2÷6=答:表面积比原来增加.故选:C.【点评】此题要抓住一个正方体切割出2个完全一样的长方体的方法,得出切割后比原来增加了2个正方体的面,是解决此类问题的关键.5.【分析】理解长方体的侧面展开图:把它的侧面展开后正好成一个边长是8分米的正方形,这说明长方体的底面周长和高相等,都是8分米,因长方体的底面是正方形,所以能求出底面边长,进一步求出底面积,再根据长方体的体积=底面积×高,即可列式解答.【解答】解:底面边长:8÷4=2(分米)底面积:2×2=4(平方分米)体积:4×8=32(立方分米)答:这个长方体的体积是32立方分米.故选:A.【点评】此题考查了长方体的侧面展开图和体积公式,关键是弄清侧面展开图与长方体之间的关系.6.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.7.【分析】通过观察可知这个图案是由4个平行四边形和一个正方形组合而成,根据平行四边形的面积公式计算出4个平行四边形的面积;根据正方形的面积等于对角线乘积的一半计算出正方形的面积;然后将4个平行四边形的面积和正方形的面积相加即可求出答案.【解答】解:2×1×4+×2×2=8+2=10(平方分米)答:这个图案的面积是10平方分米.故选:A.【点评】本题考查了平行四边形的面积公式和正方形面积等于对角线乘积的一半公式的应用,要熟练掌握.8.【分析】根据三角形的面积公式:S=底×高÷2,则等底同高的三角形面积相等;根据图形的特点解答即可.【解答】解:如图,△ABD 与△ACD ,等底同高,所以S △ABD =S △ACD△ABC 与△DBC ,等底同高,所以S △ABC =S △DBC因为S △ABO =S △ABC ﹣S △BOC ,S △DOC =S △DBC ﹣S △BOC ,等量代换得:S △ABO =S △DOC即梯形ABCD 中共有3对面积相等的三角形.故选:C .【点评】本题主要运用三角形的面积与底成正比的性质;等底同高的三角形面积相等.9.【分析】根据平行四边形的面积公式S =ah 及三角形的面积公式S =ah ÷2,推导出在一个平行四边形和一个三角形的面积相等,底边长相等时,三角形的高是平行四边形的高的2倍,再列式解答即可.【解答】解:4×2=8(厘米)答:三角形的高是8分米.故选:A .【点评】本题主要是灵活利用平行四边形的面积公式及三角形的面积公式推导:一个平行四边形和一个三角形的面积相等,底边长相等时,平行四边形的高是三角形的高的一半.10.【分析】根据平行四边形的面积公式:S =ah ,把数据代入公式解答.【解答】解:16×21=33624×14=336答:这个平行四边形的面积是336.故选:C.【点评】此题主要考查平行四边形面积公式的灵活运用,关键是熟记公式,注意:底与高的对应.二.填空题(共8小题)11.【分析】根据题意可知,平行四边形的底为5厘米时,高不可能为4厘米,因为高是两条平行线内最短的线段,所以这个平行四边形的底应该为3厘米,高为4厘米,那么根据平行四边形的面积=底×高计算即可得到答案,其中平行四边形的边长5厘米不参与计算.【解答】解:3×4=12(平方厘米)答:它的面积为12平方厘米.故答案为:12.【点评】解答此题的关键是确定平行四边形的底为哪一条,然后再根据平行四边形的面积公式进行计算即可.12.【分析】求阴影部分的面积,可以分成两部分:上面阴影部分的面积=半圆的面积﹣三角形的面积,下面阴影部分的面积=长方形的面积﹣半圆的面积,然后把两部分阴影部分的面积相加;圆的面积=πr2,三角形的面积=底×高÷2,由此代入解答即可.【解答】解:3.14×(8÷2)2÷2=3.14×16÷2=25.12(平方厘米)[8×(8÷2)﹣25.12]+[25.12﹣8×(8÷2)÷2]=6.88+9.12=16(平方厘米)答:图中阴影部分的面积是16平方厘米;故答案为:16.【点评】求阴影部分的面积,只要把不规则图形的面积转化为规则图形的面积,即把阴影部分的面积化为求常用图形面积的和与差求解.13.【分析】根据圆柱的侧面展开图特征可知,这个正方形的边长等于圆柱的底面周长和高,由此根据即可解答问题.【解答】解:3.14×4=12.56(厘米)答:圆柱的高是12.56厘米.故答案为:12.56.【点评】解答此题的关键是根据侧面展开图是一个正方形,明确圆柱的高与底面周长相等.14.【分析】根据圆锥的体积公式:V=sh,那么h=3V÷S,把数据代入公式解答.【解答】解:12×3÷1.2=36÷1.2=30(厘米)答:高是30厘米.故答案为:30.【点评】此题主要考查圆锥体积公式的灵活运用,关键是熟记公式.15.【分析】已知等腰三角形的周长是16厘米,底边长4厘米,依据等腰三角形的两条腰相等,用三角形的周长减去底边的长,再除以2,就是等腰三角形的腰长,据此解答.【解答】解:(16﹣4)÷2=12÷2=6(厘米)答:腰长是6厘米.故答案为:6.【点评】本题主要考查了学生对等腰三角形周长计算方法的应用,注意等腰三角形的两腰相等.16.【分析】因为平行四边形的面积的是与它等底等高的三角形面积的2倍,所以这两个面积的和是三角形面积的3倍,所以用两个面积的和除以3就是三角形的面积.【解答】解:240÷(1+2)=2400÷3=80(平方米)答:三角形面积是80平方米.故答案为:80.【点评】此题考查了等底等高的三角形与平行四边形的面积之间的关系:平行四边形的面积的是与它等底等高的三角形面积的2倍.17.【分析】根据长方体的表面积公式:S=(ab+ah+bh)×2,体积公式:V=abh,把数据分别代入公式解答.【解答】解:(10×5+10×2+5×2)×2=(50+20+10)×2=80×2=160(平方厘米)10×5×2=100(立方厘米)答:这个长方体的表面积是160平方厘米、体积是100立方厘米.故答案为:160、100.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式.18.【分析】根据题意,高减少3厘米,表面积比原来减少48平方厘米,表面积减少的只是4个侧面的面积,减少的4个侧面是完全相同的长方形,用减少的面积除以4求出减少的一个面的面积,用面积除以宽(3厘米),即可求出正方体的边长,再根据正方体的体积公式:V=a3,解答即可.【解答】解:边长:48÷4÷3=12÷3=4(厘米)体积:4×4×4=16×4=64(立方厘米)答:原来正方体的体积是64立方厘米.【点评】此题解答关键是理解高减少3厘米,表面积比原来减少48平方厘米,表面积减少的只是4个侧面的面积,底面积不变,进而求出正方体的边长,再根据体积公式解答即可.三.判断题(共5小题)19.【分析】判断体积和横截面积成什么比例关系,就看这两种量是否是对应的比值一定还是乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,如果不是比值一定或比值不一定,就不成正比例.【解答】解:因为圆木的体积÷横截面积=圆木的长(一定),是比值一定,所以一根圆木的长一定,它的体积和横截面积成正比例;原题说法正确.故答案为:√.【点评】此题属于根据正、反比例的意义,辨识两种相关联的量是否成正比例,就看这两种量是否是对应的比值一定还是乘积一定,再做出判断.20.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积,所以把一块长方体橡皮泥捏成一个正方体后,只是形状变了,但体积不变.据此解答.【解答】解:把一块长方体橡皮泥捏成一个正方体后,只是形状变了,但体积不变,故原题说法错误;【点评】此题考查的目的是理解掌握物体体积的意义,物体所占空间的大小叫做物体的体积.21.【分析】由题意可知:因为3个阴影三角形的底的和等于平行四边形的底,高等于平行四边形的高,所以3个阴影三角形的面积和等于平行四边形的面积的一半,据此即可进行解答.【解答】解:因为3个阴影三角形的底的和等于平行四边形的底,高等于平行四边形的高,所以3个阴影三角形的面积和等于平行四边形的面积的一半;所以原题说法正确.故答案为:√.【点评】解答此题的主要依据是:三角形的面积是与其等底等高的平行四边形面积的一半.22.【分析】三角形的面积=底×高÷2,因此决定三角形面积大小的因素有两个,那就是它的底和对应底上的高,据此即可解答.【解答】解:根据以上分析知:当三角形的底一定时,高越长,面积越大,如三角形的底也是变化的,高越长,面积不一定越大.故答案为:×.【点评】本题主要考查了根据三角形面积公式解答问题的能力.23.【分析】因为等底等高的圆柱的体积是圆锥体积的3倍,所以在没有确定圆柱与圆锥是否等底等高这个前提条件下,无法确定圆柱。

2020年小升初数学专题复习训练—空间与图形:测量与作图(1)(知识点总结 同步测试) (含详细答案)

2020年小升初数学专题复习训练—空间与图形:测量与作图(1)(知识点总结 同步测试) (含详细答案)

2020年小升初数学专题复习训练—空间与图形测量与作图(1)知识点复习一.长度的测量方法【知识点归纳】1.长度的测量:长度的测量是最基本的测量,最常用的工具是刻度尺.2.正确使用刻度尺刻度线、量程、分度值.使用时要注意:(1)尺子要沿着所测长度放,尺边对齐被测对象,必须放正重合,不能歪斜.(2)不利用磨损的零刻度线,如因零刻线磨损而取另一整刻度线为零刻线的,切莫忘记最后读数中减掉所取代零刻线的刻度值.(3)厚尺子要垂直放置(4)读数时,视线应与尺面垂直.【命题方向】例:量出每条边的长度,以毫米为单位.分析:用直尺的“0”刻度线和线段的一个端点重合,另一个端点在直尺上的刻度,就是该线段的长度.解:测量数据如下图:点评:本题考查了学生测量线段的能力.二.角的度量【知识点归纳】1.角的度量:角度的测量是最基本的测量,最常用的工具是量角器.就是180度,一周就是360度.由于1度的大小不因为圆的大小而改变,所以角度大小是一个与圆的半径无关的量.弧度制,顾名思义,就是用弧的长度来度量角的大小的方法.单位弧度定义为圆周上长度等于半径的圆弧与圆心构成的角.由于圆弧长短与圆半径之比,不因为圆的大小而改变,所以弧度数也是一个与圆的半径无关的量.角度以弧度给出时,通常不写弧度单位,有时记为rad或R.3.度量方法:量角要注意两对齐:量角器的中心和角的顶点对齐.量角器的0刻度线和角的一条边对齐.做到两对齐后看角的另一条边对着刻度线几,这个角就是几度.看刻度要分清内外圈.【命题方向】例1:用一个放大10倍的放大镜看一个50°的角,看到的角是()A、50°B、500°C、100°分析:用放大镜看角时,放大的是角的边,不改变角的形状,根据角的大小与边长无关可知角的度数不会改变.解:用放大镜看角时,放大的是角的边,不改变角的形状,根据角的大小与边长无关可知角的度数不会改变.所以用放大10倍的放大镜看一个50度的角,看到的度数仍是50度.故选:A.点评:用放大镜看角,很容易错误认为角的度数会被放大相同倍数,关键要学生理解角的大小与边的长短无关.也要认识到一个普遍规律:放大镜只改变物体大小,不改变物体形状,对角而言只是一种图形,既然形状不变,角度也不会改变.例2:下面每对时刻中,时钟的时针和分针所成的角不一样的有()A、1:30和2:30B、3:30和8:30C、9:00和3:00D、10:30和1:30分析:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出不同时间下,时针和分针之间相差的大格数,用大格数乘30°即可进行判断,选择.解:A,1:30时针和分针中间相差,4.5个大格,夹角是:30×4.5=135度,2:30时针和分针中间相差3.5个大格,夹角是:30×3.5=105度;符合题意;B,3:30时针和分针中间相差2.5个大格,夹角是2.5×30=75度,8点30分,时针和分针中间相差2.5个大格,夹角是2.5×30°=75度;C,9:00时针和分针中间相差3个大格,夹角是:30×3=90度,3:00时针和分针中间相差3个大格,夹角是:30×3=90度;D,10:30时针和分针中间相差4.5个大格,夹角是:30×4.5=135度,1:30时针和分针中间相差,4.5个大格,夹角是:30×4.5=135度;所以夹角不同的是A.故选:A.点评:本题考查了钟面角,用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.三.画指定度数的角【知识点归纳】三角板能画出15、30、45、60、75、90、105、120、135、150、165、180度的角,是30°,45°,60°,90度的和差,因为通过三角尺只能作角的和差.其余的度数只能通过量角器画角.【命题方向】例1:画一个120°的角.分析:画一个120°的角可据以下步骤进行:(1)先画一条射线使量角器的中心和射线的端点重合,零刻度线和射线重合;(2)在量角器120°角刻度线的地方点一个点;(3)以射线的端点为端点,通过刚画的点,再画一条射线即可作成一个120°的角.解:根据角的画法,作图如下:点评:本题考查了学生根据所给度数利用作图工具画角的动手能力.例2:用一副三角板画一个105°的角.分析:显然从两个三角板中,将一个等于45°的角,再加上另一个三角板中等于60°的角,即可得到105°的角.解:让等腰直角三角形的一个锐角和另一个直角三角形的较大的锐角拼在一起,画出这个角如下图所示,45°+60°=105°;点评:本题考查了三角板的角的度数、角的计算、角的拼图、画角的方法,较为简单,熟练掌握三角板各角的度数是解答本题的关键.四.用三角尺画30°,45°,60°,90°角【知识点归纳】1、30°和60°可以通过30°直角三角形得到.2、45°通过等腰直角三角形可以得到.3、90°的角两个直角三角形尺都可以得到.【命题方向】例:用一副三角板可以画出的角是()A、160°B、40°C、120°分析:先明确一副三角板的六个角共有四个度数,30°,45°,60°,90°.然后进行加减运算,找到符合条件的角.解:利用一副三角板可以画出的角有:30°,45°,60°,90°;30°+45°=75°,30°+90°=120°,45°+60°=105°,45°+90°=135°,60°+90°=150°,30°+45°+90°=165°;45°-30°=15°,一共可以画出11个角.所以符合题意的选项是C.故选:C.点评:此题结合生活实际,既考查了对角的认识,又考查了同学们的完全归纳能力,是一道好题.不要漏角,也不能重复计算.五.探索某些实物体积的测量方法【知识点归纳】1.用排水法来测量不规则物体的体积.在有刻度的量杯里装上水,记下水的体积,把不规则的物体放入杯中,记下此时的体积,求出两次体积的差,就求出了不规则物体的体积,最后再将容积单位换算成体积单位.2.通过测多个相同物体的体积,然后除以数量得到每个物体的体积.【命题方向】例1:把一块石头,浸没在一个底面积是60平方厘米的圆柱形容器里,容器的水面上升了1.5厘米,这块石头的体积是90立方厘米.分析:这块石头的体积等于上升的水的体积,用底面积乘上升的厘米数即可.解:60×1.5=90(立方厘米);故答案为:90.点评:此题主要考查某些实物体积的测量方法.例2:如图是测量一颗玻璃球体积的过程:(1)将300cm3的水倒进一个容量为500cm3的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在()A、20cm3以上,30cm3以下B、30cm3以上,40cm3以下C、40cm3以上,50cm3以下D、50cm3以上,60cm3以下分析:要求每颗玻璃球的体积在哪一个范围内,根据题意,先求出5颗玻璃球的体积最少是多少,5颗玻璃球的体积最少是(500-300)立方厘米,进而推测这样一颗玻璃球的体积的范围即可.解:因为把5颗玻璃球放入水中,结果水满溢出,所以5颗玻璃球的体积最少是:500-300=200(立方厘米),一颗玻璃球的体积最少是:200÷5=40(立方厘米),因此推得这样一颗玻璃球的体积在40立方厘米以上,50立方厘米以下.故选:C.点评:此题考查了探索某些实物体积的测量方法,本题关键是明白:杯子里水上升的体积就是5颗玻璃球的体积,进而得解.六.估测【知识点归纳】1.按四舍五入的原则估算成整百数再计算答案;2.按四舍五入的原则估算成整十数再计算答案.但注意,一道题目中采取的方法要一致,不能第一个数按整百估算,第二个数按整十数估算.如果先算后估就不叫估算,应称为求近似数.【命题方向】例:100本第十二册小学数学课本的厚度接近()A、7毫米B、7厘米C、7米D、7分米分析:根据生活经验,一本数学书的厚度大约是7毫米,那么100本书的厚度大约是7分米.解:一本数学书的厚度大约是7毫米,那么100本书的厚度大约是7分米.故选:D.点评:估算在生产和生活中有着广泛的用途,对于小学生学习数学来说,利用估算可提高分析与解答问题的能力.同步测试一.选择题(共8小题)1.小明想用如下三种规格的透明方格纸测量一片树叶的面积.选择边长()厘米的方格纸测量,所得的面积与树叶的准确面积最接近.A.0.25B.0.5C.12.丽丽家的鱼缸长8分米,宽5分米,高4分米,放入一块棱长2分米的正方体,水面的上升了()厘米.A.0.2B.5C.2D.0.53.图中∠1的度数是()A.10°B.60°C.70°D.110°4.小动物们测量方法正确的是()A.狮子B.青蛙C.小狗D.蜘蛛5.要想使物体从斜面上滚下来时尽可能快,木板与地面的夹角是()度时最符合要求.A.15B.45C.606.400米跑到围起来的部分的面积大约是()A.100平方米B.1公顷C.1平方千米7.用一副三角尺不能画出()的角.A.75°B.95°C.120°8.小东从学校走回家,出发时是下午3:00,到家时是下午3:15,分针转动了()度.A.15B.60C.90二.填空题(共6小题)9.画一个105°的角,除了用量角器画,我们还可以用三角尺上的°和°的角来画.10.量一量,填一填.(取整厘米)第二条线段长度是第一条的倍.11.∠1+∠2=90°,∠2=47°,那么∠1=.12.画一条射线,使量角器的和它的段点重合,并使刻度线和射线重合.13.如图中大球体积是mL.14.用方格纸估计一个不规则图形的面积时,数出这个图形一共包含58个整格和26个不满整格.如果每个小方格表示1平方分米,这个图形的实际面积比平方分米大一些,比平方分米小一些.三.判断题(共5小题)15.量角器是经过圆心把半圆平均分成180份,将其中1份所对的角大小计为1°.(判断对错)16.在学生用的直尺上,从刻度1到刻度5之间的长度是4厘米.(判断对错)17.3滴水有1升.(判断对错)18.测量不规则物体的体积,利用排水法,物体排开水的体积就是不规则物体的体积.(判断对错)19.不用量角器,用一副三角板就可以画出105o和15o的角.(判断对错)四.计算题(共2小题)20.看图计算珊瑚石的体积.21.脱口秀180°﹣25°﹣75°=180°﹣(37°+63°)=90°﹣37°=80°+36°+64°=178°﹣(78°+54°)=180°﹣85°=五.应用题(共2小题)22.估算下面不规则图形的面积.(1格表示1厘米)23.棱长是5dm的正方体金鱼缸,放入一些碎石后,水面上升8cm.这些碎石的体积是多少?六.操作题(共4小题)24.下面分别是树叶的平面图(每个小方格表示1平方厘米).先把整格和不满整格的分别涂上不同颜色,数一数各有多少个,再算出这片树叶的面积大约各是多少平方厘米.(不满整格的都按半格计算)整格个;不满整格个;面积大约平方厘米.25.量出每条边的长度.26.以A点为顶点画一个30°的角;为B顶点画一个120°的角.27.用三角板画一个75°的角.七.解答题(共4小题)28.写出下面各角的度数.29.在括号里填上合适的数或单位.30.同学们都知道“乌鸦喝水”的故事吧.一个正方体的水槽里装了一些水(如图),乌鸦只能够到水槽最上沿,在水槽的旁边有大小不一的三块石头.同学们,你能选择其中的两块石头,帮助乌鸦喝到水吗?你打算怎么做,填在横线上,并用计算解释你的做法.我的做法:计算过程:31.王伯伯家有一块菜地(如图),底是51米,高是24米.如果每平方米收白菜10千克,这块地大约收白菜多少千克?参考答案与试题解析一.选择题(共8小题)1.【分析】根据边长是1厘米的正方形的面积是1平方厘米,并结合实际可知:选择边长1厘米的方格纸测量,所得的面积与树叶的准确面积最接近;由此解答即可.【解答】解:由分析可知:选择边长1厘米的方格纸测量,所得的面积与树叶的准确面积最接近;故选:C.【点评】此题考查了估测,应结合实际进行估测.2.【分析】根据题意得出:上升的水的体积等于正方体的体积,先利用正方体体积=棱长×棱长×棱长计算出上升的水的体积,再除以长方体鱼缸的底面积即可求出水面升高的高度.【解答】解:2×2×2÷(8×5)=8÷40=0.2(分米)0.2分米=2厘米答:这时水面升高了2厘米.故选:C.【点评】解决本题的关键是明确上升的水的体积等于正方体的体积.灵活利用长方体和正方体的体积公式计算.3.【分析】通过已知条件图形的观察可知;在进行角度测量的时候一条边没有从零刻度线开始,在读数是应该用末端读数减去起始端读数;据此解答即可.【解答】解:图中∠1的度数是:80°﹣10°=70°故选:C.【点评】本题考查了正确的角的度量方法.4.【分析】刻度尺的使用规则:①刻度尺要与被测部分对齐;②让刻度尺有刻度的一面紧贴被测部分,测量的始端与0刻度线对齐,如果0刻度线磨损,可以与其它整格刻线对齐,测量结果要减去前面的数值;③读数时视线要与尺面垂直;④读数时结果要估读到分度值的下一位;⑤记录数据要写单位.【解答】解:根据刻度尺的使用规则可知,青蛙的测量方法是正确的.故选:B.【点评】此题考查了刻度尺的使用以及如何测量物体的长度.5.【分析】要想使物体从斜面上滚下来时尽可能快,木板与地面的夹角越大,滚下来的速度越快.据此即可进行选择.【解答】解:要想使物体从斜面上滚下来时尽可能快,木板与地面的夹角是60度时最符合要求.故选:C.【点评】关键明白:要想使物体从斜面上滚下来时尽可能快,木板与地面的夹角越大,滚下来的速度越快.6.【分析】我们知道,周长一定时,所有平面图形中圆面积最大,跑道都是由弯道、直道组成的.按圆进行估算,根据圆周长计算公式“C=2πr”,周长是400米的圆半径,根据圆面积计算公式“S=πr”求出圆的面积,然后进行选择.【解答】解:400÷3.14÷2≈64(米)64米按60米估算3.14×602=3.14×3600=11304(平方米)由于路道不是圆,是由弯道、直道组成的,实际面积小于11304平方米,按10000平方米,10000平方米=1公顷答:400米跑到围起来的部分的面积大约是1公顷.故选:B.【点评】周长400米的路道也可按边长是100米的正方形估算,100×100=10000(平方米),10000平方米=1公顷.7.【分析】75°=30°+45°,75°的角可以有三角板中30°的角和45°的角画;95°的角不能用三角板画;120°=30°+90°=60°+60°,120°的角可以有三角板中30°的角和90°的角画,也可用60°的角画.【解答】解:用一副三角尺不能画出95的角.故选:B.【点评】15°倍数的角可以有三角板中的一个角或几个角的和、差画.如可画15°、30°、15°、60°、75°、90°……的角.8.【分析】用小东到家的时刻减出发的时刻就是小东回家路上用的时间,即3时15分﹣3时=15分.分针走1大格是5分钟,15分钟是3大格.钟面上12个数字把钟面平均分成12份,每份所对应的圆心角是360°÷12=30°,即指针每走1大格,要转动30°.据此即可确定分针转动的度数.【解答】解:3时15分﹣3时=15分15÷5=3(大格)指针每转动1大格是30°30°×3=90°答:分针转动了90度.故选:C.【点评】两个关键:一是分针转动了几大格;二是钟面上指针转动1大格转动的度数.二.填空题(共6小题)9.【分析】我们使用的三角尺有30°、45°、60°、90°等四个现成的角度,将各个角相加或相减即可得出答案:105°=60°+45°;由此即可解答.【解答】解:画一个105°的角,除了用量角器画,我们还可以用三角尺上的45°和60°的角来画;故答案为:45,60.【点评】考查了画指定度数的角,关键是熟悉画角的步骤,是基础题型.10.【分析】(1)根据线段的测量方法,把直尺的0刻度线与线段的一段重合,线段的另一端对应的直尺的刻度就是这条线段的长度.(2)根据求一个数是另一个数的几倍,用除法解答.【解答】解:(1)测量结果如下:(2)8÷2=4答:第二条线段的长度是第一条线段的4倍.故答案为:4.【点评】此题考查的目的是理解掌握线段的测量方法及应用,以及整数除法的意义及应用.11.【分析】根据减法的意义,用90度减去∠2的度数即可.【解答】解:90°﹣47°=43°答:∠1=43°.故答案为:43°.【点评】解答本题关键是明确加减法的意义.12.【分析】根据用量角量测量角的大上的方法可知,量角时,量角器的中心与角的顶点重合,零刻度与角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数,解答即可.【解答】解:由分析可知:画一条射线,使量角器的中心点和它的段点重合,并使零刻度线和射线重合.故答案为:中心点、零.【点评】本题考查了用量角器测量角的大小的方法.13.【分析】观察图形可知,放入一个大球一个小圆球后,溢出15ml水,再放入三个小圆球后溢出水到30ml,那么三个小圆球的体积就是这次溢出的水的体积30ml﹣15ml=15ml,由此可得:一个小圆球的体积是:15÷3=5ml,那么一个大球的体积是15﹣5=10ml.【解答】解:由分析知:(30﹣15)÷3=15÷3=5(ml)15﹣5=10(ml)答:大球的体积是10ml.故答案为:10.【点评】解答此题的关键是求出一个小圆球的体积是多少,再放入三个小圆球后溢出水水的体积30ml ﹣15ml=15ml,即可进行解答.14.【分析】图形一共包含58个整格和26个不满整格,满格、不满格一共是58+26=84(个),如果都按满格计算,是1×84=84(平方分米),实际面积要比1×58=58(平方分米)大一些,要比84平方分米小一些.【解答】解:58+26=84(个)因为有58个满格,26个不满格所以实际面积大大于58平方分米,而小于84平方分米.故答案为:58,84.【点评】用数小方格的方法估算不规则图形的面积,通常是先数整格数,再数不足格数,整格数按一个面积单位计算,不足格的按半个面积单位计算.三.判断题(共5小题)15.【分析】量角器又称“半圆仪”,就是经过圆心,把半圆平均分成180份,将其中1份所对的角大小计为1°.【解答】解:量角器是经过圆心把半圆平均分成180份,将其中1份所对的角大小计为1°原题说法正确.故答案为:√.【点评】此题是考查量角器的认识.把半圆平均分成180份(180个小扇形),每份所对了的角为1度.16.【分析】根据题意,直尺上的刻度从1到5,用5减去1就是它们之间的长度.【解答】解:5﹣1=4(厘米)答:从直尺上的刻度1到5,这段长度是4厘米;故答案为:√.【点评】本题主要是考查刻度尺的认识,注意,用终了刻度减去起始刻度就是本段的长度.17.【分析】根据生活经验、对容积单位、体积单位和数据大小的认识,可知:3滴水大约是1毫升,不可能有1升;据此判断.【解答】解:由生活经验分析可知:3滴水大约是1毫升;题干说法错误.故答案为:×.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.18.【分析】由题目可知,测量不规则物体的体积,用排水法测量,则物体的体积就是物体排开水的体积.所以原说法正确.【解答】解:根据分析可知:利用排水法测量不规则物体的体积,物体排开水的体积就是不规则物体的体积.所以原说法是正确的.故答案为:√.【点评】此题考查了探索某些实物体积的测量方法.19.【分析】因一副三角板中的各个角的度数分别是30°、60°、45°、90°,把它们进行组合可得到:60°﹣45°=15°,45°+30°=75°,60°+45°=105°,45°+90°=135°,据此解答.【解答】解:根据题干分析可得:因一副三角板中的各个角的度数分别是30°、60°、45°、90°,把它们进行组合可得到:60°﹣45°=15°,45°+30°=75°,60°+45°=105°,45°+90°=135°.故答案为:√.【点评】本题考查了学生用一副三角尺画角度情况的掌握.四.计算题(共2小题)20.【分析】珊瑚石的体积即上升水的体积,根据长方体的体积公式V=abh,即可列式解答.【解答】解:8×8×(7﹣6)=64×1=64(立方厘米)答:这块珊瑚石的体积是64立方厘米.【点评】本题主要考查不规则物体体积的测量方法,解答本题的关键是理解珊瑚石的体积即上升水的体积.21.【分析】(1)根据减法的性质,一个数连结减去两个数,就是等于这个数减这两个减数之和计算.(2)根据运算顺序,先算括号内的,最后算减.(3)90°﹣37°,看作90°﹣30°﹣7°口算.(4)根据加法结合律,把后两个数相加再与第一个数相加.(5)去括号,再根据由左到右的顺序计算.(6)180°﹣85°看作180°﹣90°+5°口算.【解答】解:(1)180°﹣25°﹣75°=80°(2)180°﹣(37°+63°)=80°(3)90°﹣37°=53°(4)80°+36°+64°=180°(5)178°﹣(78°+54°)=46°(6)180°﹣85°=95°【点评】此题是考查角度的计算,“°”是角度的计量单位,计算时可以不看单位,直接算出各式的值,单位为变.口算的关键是找技巧,包括运算定律及性质、规律等的应用等.五.应用题(共2小题)22.【分析】把不规则图形看作底是11厘米,高是7厘米的三角形,然后根据三角形的面积公式S=ah÷2解答即可.【解答】解:11×7÷2=77÷2=38.5(平方厘米)答:不规则图形的面积是38.5平方厘米.【点评】这种类型的问题常常用数格子的方法,或看做一个近似的规范的图形进行计算.23.【分析】由题意可知:上升的8cm高的水的体积就等于这些碎石的体积,利用长方体的体积公式V=abh代入数据即可求解.【解答】解:8cm=0.8dm5×5×0.8=25×0.8=20(dm3)答:这些碎石的体积是20dm3.【点评】此题主要考查长方体的体积的计算方法,关键是明白:上升的水的体积就等于碎石的体积.六.操作题(共4小题)24.【分析】先数出整格数,再数出半格的个数.然后再求出它的面积.【解答】解:整格30个,不满整格18个,面积大约30×1+18÷2=30+9=39(平方厘米)故答案为:30,18,39.【点评】本题数格时,一定要按一定的顺序进行去数.25.【分析】用直尺的“0”刻度线和线段的一个端点重合,另一个端点在直尺上的刻度,就是该线段的长度,【解答】解:测量数据如下图:故答案为:25,25,25.【点评】本题考查了学生测量线段的能力.26.【分析】(1)使量角器的中心与端点A(B)重合,0刻度线与射线重合;(2)在量角器30度(120度)的地方点上一个点;(3)以画出的射线的端点为端点,通过刚画的点,再画出另一条射线;(4)画完后在角上标上符号,写出度数.【解答】解:根据题干分析可得:【点评】本题考查了学生画角的能力,掌握画角的方法即可解答问题.27.【分析】一副三角板中一个三角板的度数为30°,60°,90°,则另一个三角板的度数为45°,45°,90°,所以用30°和45°组合即可画出75°角,作图即可.【解答】解:画角如下:【点评】该题考查的是三角形的角度,需掌握一副三角板的度数.七.解答题(共4小题)28.【分析】用量角器进行测量,方法是:先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.【解答】解:如图所示:【点评】此题主要是考查根据角的度量方法正确量出角的度数.29.【分析】(1)铁钉的左端是与刻度1对齐的,右端是与4厘米6毫米处对齐,所以铁钉的长度是3厘米6毫米;(2)根据生活经验、对质量单位和长度单位大小的认识和数据的大小,可知:一辆货车的载重量是3吨,清苑到北京的距离是165千米.【解答】解:故答案为:3,6,吨,千米.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.30.【分析】先根据长方体的体积公式V=abh求出正方体的水槽上面空白处的体积,再找到相加大于或等于该体积的两块石头即可求解.【解答】解:我的做法:先求出正方体的水槽上面空白处的体积,再找到相加大于或等于该体积的两块石头.计算过程:20×20×(20﹣18)=20×20×2=800(cm3)因为358+454=812(cm3)812>800所以选择其中的②号③号两块石头.故答案为:先求出正方体的水槽上面空白处的体积,再找到相加大于或等于该体积的两块石头.20×20×(20﹣18)=20×20×2=800(cm3)因为358+454=812(cm3)812>800所以选择其中的②号③号两块石头.【点评】考查了探索某些实物体积的测量方法,关键是熟练掌握长方体的体积公式.31.【分析】可以把这块菜地,看作是底是51米,高是24米的平行四边形,根据平行四边形的面积公式:s=ah,求出菜地的面积,再根据单产量×数量=总产量进行解答.【解答】解:51×24=1224(平方米)10×1250=12240(千克)答:这块菜地一共可收白菜12240千克.【点评】此题主要考查平行四边形的面积的公式的实际应用.。

2020年小升初数学专题复习训练—空间与图形:图形与位置(1)(知识点总结 同步测试) 通用版(含答案)

2020年小升初数学专题复习训练—空间与图形:图形与位置(1)(知识点总结 同步测试) 通用版(含答案)

2020年小升初数学专题复习训练—空间与图形图形与位置(1)知识点复习一.位置【知识点归纳】位置用行和列表示.把竖排叫做列,横排叫做行.【命题方向】例:(1)长宁大道的北面有图书馆、小慧家、书店.(2)竹园路的西面有图书馆、小军家、游乐园.(3)学校在小慧家的南面,小军家在小慧家的西南面.(4)小军到书店,可以怎样走?分析:(1)长宁大道的北面就是长宁大道的上面(上北),然后找出即可;(2)竹园路的西面就是竹园路的左面(左西),然后找出即可;(2)学校在小慧家的下面,由上北下南可知,是在南面;小军家在小慧家的左下方,左是西下是南即西南方;(4)小军到书店有两条路可走;一条是沿着象山大道往东经过竹园路到海慧路,再往北走到长宁大道路口就到了;另一条是沿着象山大道往东到竹园路,在往北到长宁路,再沿着长宁大道往东经过海慧路口就到书店.解:(1)长宁大道的北面有:图书馆、小慧家、书店;(2)竹园路的西面有:图书馆、小军家、游乐园;(3)学校在小慧家的南面,小军家在小慧家的西南面;(4)小军到书店有两条路可走;一条是沿着象山大道往东到海慧路,再往北走到长宁大道就到了;另一条是沿着象山大道往东到竹园路,在往北到长宁路,再沿着长宁大道往东经过海慧路口就到书店.故答案为:图书馆、小慧家、书店,图书馆、小军家、游乐园,南,西南.点评:本题主要考查位置与方向,注意根据上北下南,左西右东的方位辨别方法.二.数对与位置【知识点归纳】1.数对的意义:用有顺序的两个数表示出一个确定的位置就是谁对.2.用数对表示位置时,先表示第几列,再表示第几行.3.给出物体在平面图上的数对,就可以确定物体所在的位置了.【命题方向】例:如图:如果将△ABC向左平移2格,则顶点A′的位置用数对表示为()A、(5,1)B、(1,1)C、(7,1)D、(3,3)分析:将△ABC向左平移2格,顶点A′的位置如下图,即在第1列,第1行,由此得出A′的位置.解:因为,A′在第1列,第一行,所以,用数对表示是(1,1),故选:B.点评:此题考查了数对的写法,即先看在第几列,这个数就是数对中的第一个数;再看在第几行,这个数就是数对中的第二个数.三.在平面图上标出物体的位置【知识点归纳】利用直角坐标系把平面上的点与数对应起来,以确定平面上物体的位置.【命题方向】例:某文化宫广场周围环境如图所示:(1)文化宫东面400米处,有一条商业街与人民路互相垂直.在图中画直线表示这条街,并标上:商业街.(2)体育馆在文化宫北偏东45°400米处.(3)李小明以60米/分的速度从学校沿着人民路向东走,3分钟后他在文化宫西面70米处.分析:先从图上看出1厘米代表100米,再解决一下问题:(1)因1厘米代表100米,距文化宫400米,求出一条商业街距文化宫的图上距离是400÷100=4厘米,再根据数据作图,(2)从图上根据方位可知体育馆在文化宫北偏东45°,量得图上距离是4厘米,求出实际距离即可.(3)先量得学校到文化宫的图上距离是2.5厘米,再求出实际距离,再从图上根据方位判断即可.解:(1)一条商业街距文化宫的图上距离是:400÷100=4(厘米),再根据数据作图如下,(2)从图上根据方位可知体育馆在文化宫北偏东45°,量的图上距离是4厘米,实际距离:100×4=400(米),答:体育馆在文化宫北偏东45°400米处.故答案为:北,东、400.(3)3分钟行的路程:60×3=180(米),学校到文化宫的实际距离:2.5×100=250(米),180米<250米,250-180=70(米),所以3分钟后他在文化宫西面70米处.故答案为:西,70.点评:此题主要考查了利用线段比例尺和已知的实际距离求得图上距离结合方位进行标注位置的方法的灵活应用,及动手量得图上距离求实际距离的方法的运用.四.方向【知识点归纳】方向:东、西、南、北、东北、东南、西北、西南、上、下、左、右、前、后.【命题方向】例1:张华面向北方,他的右侧是()方.A、西B、东C、南分析:由题意可得:面向北方,则其后方为南方,右方为东方,左方为西方,据此解答即可.解:张华面向北方,他的右侧是东方;故选:B.点评:此题主要考查方向的辨别,关键是找清对应的方向,最好能亲自体验一下.例2:小芳看小敏在东偏南30°的方向上,小敏看小芳在()方向上.A、北偏西30度B、北偏西60度C、北偏东30度D、北偏东60度分析:根据方向的相对性,东偏南30°和西偏北30°相对,西偏北30°就是北偏西60°,据此解答.解:东偏南30°和西偏北30°相对,西偏北30°就是北偏西60°,所以小芳看小敏在东偏南30°的方向上,小敏看小芳在北偏西60度方向上;故选:B.点评:本题主要考查方向的辨别,注意东偏南30°和西偏北30°相对,西偏北30°就是北偏西60°.五.路线图【知识点归纳】1.看懂并描述路线图:(1)根据方向标确定路线图的方向;(2)根据比例尺和测得的图上距离算出相应的实际距离;(3)弄清楚图中从哪儿按什么方向走,走多远到哪儿.2.画线路图:(1)确定方向;(2)根据实际距离及图纸大小确定比例;(3)求出图上距离;(4)以某一地点为起点,根据方向和图上距离确定下一地点的位置,再以下一地点为起点继续画.【命题方向】例:看路线图填空红红从甜品屋出发到电影院,她可以有下面几种走法.请把红红的行走路线填完整.(1)从甜品屋出发,向北走到布店,再向东走到电影院(2)从甜品屋出发,向东北走到街心花园,再向东北走到电影院.(3)从甜品屋出发,向东走到花店,再向东走到书店,再向北走到电影院.分析:根据上北下南,左西右东的方位辨别法分析解答.解:(1)从甜品屋出发,向北走到布店,再向东走到电影院(2)从甜品屋出发,向东北走到街心花园,再向东北走到电影院.(3)从甜品屋出发,向东走到花店,再向东走到书店,再向北走到电影院;故答案为:布店,东,东北,东北,东,东.点评:本题主要考查方向的辨别,注意找准观察点掌握基本方位.同步测试一.选择题(共8小题)1.周六上午,小玉要去买书,买零食,去银行,然后再回家,走()条路近.A.小玉家→学校→超市→银行→书店→小玉家B.小玉家→书店→银行→超市→书店→小玉家C.小玉家→超市→银行→书店→小玉家2.学校位于公园的西偏北35°方向2km处;从学校去公园要往()方向走2km.A.西偏北35°B.北偏西35°C.东偏南55°D.东偏南35°3.教学楼在体育馆东偏南30°方向200米处,则体育馆在教学楼()方向200米处.A.西偏北30°B.西偏南30°C.北偏西30°4.李军的座位记为(4,4),如果他往后挪三排,这时他的位置应记为()A.(7,4)B.(4,7)C.(1,1)D.(7,7)5.点a用数对(6,8)表示,将点a向右平移4格后的位置用数对表示是()A.(6,12)B.(2,8)C.(10,8)D.(6,4)6.在同一幅图上,如果A点的位置为(1,5),B点的位置为(3,5),C点的位置为(3,1),那么连接ABC三点所围成的三角形,一定是()三角形.A.直角B.钝角C.锐角D.等腰7.广场为观察点,学校在北偏西30°的方向上,下图中正确的是()A.B.C.D.无答案8.小红家、小明家和学校在一条直线上,小红家离学校300米,小明家离学校500米,小红家和小明家相距()米.A.200B.800C.200或800二.填空题(共8小题)9.一架飞机从某机场向南偏东40°方向飞行了1200千米,返回时飞机要向偏方向飞行.10.凯凯同学坐在教室的第4行第5列,用数对表示是.11.小东家在学校西偏北40°方向500米处,则学校在小东家.12.小明从家出发,先向走100米,接着向走150米到医院.邮局在小明家的方向.13.根据线路图回答问题.同学们从少年宫出发去学校参如活动,先向方向走米到公园,再向走米到书店,最后向走米到学校.14.先观察小华家到地铁站的路线图,然后按要求填空.(1)小华从家出发向方向行走120米到少年宫,再向东行走米到图书馆,然后向方向行走80米到公交站,最后向东南方向走米可到地铁站.(2)图书馆在地铁站方向.15.电影院里,小明坐在音乐教室的第4列第2行,用数对(4,2)表示,小刚坐在第7列第4行,明明的位置用数表示.16.观察图.学校在小明家偏度的方向上,距离约是.三.判断题(共5小题)17.音乐课,聪聪坐在音乐教室的第4列第2行,可以用数对(4,2)表示.(判断对错)18.在描述路线时,参照点是不断变动着的.(判断对错)19.B市在A市北偏东60°方向,那么A市在B市西偏南30°方向.(判断对错)20.数对(4,6)和(5,6)表示的位置是在同一列.(判断对错)21.由远到近看景物,看到的范围越小,也越清楚..(判断对错)四.应用题(共2小题)22.如图是一个游乐场的平面示意图.(1)请写出游乐场各景点的位置:海洋世界(2,3),假山(,),骑马场(,),溜冰场(,),儿童乐园(,).(2)小刚的位置是(7,2),他想到溜冰场去,请画出他的路线图.23.(1)小鸡在白马的面,鲜花在白马的面,鸽子在白马的面.(2)小熊在海豚的面,钟表在海豚的面,树叶在海豚的面.(3)企鹅在小鸡的面,海豚在小鸡的面,钟表在小鸡的面.(4)钟表在鸽子的面,钟表在鲜花的面,、在钟表的西北面.(5)白马在鸽子的面,在小熊的面,在鲜花的面.五.操作题(共4小题)24.画一画.25.在图中描出点A(1,1),点B(5,1),点C(3,5),然后把三个点顺次连接,得到的图形是三角形(按边分类).26.如图是一辆公共汽车的行驶路线.(1)在图上标出各站点所在的位置.(2)公共汽车从起点站驶出,往北走多少米,再往东走多少米到医院,从医院往东走多少米,再往北走多少米到学校,从学校往哪走多少米到邮局,从邮局往哪走多少米,再往哪走多少米到商场,从商场往哪走多少米,再往哪走多少米到终点.27.一群动物一起玩,熊猫说:“从假山向北再向东是我家,”长颈鹿说:“我家在假山的东南面”,大象说:“从假山向西,再向南走就是我家.”猴子说我家在长颈鹿家的西北.六.解答题(共3小题)28.观察如图回答问题.(1)超市在小明家的面,公园在学校的面,电影院在公园的面,超市在银行的面.(2)小明去上学怎样走?一共走多少米?29.下面是某学校集合时各个班级在礼堂的位置图:(1)写出各年级三班所在的位置.(2)表示某班的位置时(x,4),可能是哪个班?(3)表示某班的位置时(5,y),可能是哪个班?30.如果小明家的位置是(0,0),医院的位置是(,),公园的位置是(,),超市的位置是(,),王刚家在小明家正东300米处,比例尺是1:30000,(图上1格表示1厘米)请你在图上标出王刚家的位置.(写出计算过程)参考答案与试题解析一.选择题(共8小题)1.【分析】小玉要去买书,买零食,去银行,然后再回家,由图可知,有三条路线:小玉家→学校→超市→银行→书店→小玉家;小玉家→书店→银行→超市→书店→小玉家;小玉家→超市→银行→书店→小玉家;逐项分析判断即可.【解答】解:A、小玉家→学校→超市→银行→书店→小玉家,多走路了,不是最近的;B、小玉家→书店→银行→超市→书店→小玉家,有重复经过一个地方,不是最近的;C、小玉家→超市→银行→书店→小玉家,是最近的;故选:C.【点评】完成本题要注意从图文中获得正确信息,然后解答.2.【分析】根据方向的相对性可知,东和西相对,南和北相对,所以从学校去公园要往东偏南35°方向走2km;据此解答.【解答】解:根据分析可得,学校位于公园的西偏北35°方向2km处;从学校去公园要往东偏南35°方向走2km;故选:D.【点评】本题考查了方向的相对性,注意:方向相反,角度不变.3.【分析】根据位置的相对性可知,它们的方向相反,角度相等,距离相等,据此解答.【解答】解:教学楼在体育馆东偏南30°方向200米处,则体育馆在教学楼西偏北30°方向200米处.故选:A.【点评】本题主要考查了学生对位置相对性的掌握情况,熟记“方向相反,角度相等,距离相等”是解决本题关键.4.【分析】数对表示位置的方法是:第一个数字表示列;第二个数字表示行,据此即可解答.【解答】解:根据数对表示位置的方法,如果李军往后挪三排,则表示行的数要加上3,因此为4+3=7,而列数不变,所以李军往后挪三排,应记为(4,7).故选:B.【点评】此题主要考查数对表示位置的方法的灵活应用.5.【分析】根据数对表示位置的方法可知:第一个数字表示列,第二个数字表示行.将点a向右平移4格后,列加4,行不变.据此解答.【解答】解:点a用数对(6,8)表示,将点a向右平移4格后的位置用数对表示是(10,8).故选:C.【点评】此题考查数对表示位置的方法的灵活应用.6.【分析】利用方格图,在平面上标出这三个顶点,顺次连接画出这个三角形,即可进行选择.【解答】解:根据数对表示位置的方法可在下面方格图中画出这个三角形如下:观察图形可知,这个三角形一定是直角三角形.故选:A.【点评】此题主要考查数对表示位置的方法以及直角三角形的定义.7.【分析】此题可采用排除法,将ABC中的物体位置正确的读出来,即可选择正确答案.【解答】解:A:学校在广场的东偏北30°方向上,B:学校在广场的北偏东30°方向上,C:学校在广场的北偏西30°方向上,所以只有C符合题意.故选:C.【点评】排除法是解决选择题的一种重要手段.8.【分析】由小红家离学校300米,小明家离学校500米,可知有两种情况,小红和小明家都在学校的同一方,这时求两家的距离用500﹣300计算解答;另一种情况是小红和小明家在学校的两边,这时求两家的距离用500+300计算解答.【解答】解:小红和小明家都在学校的同一方时,两家的距离:500﹣300=200(米);小红和小明家都在学校的两边时,两家的距离:500+300=800(米);故选:C.【点评】解答本题关键是理解求两家的距离,有两种情况,小红和小明家都在学校的同一方;小红和小明家在学校的两边.二.填空题(共8小题)9.【分析】根据位置的相对性:两地相互之间的方向相反,距离相等.据此解答.【解答】解:根据分析可知:返回时飞机要按北偏西40°方向飞行1200千米.故答案为:北,西40°,1200千米.【点评】本题主要考查了学生对位置相对性知识的掌握情况.10.【分析】数对表示位置的方法是:第一个数字表示列,第二个数字表示行,由此即可解决问题.【解答】解:凯凯同学坐在教室的第4行第5列,用数对表示是(5,4).故答案为:(5,4).【点评】此题考查了利用数对表示位置的方法的灵活应用.11.【分析】根据位置的相对性:方向相反,角度相同,距离相等;进行解答即可.【解答】解:小东家在学校西偏北40°方向500米处,则学校在小东家东偏南40°方向500米处.故答案为:东偏南40°方向500米处.【点评】本题考查了方向的相对性,注意:东对西,南对北,角度不变,距离不变.12.【分析】依据地图上的方向辨别方法,即“上北下南,左西右东”,以及图上标注的其他信息,即可逐题解答.【解答】解:小明从家出发,先向西走100米,接着向北走150米到医院.邮局在小明家的东南方向;故答案为:西,北,东南.【点评】此题主要考查依据方向(角度)和距离判定物体位置的方法.13.【分析】依据地图上的方向辨别方法,即“上北下南,左西右东”,以及图上标注的其他信息,即可描述同学们的行走路线.【解答】解:同学们从少年宫出发去学校参如活动,先向西北方向走450米到公园,再向西南方向走320米到书店,最后向西走300米到学校.故答案为:西北,450,西南方向,320,西.【点评】此题主要考查地图上的方向辨别方法的灵活运用.14.【分析】根据上北下南,左西右东的方位辨别法辨别方向,并根据比例尺计算出距离.【解答】解:(1)根据线段比例尺,少年宫到图书馆的距离为:40×4=160(米)公交站到地铁站的距离为:40×5=200(米)根据地图上确定方向的方法知:小华从家出发向东北方向行走120米到少年宫,再向东行走160米到图书馆,然后向西南方向行走80米到公交站,最后向东南方向走200米可到地铁站.(2)根据地图上确定方向的方法可知,图书馆在地铁站西北方向.故答案为:东北;160;西南;200;西北.【点评】本题主要考查方向的辨别,注意找准观察点掌握基本方位,并利用比例尺计算距离.15.【分析】由小明的位置及数对表示可知:第一个数字表示列,第二个数字表示行,据此解答.【解答】解:小刚坐在第7列第4行,明明的位置用数(7,4)表示.故答案为:(7,4).【点评】此题考查了数对的写法,即先看在第几列,这个数就是数对中的第一个数;再看在第几行,这个数就是数对中的第二个数.16.【分析】抓住确定物体的两大要素:方向和距离,根据图中比例尺,即可得出物体的确切位置.【解答】解:根据图中线段比例尺可得:学校到小明家的距离是:200×3=600(米),以小明家为观测中心:学校在小明家北偏西45°方向上,距离约600米.答:学校在小明家北偏西45°方向上,距离约600米.故答案为:北;西;45;600米.【点评】确定物体的位置,首先要确定观测中心,抓住方向和距离两个要素,即可解决此类问题.三.判断题(共5小题)17.【分析】根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,聪聪坐在音乐教室的第4列第2行,可以用数对(4,2)表示.【解答】解:音乐课,聪聪坐在音乐教室的第4列第2行,可以用数对(4,2)表示;原题说法正确.故答案为:√.【点评】数对中每个数字所代表的意义,在不同的题目中会有所不同,但在无特殊说明的情况下,数对中第一个数字表示列,第二个数字表示行.18.【分析】描述路线时,需要找出标志物作为观测点,因为位置是变动的,所以参照物也是变动的.据此解答即可【解答】解:描述路线时,要以路线上不同路段的标志物作观测点.所以,原题说法是对的.故答案为:√.【点评】此题主要考查描述线路时,如何选择观测点.19.【分析】根据位置的相对性可知,它们的方向相反,角度相等,距离相等,据此解答.【解答】解:B市在A市北偏东60°方向,那么A市在B市西偏南30°方向,说法正确;故答案为:√.【点评】本题主要考查了学生对位置相对性的掌握情况,画图更容易解答.20.【分析】根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,数对(4,6)表示第4列,第6行,而数对(5,6)表示第5列,第6行.即数对(4,6)和(5,6)表示的位置是在同一行.【解答】解:数对(4,6)和(5,6)表示的位置是在同一行原题说法错误.故答案为:×.【点评】数对中每个数字所代表的意义,在不同的题目中会有所不同,但在无特殊说明的情况下,数对中第一个数字表示列,第二个数字表示行.21.【分析】人看物体时,眼睛相当于凸透镜,物近、像远、像变大,所以由远到近看景物,看到的范围越小,但像大了也越清楚了.【解答】解:人看物体时,眼睛相当于凸透镜,物距近了,像距远了,但像变大,所以由远到近看景物,看到的范围越小,也越清楚;故答案为:√.【点评】本题主要考查了凸透镜成像的知识.四.应用题(共2小题)22.【分析】数对表示位置的方法是:第一个数字表示列,第二个数字表示行,据此即可标出平面图中各个点的数对位置.【解答】解:(1)海洋世界(2,3),假山(7,2),骑马场(6,4),溜冰场(1,5),儿童乐园(5,1).(2)小刚的位置是(7,2),他想到溜冰场去,最近路线是(7,2)→(6,4)→(1,5),画图如下:(此题答案不唯一,只要符合即可)故答案为:7,2,6,4,1,5,5,1.【点评】此题主要考查数对表示位置的方法.23.【分析】依据地图上的方向辨别方法,即“上北下南,左西右东”,以及图上标注的其他信息,即可进行解答.【解答】解:(1)小鸡在白马的北面,鲜花在白马的西北面,鸽子在白马的东北面.(2)小熊在海豚的南面,钟表在海豚的东南面,树叶在海豚的东南面.(3)企鹅在小鸡的东南面,海豚在小鸡的西南面,钟表在小鸡的南面.(4)钟表在鸽子的西南面,钟表在鲜花的东南面,海豚、鲜花在钟表的西北面.(5)白马在鸽子的西南面,在小熊的东北面,在鲜花的东南面.故答案为:北、西北、东北;南、东南、东南;东南、西南、南;西南、东南、海豚、鲜花;西南、东北、东南.【点评】此题主要考查地图上的方向辨别方法的灵活应用.五.操作题(共4小题)24.【分析】依据图上标注的各种信息,以及地图上的方向辨别方法“上北下南,左西右东”就可以直接填写答案.【解答】解:【点评】此题主要考查依据方向和距离判定物体位置的方法,关键是弄清楚地图上的方向规定.25.【分析】根据数对表示位置的方法:第一个数字表示列,第二个数字表示行,在图中找出A、B、C三个点的位置顺次连接,然后根据三角形特点判断三角形形状即可.【解答】解:如图所示:答:把三个点顺次连接,得到的图形是等腰三角形.故答案为:等腰.【点评】本题主要考查了数对表示位置的方法及等腰三角形的性质.26.【分析】(1)根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,即可用数对表示出各设施的位置.(2)根据平面图上方向的辨别“上北下面,左西右东”,图是一格表示100米,即中确定从起点站到各站所行驶的方向、距离.【解答】解:(1)在图上标出各站点所在的位置.(2)公共汽车从起点站驶出,往北走100米,再往东走300米到医院,从医院往东走100米,再往北走300米到学校,从学校往东走300米到邮局,从邮局往东走100米,再往北走200米到商场,从商场往东走200米,再往北走200米到终点.【点评】此题主要是考查路线图,关键是观测点、方向及距离.27.【分析】根据地图上的方向,上北下南,左西右东,以假山为观测点即可确定熊猫、长颈鹿、大象、猴子家的方向,并根据出熊猫、长颈鹿、大象、猴子的家.【解答】解:分别标出熊猫、长颈鹿、大象、猴子的家:【点评】根据方向和距离确定特征的位置,关键是确定观测点,同一物体,所选的观测点不同,方向和距离也会改变.六.解答题(共3小题)28.【分析】(1)根据图上确定方向的方法,以小明家为观测点,超市在东面;以学校为观测点,公园在西北方向;以公园为观测点,电影院在西南方向;以银行为观测点,超市在西南方向.据此做题.(2)现根据图上确定方向的方法确定方向,然后根据图上给出的距离,确定小明上学所走路线为:小明从家出发,先向东行100米到超市,再向东北方向行100米到银行,再向南行120米到电影院,再向东走110米到少年宫,再向北行110米到公园,再向东北方向行170米到学校.然后计算小明上学所行路程:100+100+120+110+110+170=710(米).【解答】解:(1)超市在小明家的东面,公园在学校的西北面,电影院在公园的西南面,超市在银行的西北面.(2)100+100+120+110+110+170=710(米)答:小明从家出发,先向东行100米到超市,再向东北方向行100米到银行,再向南行120米到电影院,再向东走110米到少年宫,再向北行110米到公园,再向东北方向行170米到学校.他一共行了710米.故答案为:东;西北;西南;西北.【点评】本题主要考查方向的辨别,注意找准观察点掌握基本方位.29.【分析】(1)根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,即可用数对表示出各年级三班的位置.(2)(x,4)表示第4行的班级,此行的班级都有可能.(3)(5,y)表示第5列的班级,此列的班级都有可能.【解答】解:(1)一(3)班:(4,1)二(3)班:(3,2)三(3)班:(4,2)四(3)班:(3,3)五(3)班:(3,4)六(3)班:(3,5)(2)答:(x,4),表示每4行的班级,可能是五(1)班或五(2)班或五(3)班或五(4)班或五(5)班.(3)答:(5,y),表示第5列的班级,可能是二(2)班或三(4)班)或四(5)班或五(5)班或六(5班).【点评】此题考查了数对的写法,即先看在第几列,这个数就是数对中的第一个数;再看在第几行,这个数就是数对中的第二个数.30.【分析】(1)数对表示位置的方法是:第一个数字表示列,第二个数字表示行;(2)以小明家为观测中心,正东300米处,利用比例尺计算出它的图上距离,即可标出王刚家的位置.【解答】解:(1)根据数对表示位置的方法,医院的位置是(3,3),公园的位置是(1,2),超市的位置是(4,1);(2)300米=30000厘米,所以图上距离为:30000×=1(厘米),由此可以标出王刚家的位置如图所示:。

最新-六年级下册数学空间与图形测试题人教版(含答案)

最新-六年级下册数学空间与图形测试题人教版(含答案)

六年级下册数学空间与图形测试题人教版一、单选题(共5道,每道20分)1.如图,方格纸上每个小正方形的面积为1平方厘米,求方格纸上多边形的面积是平方厘米。

A.25.5B.19.25C.20D.25答案:A解题思路:如图所示,将多边形分成五部分:第一部分面积:5×1÷2=2.5第二部分面积:4×1÷2=2第三部分面积:4×4=16第四部分面积:4×1÷2=2第五部分面积:6×1÷2=32.5+2+16+2+3=25.5试题难度:三颗星知识点:平面图形的面积2.如图,ABCD是直角梯形,BC=12厘米,CD=7厘米,则阴影部分的面积的和为平方厘米。

A.42B.31C.21D.11答案:A解题思路:极端化考虑:E点与C点重合,则图中阴影部分面积与下图阴影部分面积相等因此阴影部分的面积为:12×7÷2=42(平方厘米)试题难度:三颗星知识点:平面图形的面积3.ABCD是长为8,宽为6的长方形,E,F分别是AD,BC的中点,P为长方形内任意一点,则阴影部分的面积是。

A.48B.24C.12D.6答案:C解题思路:如图所示,过P点做AD的平行线MN则△PAE的面积为长方形AMND的,△PFC的面积为长方形BMNC的,则阴影部分的面积是长方形ABCD的。

6×8×=12试题难度:三颗星知识点:平面图形的面积4.如图,OC=3厘米,则阴影部分面积为平方厘米(π取3.14)。

A.2.565B.3.276C.1.76D.4.76答案:A解题思路:×π×3²-×3×3=2.565试题难度:三颗星知识点:平面图形的面积5.有一块长方形土地,宽为10米,长是宽的2倍,中间有一块花坛,花坛是一个边长1米的正方形,周围是草坪,草坪的面积是平方米.A.199.5B.132C.199D.201答案:C解题思路:用长方形的面积减去正方形的面积即可:10×10×2-1×1=199试题难度:三颗星知识点:平面图形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间与图形测试题(一)
一、选择题
1.下列长度的三条线段,能组成三角形的是
A .1cm ,2 cm ,3cm
B .2cm ,3 cm ,6 cm
C .4cm ,6 cm ,8cm
D .5cm ,6 cm ,12cm
2.如图,C 、D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于
A .3cm
B .6cm
C .11cm
D .14cm
3.如图,在ΔABC 中,AC =DC =DB ,∠ACD =100°,则∠B 等于 A .50° B .40° C .25° D .20°
4.如图a b ∥,M N ,分别在a b ,上,P 为两平行线间一点, 那么123∠+∠+∠=( )
A .180
B .270
C .360
D .540
5.如图,已知直线AB ∥CD ,∠C=115°,∠A=25°,则∠E=
A. 70°
B. 80°
C. 90°
D. 100°
6.如图,已知ABC △中,45ABC ∠=,4AC =,H 是高AD 和
BE 的交点,则线段BH 的长度为( )
A .6
B .4
C .23
D .5
7. 如图是一张简易活动餐桌,现测得OA=OB=30cm ,
OC=OD=50cm ,现要求桌面离地面的高度为40cm ,那么 两条桌腿的张角∠COD 的大小应为…………………( )
A .100°;
B .120°;
C .135°;
D .150°
8.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中准确的个数 是( )
A.1
B.2
C.3
D.4
9.如图,直角梯形ABCD 中,∠BCD =90°,A D ∥BC ,BC =CD ,E 为梯形内
D C
B
A
E H 6题
a
b
M
P N 1
2
3 (第4题图)
5题图
第3题图
D C B
A 2题图 C
B D
A 3题图 7题图
一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM :MC 的值为 ( ) A.5:3 B.3:5 C.4:3 D.3:4
10.如图,点P 是AB 上任意一点,ABC ABD ∠=∠,还应补充一个条件,才能推出
APC APD △≌△.从下列条件中补充一个条件,不一定能....
推出APC APD △≌△的是( )
A .BC BD =
B .A
C A
D = C .ACB ADB ∠=∠ D .CAB DAB ∠=∠
11.如图,已知梯形ABCD 中,AD BC ∥,AB CD AD ==,
AC BD ,相交于O 点,60BCD ∠=,则下列说法准确的是(
) A .梯形ABCD 是轴对称图形 B .2BC AD =
C .梯形ABC
D 是中心对称图形 D .AC 平分DCB ∠
12. 在四边形ABCD 中,对角线AC 与BD 相交于点E ,若AC 平分∠DAB ,AB=AE ,
AC=AD. 那么在下列四个结论中:(1) AC ⊥BD ;(2)BC=DE ; (3)∠DBC=1
2 ∠DAB ;
(4) △ABE 是正三角形,准确的是……………( )
A .(1)和(2);
B .(2)和(3);
C .(3)和(4);
D .(1)和(4)
二、填空题
13.如图,ABC △和DCE △都是边长为2的等边三角形,点B C E ,,在同一条直线上,连接BD ,则BD 的长为 . 14.如图,AB AC =,120BAC ∠=,AB 的垂直平分线交
BC 于点D ,那么ADC ∠= .
15.如图,在锐角AOB ∠内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角 个.
(第8题图)
(第9题图)
C A
D P B 10题图
A
D
B
C
D
A B D
(第14题图)
4
A
D O
C
B
11题图
16.四个全等的直角三角形围成一个大正方形,中间空出的部分是 一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正 方形面积为1,大正方形面积为25,直角三角形中较小的锐角为θ, 那么sin θ= . 三、解答题
17、已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF DE ⊥交BC 的延长线于点F .求证:DE DF =.
18.如图,把一张矩形的纸ABCD 沿对角线BD 折叠,使点C 落在点E 处,BE
与AD 交于点F .
⑴求证:ΔABF ≌ΔEDF ;
⑵若将折叠的图形恢复原状,点F 与BC 边上的点M 正好重合,连接DM ,试判断四边形BMDF 的形状,并说明理由.
19如图,B C E ,,是同一直线上的三个点,四边形ABCD 与四边形CEFG 都是正方形.连接BG DE ,.
(1)观察猜想BG 与DE 之间的大小关系,并证明你的结论;
(第16图) A E B
C
F D 1
2 3
C D B A M 第22题图F
E
(2)图中是否存有通过旋转能够互相重合的两个三角形?若存有,请指出,并说出旋转过程;若不存有,请说明理由.
20.(本小题8分) 如图,在ABC △中,D 是BC 边的中点,F E ,分别是AD 及其延长线上的点,CF BE ∥. (1)求证:BDE CDF △≌△.
(2)请连结BF CE ,,试判断四边形BECF 是何种特殊四边形,并说明理由.
21.学生在讨论命题:“如图,梯形ABCD 中,AD BC ∥,B C ∠=∠,则AB DC =.”的证明方法时,提出了如下三种思路.
思路1:过一个顶点作另一腰的平行线,转化为等腰三角形和平行四边形; 思路2:过同一底边上的顶点作另一条底边的垂线,转化为直角三角形和矩形; 思路3:延长两腰相交于一点,转化为等腰三角形. 请你结合以上思路,用适当的方法证明该命题.
22、.如图,在矩形ABCD 中()AB AD >,E 为线段AD 上的一个动点(点E 不与A D ,两点重合),连结FC ,过E 点作EF EC ⊥交AB 于F ,连结FC . (1)AEF △与DCE △是否相似?并说明理由;
(2)E 点运动到什么位置时,EF 平分AFC ∠,证明你的结论.
A D C
B A B
C
D
E
F
22题
23如图,ABM ∠为直角,点C 为线段BA 的中点,点D 是射线BM 上的一个动点(不与点B 重合),连结AD ,作BE AD ⊥,垂足为E ,连结CE ,过点E 作EF CE ⊥,交BD 于F .
(1)求证:BF FD =;
(2)A ∠在什么范围内变化时,四边形ACFE 是梯形,并说明理由;
(3)A ∠在什么范围内变化时,线段DE 上存有点G ,满足条件1
4
DG DA =,并说明理
由.
24、.小丽参加数学兴趣小组活动,提供了下面3个有联系的问题,请你协助解决:
(1)如图1,正方形ABCD 中,作AE 交BC 于E ,DF AE ⊥交AB 于F ,求证:AE DF =;
(2)如图2,正方形ABCD 中,点E F ,分别在AD BC ,上,点G H ,分别在AB CD
,上,且EF GH ⊥,求EF
GH
的值; (3)如图3,矩形ABCD 中,AB a =,BC b =,点E F ,分别在AD BC ,上,且
EF GH ⊥,求EF
GH
的值.
A B C
D F
E M (第24图1) (第24图2)
(第24图3)
25、在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比
例函数(0)k
y k x
=
>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;
(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?
(3)请探索:是否存有这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存有,求出点F 的坐标;若不存有,请说明理由.。

相关文档
最新文档