运筹学课程论文

合集下载

运筹与优化课程设计论文

运筹与优化课程设计论文

运筹与优化课程设计论文一、课程目标知识目标:1. 让学生掌握运筹学的基本概念,如线性规划、整数规划等,并理解其在现实生活中的应用。

2. 培养学生运用数学模型解决实际问题的能力,能够根据问题特点构建合适的运筹模型。

3. 让学生掌握优化算法的基本原理,如单纯形法、分支定界法等,并了解其适用范围。

技能目标:1. 培养学生运用运筹学方法分析、解决问题的能力,提高逻辑思维和创新能力。

2. 让学生熟练运用相关软件(如Excel、Lingo等)进行模型求解,提高数据处理和计算能力。

3. 培养学生团队协作能力,学会与他人合作共同解决问题。

情感态度价值观目标:1. 培养学生对运筹学及其应用的兴趣,激发学习热情,形成积极向上的学习态度。

2. 培养学生面对复杂问题时,保持冷静、理性分析的心态,形成解决问题的自信心。

3. 让学生认识到运筹学在国家和企业发展中的重要作用,树立为国家和人民服务的价值观。

本课程针对高中年级学生,结合学科特点和教学要求,注重培养学生的实际操作能力和团队协作精神。

课程内容紧密联系现实生活,以提高学生的知识应用能力和解决实际问题的能力为核心,为学生未来的学习和工作打下坚实基础。

通过本课程的学习,期望学生能够掌握运筹学的基本知识和方法,具备解决实际问题的能力,并在情感态度上得到积极培养。

二、教学内容本课程教学内容主要包括以下几部分:1. 运筹学基本概念:介绍运筹学的起源、发展及其在现实生活中的应用,通过案例让学生理解运筹学的研究对象和基本方法。

2. 线性规划:讲解线性规划的基本理论,包括线性规划模型、图形解法、单纯形法等,并结合实际案例进行分析。

3. 整数规划:介绍整数规划的特点、分类及求解方法,如分支定界法、割平面法等,并通过实例加深理解。

4. 非线性规划:概述非线性规划的基本概念、求解方法,如梯度法、牛顿法等,并分析其在实际问题中的应用。

5. 动态规划:讲解动态规划的基本原理、方法及其在资源分配、生产计划等方面的应用。

大学生运筹学论文

大学生运筹学论文

大学生运筹学论文第一篇:大学生运筹学论文论数学与生活内容提要:步入大学,我们的学习已经不再停留于刻板的书本,我们学习的目的也不仅仅是去掌握那些常规的知识,大学学习,我们更多的是去学习一种思想,学习一种态度,然后用我们所学去实践生活。

当我们用心思考,我们也会发现,陪伴我们十几年的恼人的数学也蕴含了丰富的人生哲理。

关键字:生活,思考,哲理一、数学里的奇妙现象有时候我们会思考:无穷的边缘是什么?就像我们弄不懂广袤宇宙的边境是什么,无论多么科学的解释我们也始终想不明白怎么可以存在这样的一个空间去包括宇宙以及宇宙之外的东西。

而代表着这个含义的π=3.1415……..,无穷尽的不规则小数,没有尽头,但是它却确确实实是我们每天都会用到的具有现实意义的数值;二、最美丽的数字——0.618(1)人体上的黄金分割《达芬奇密码》一书中说讲,肩膀到指尖的距离除以肘关节到指尖的距离;臀部到地面的距离除以膝盖到地面的距离。

再看看手指关节、脚趾、脊柱的分节,都会得到PHI(黄金分割比)。

真的会这样吗?我半信半疑地进行了一点近似的计算。

按照一个正常体型的人为例:肩膀到指尖的距离:70㎝肘关节到指尖的距离:43㎝43÷70≈0.614 臀部到地面的距离:80㎝膝盖到地面的距离:49㎝49÷80≈0.613 这些数据的结果都接近于0.618。

(2)生理上的黄金分割再如网上说,人在环境气温22℃-24℃下生活感到最适宜.因为人体的正常体温是36℃-37℃,这个体温与0.618的乘积恰好是22.4℃-22.8℃,而且在这一环境温度中,人体的生理功能、生活节奏等新陈代谢水平均处于最佳状态。

37℃×0.618=22.866℃所以当所有的这些都和黄金分割比联系上时,我们不得不感叹数学的奥秘,真的很不可思议,如果说是巧合,但是当种种现象都联系在一起的时候,就不仅仅是巧合可以解释的了,我们不得不承认这就是数学中蕴含的奥妙。

运筹学结课论文

运筹学结课论文

运筹学与博弈论思想的应用概要:本文从“运筹帷幄”引入运筹学和博弈论,从历史、经济、民生等领域所举例子详细解说了运筹学与博弈论思想在现实中的应用。

关键字:运筹学、博弈论、企业管理、运输问题、影子价格、运筹工作者一、运筹学的的起源与发展普遍认为,运筹学起源于第二次世界大战初期,当时, 英国(随即是美国) 军事部门迫切需要研究如何将非常有限的物资以及人力和物力, 分配与使用到各种军事活动的运行中, 以达到最好的作果。

在第二次世界大战期间, 德国已拥有一支强大的空军, 飞机从德国起飞17 分钟即到达英国本土。

在如此短的时间内, 如何预警和拦截成为一大难题。

1935 年, 为了对付德国空中力量的严重威胁, 英国在东海岸的鲍德西(Birdseye) 成立了关于作战控制技术的研究机构。

1938 年, 鲍德西科学小组负责人( Rowe , A1 P) 把他们从事的工作称为运筹学(Operational research[ 英] ,Operations research[美] ,直译为“作战研究”) 。

因此, 人们把鲍德西作为运筹学的诞生地, 将1935 —1938 年这一时间段作为运筹学产生的酝酿时期。

其实早在古代中国就有“运筹于帷幄之中,决胜于千里之外”之说,后来人们用“运筹帷幄”表示善于策划用兵、指挥战争。

然而“运筹”发展到现代已成为一门重要的学科“运筹学”。

由上述运筹学发展历史可知,运筹学是由军事、经济、生产等各个领域所提出的决策问题的推动而发展起来的一门新兴的学科分支。

所谓运筹学,可以说是一系列用以提高所研究系统的有效性的分析工具。

博弈论属于运筹学的一个分支,是研究博弈行为中竞争各方是否存在着最合理的行动方案,以及如何找到这一合理方案的数学理论和方法。

运筹学包括以下内容:线性规划、非线性规划、动态规划、多目标规划、网络分析、网络规划、排队论、存储论、博弈论、决策论、模型论等。

运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。

运筹学论文

运筹学论文

运筹学论文摘要本论文主要探讨了运筹学在管理决策中的应用。

首先介绍了运筹学的基本概念和相关理论,然后分析了运筹学在企业管理中的实际应用案例,最后总结了运筹学的优势和局限性,并对未来运筹学研究方向进行了展望。

1. 引言随着企业管理的复杂性和竞争的加剧,越来越多的企业开始重视运筹学在管理决策中的应用。

运筹学作为一门应用数学学科,通过运筹学方法和技术来解决企业面临的各种问题,帮助企业高效运营和优化决策。

本文将从运筹学的基本概念、实际应用案例和研究展望三个方面展开论述。

2. 运筹学基本概念2.1 定义运筹学是一门研究如何对复杂系统进行优化决策的学科。

它以数学为基础,涉及多个学科领域,如线性规划、整数规划、图论、排队论等。

2.2 运筹学方法运筹学通过建立数学模型来描述和分析问题,然后采用优化算法和技术对模型进行求解,得到最优解或近似最优解。

常用的运筹学方法包括线性规划、整数规划、动态规划、启发式算法等。

3. 运筹学在企业管理中的应用案例3.1 生产调度优化运筹学可以帮助企业优化生产调度,提高生产效率和资源利用率。

通过建立生产调度模型,运用线性规划、整数规划等方法,可以实现最优生产调度方案的确定,使得生产过程更加高效。

3.2 配送路径优化对于物流企业来说,配送路径的优化是提高物流效率和降低成本的关键。

运筹学可以通过图论、整数规划等方法,确定最优的配送路径,减少行驶里程和时间,达到节约成本的目的。

3.3 库存管理优化运筹学可以帮助企业优化库存管理,减少库存成本和缺货风险。

通过建立库存模型,根据需求、供应、存储成本等因素,利用线性规划、动态规划等方法,确定最优的库存策略,实现库存成本的最小化和保证供应的可靠性。

4. 运筹学的优势与局限性4.1 优势 - 运筹学可以提供量化的决策支持,帮助企业从数据驱动的角度优化决策; - 运筹学方法和技术可以快速求解大规模、复杂的优化问题; - 运筹学可以提供全局最优解或近似最优解,并具有较高的准确性和可信度。

运筹学论文

运筹学论文

中国矿业大学运筹学结课论文姓名:魏恒征学院:矿业工程学院班级:采矿工程09-7班学号:01090235教师:付乳燕运筹学的初步学习及认识背景:本学期在付老师的指导下学习了运筹学,初步了解运筹学的发展历史及运筹学在生活实例中的应用。

运筹学是一门和社会生活紧密联系的一门科学,学习运筹学不仅是仅仅的学习知识,运筹学的诸多思想在实际决策中很有指导意义。

关键词:运筹学历史特点学习收获前景一、运筹学简介英语全称为:Operational Research(英国)或者是Operations Resear ch(美国)在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。

田忌赛马的故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。

可见,筹划安排是十分重要的。

现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。

前者提供模型,后者提供理论和方法。

运筹学的思想在古代就已经产生了。

敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。

但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。

也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。

运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。

当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。

运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。

运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。

虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。

运筹学结课论文

运筹学结课论文

运筹学结课论文运筹学结课论文运筹学结课论文——基于Matlab的运输问题求解方法探究姓名:苍露露学院:理学院学号:2021052204 班级:信息102班指导教师:葛仁东摘要:运输行业的重要性随着中国经济的不断发展而快速提高,为了降低物流成本,我们有必要研究物流运输中如何组织物资调运才能使总运输成本最少这一重要问题。

而传统的手工解决方式存在着效率低、计算繁琐、数据易丢失等缺点,因此利用MATLAB软件来计算出最佳结果是很有必要的。

本论文以运输问题中一个典型的案例为例阐述了基于MATLAB 的定量分析方法,解决了运输最优方案编制中求解这一大难题,可以广泛应用于物流配送领域,对实践工作具有较强的指导意义。

关键字:Matlab 运输问题产销不平衡问题一、线性规划与运输问题:线性规划是运筹学的一个分支,它是最优化问题领域中最简单、最基本和使用最广泛的方法。

在交通运输领域中,运输是一个最基本的功能,也是物流的核心问题。

将同一种物资从几个不同的发货点运到另外几个不同的收货点,因为运费是单位运价和运输量的乘积,所以如何选择一个合理的运输方案,使总运费最省,这是一个很有应用价值的问题,这类问题就称为运输问题。

研究物资运输过程中最优的运输方案,需要在满足各种资源限制的条件下,找到使运输总成本最少的调运方案。

实践中如果建立数学模型,用线性规划的方法来解决这一问题,则可以节省大量的工作,但由于此类问题所涉及的条件变量较多,一般的数学方法运算难度较大,结果不容易求出,而如果能有效的借助MATLAB 软件中强大的运算功能则可以得到事半功倍的效果。

二、 Matlab求解运输问题的原理:在Matlab 中构建函数l(x)用来解决线性规划问题。

众所周知,运输问题的最优解本质属于极值问题,极值有最大和最小两种,而极大值问题的求解可以转化为极小值问题,因此在Matlab 中以求极小值为标准形式,构建的函数l(x)的具体格式如下:[X,v,e,o,l]=l(F,A,b,m,n,M,N,P,Z)式中:X 为问题的解向量;F 为由目标函数的系数构成的向量;A 为一个矩阵;b 为一个向量,表示线性规划中不等式约束条件,A,b 是系数矩阵和右端向量;m 和n 为线性规划中等式约束条件中的系数矩阵和右端向量;M 和N 为约束变量的下界和上界向量;P 为给定的变量的初始值;Z 为控制规划过程的参数系列;v 为优化结束后得到的目标函数值。

运筹学课程设计论文

运筹学课程设计论文

设计总说明/摘要二十一世纪,是一个信息与高科技技术高速发展的时代,在这样的大时代背景下,“高效率”问题将是我们研究一切问题的出发点。

我们研究的初衷及最终的落脚点可以归纳为以下两方面:在以各项高科技产品及先进的科研方法为依托的条件下,研究如何在资源一定的情况下,利用这些有限的资源来完成最多的任务;研究如何在任务确定的条件下,利用最小的资源来完成这个确定的任务。

在现在这样一个快节奏、高效率的时代的映射下,在校大学生们也同样必须得紧跟时代高速前进的脚步。

大学一学期所学的课程是我们用高中三年所学课程的总和,而且大学里更多的时间需要我们自己去支配,特别是在期末考试的时候,在仅有的复习时间内,我们总是希望自己能够把时间安排到很理想的状态,希望自己的复习能够带来最大的回报。

所以,我本次课程设计的研究内容就是,如何在有限的时间内,合理的安排好自己的复习计划,以期最终的考试成绩达到最理想的状态。

关键词:高效率,有限资源,安排,最理想的状态目录1.问题描述 (1)1.1背景描述 (1)1.2主要内容与目标 (1)1.3研究的意义 (1)1.4研究的主要方法与思路 (2)2 模型的建立 (2)2.1 基础数据的确定 (2)2.2 变量的设定 (2)2.3 目标函数的建立 (3)2.4 限制条件的确立 (3)2.5 模型的建立 (3)3 软件的应用及计算结果 (4)3.1 模型的求解 (4)3.2 解的分析与评价 (7)4 程序编写及验证 (8)4.1 程序的流程结构及算法设计 (8)4.2 程序的实现 (9)4.3 程序的验证 (10)5 结论与建议 (13)5.1 研究结论 (13)1.问题描述1.1背景描述在信息技术与高科技技术高速发展的今天,“高效率”问题将是一切领域所关注的焦点。

当然,作为社会人才培育基地最后一站的大学校园也不例外。

在“快节奏”这样一个大的社会背景下,我们的在校大学生们也同样,或者说更胜于其他社会人士,尽自己全力去追求高效率、高质量地完成每一项任务。

运筹学论文

运筹学论文

资源优化配置九江学院二级学院:商学院专业:工商管理姓名:姜博升学号:48号时间:2011-11-20摘要本论文以企业资源优化分配问题与企业经济效益关系理论阐述的基础上,通过建立线性规划函数模型,对优化分配计划对企业经济发展拉动作用的影响进行探讨。

随着资源浪费的问题在世界范围展开,人们越来越重视资源的合理化配置,同时企业也希望在保证产品质量的前提下,能用最少的成本换取尽可能多的利润,综上可以看出资源的优化配置越来越受到关注。

以下论文主要针对企业实际资源分配的主要问题进行分析并且建立数学模型,研究如何有效的分配人员或生产物品从而使得成本最小化。

一、问题设计某快餐店坐落在一个旅游景点中。

这个旅游景点远离市区,平时游客不多,而在每个星期六游客猛增。

快餐店主要为旅客提供低价位的快餐服务。

该快餐店雇佣了两名正式员工,正式员工每天工作8小时。

其余工作由临时工担任,临时工每班工作4小时。

在星期六,该快餐店在上午十一时开始营业到下午4时关门。

根据游客就餐情况,在星期六每个营业小时所需职工数(包括正式工和临时工)如表1所示。

已知一名正式职工11点开始上班,工作4小时后,休息1小时,而后在工作4小时。

又知临时工每小时的工资为4元。

(1)、满足对职工需求的条件下,如何安排临时工的班次,使得临时工成本最小?(2)、这时付给临时工的工资总额是多少?一共需要安排多少临时工班次?(3)、如果临时工每班工作时间可以是3 小时,也可以是4 小时,那么如何安排临时工的班次,使得临时工总成本最小?二、问题分析这个问题的目标是使得工资成本最低,要做的决策就是人力资源分配的问即如何分配个临时工的班次,才能使得快餐店的成本最小。

按题目所给的班次,将决策变量,目标函数和约束条件用数学符号及数字表示出来,可得到下面数学模型。

三、建立数学模型(1)临时工的工作时间为4 小时,正式工的工作时间也是4 小时,则第五个小时需要新人员,临时工只要招用,无论工作多长时间,都按照4小时给予工资每位临时工招用以后,就需要支付16 元工资。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学案例建模、算法与分析作者;日期: 2012年02月29日摘要:先是对一个学期的课程学习的总结,然后是分别对“人力资源分配问题”和“最优投资策略问题”的两个案例的分析与建模,并得出其最优方案,以及对案例职场规划的方案设计。

关键词:运筹学;数学模型;目标函数;人力资源分配;职场规划;最优投资策略。

正文:记得当初怀着好奇和对数学的兴趣旋律这堂课,转眼一个学期结束了,时间见证了我当初的选择是正确的。

在这儿,她让我学到了新的数学解题方法和思维方式;使我对数学的兴趣更加浓厚;当然,她还让我学到了很多有关运筹学方面的很多知识。

在“运筹帷幄-为解决问题提供最佳决策”这堂课上,老师通过“1.资环争夺——运筹学的摇篮;2.追求完美——运筹优化无处不在;3.制胜法宝——运筹学成功应用范例;4.寓理于算——运筹学问题数学模型;5.追求极致——最优决策的特征;6.好谋善断——优化方法设计;7.步步为营——迭代算法特征;8.神机妙算——计算机实现;9.追求效率——提高计算效率;10.永无止境——改善与发展”这十个话题,给我们讲解了运筹学的起源、特点、分支、研究方法、涉及重点领域,对运筹学应用案例的数学模型建立于分析,以及解决运筹学问题的方法和对待运筹学问题的大概思维方式等有关运筹学的各方面知识。

总之,在这堂课上我收获许许多多有形或无形的财富,让我受益匪浅。

通过一个学期在老师生动详细的讲解,以及阅读一些有关运筹学的书籍等方式的学习下,我已经掌握了一些对问题进行分析、建模等处理方法。

下面是对三个案例的简单分析及处理。

案例1: 人力资源分配问题“好又美”超市是个建在大学城边上的大型百货商场,每周对收银人员的需求,统计如下表为了保证收银人员充分休息,收银人员每周工作5天,休息2天。

问应如何安排收银人员的工作时间,使得所配收银人员的总费用最小?解:为了让员工们休息更愉快、方便,可将每位员工的休息时间安排在连续的两天;则可设ix (i=1,2,3,…,7)表示星期一至日开始休息的人数,依题意我们可建立如下数学模型:目标函数:Min Z = 1234567x x x x x x x ++++++约束条件:12345x x x x x ++++≥6 23456x x x x x ++++≥534567x x x x x ++++≥845671x x x x x ++++≥7 56712x x x x x ++++≥10 67123x x x x x ++++≥18 71234x x x x x ++++≥15(1,2,3,4,5,6,7)i x N i ∈=于以上数学模型,通过计算可得:当:1x = 9;2x = 1;3x= 0;4x = 5;5x = 0;6x = 0;7x =3;时,Z 取最小值18。

即安排18位收银人员即可供应百货商场收银员需求。

具体人员安排如下:假设有18位收银人员编号分别为1、2、3、4、…、18,星期六18为收银人员全部上班;星期日1、2、3号收银员开始休息;星期一4~12号共9位收银员开始休息;星期二13号收银员开始休息,1、2、3号收银员开始工作;星期三4~12号收银员开始工作,无人员开始休息;星期四14~18号收银员开始休息,13号收银员开始工作;星期五没有人员调动;星期六开始新的一轮,此天14~18号收银员开始工作。

根据以上方案进行人员安排,则可使所配收银人员人数最少,即其总费用最少。

案例2:职场规划在职场上,职业生涯中的“五个坎”可被列为•第一坎:“青黄不接”阶段;•第二坎:“职业塑造”阶段;•第三坎:“职业锁定”阶段;•第四坎:“事业开拓”阶段;•第五坎:“事业平稳”阶段。

针对这五个阶段,你应该怎样规划自己?设计模型与算法给出你的最佳职场规划方案。

随着科学的发展,社会的进步,对人才的需求与要求越来越高了,市场的竞争力越来越大了,这时,我们更应有一个很好的职场规划来引导自己走出一条丰富多彩的路,在人生中得到属于自己的幸福。

对于我的职场规划,我的目标是做一位程序设计的项目经理;我的规划理念是:朝着自己的目标,勇往直前,对于挡在我前面的石头,能踢动的就踢走,踢不动的就绕过去。

持着心中目标,我将我的职业规化可分为四个阶段:对于第一个阶段,题干里将其称为“青黄不接”,我觉的这可能曲解了这个词的意思,因为“青黄不接”在字典上的释义是:青,指未成熟的庄稼;黄,指已成熟的庄稼;青黄不接指庄稼还没有成熟,陈粮已经吃完,比喻人力、财力等因一时接续不上而暂时缺乏;现在则特指人才方面后继无人。

由于我们现在已经进入大学这个“亚社会”了,所以我直接进入“职业塑造”阶段。

在这个阶段中,时间从现在起大概是八年的时间,主要包括大学和硕士两个阶段,还有少部分是硕士毕业后找工作的那段时间。

在这个阶段里,首先,在大一,我要学好各科基础知识,并自学一些有关程序设计方面的知识,然后在分流时选“计算机科学与技术”作为我的大学主修专业;然后是大二和大三,期间的主要任务还是努力学习课程知识,同时也为考研做准备;然后是大四,这个时间里的主要是备考,并考上自己理想学校的研究生;接着是研究生的三年光阴,这个时间里会以学业为主、实践为辅的学习方式学习;然后是硕士毕业后,就面临找工作问题,对于毕业后的第一份工作,我持是环境第一、薪水第二的原则,因为我想要的一个能让我学到各方面知识的环境。

然后是第二个阶段,即“职业锁定”阶段,这个阶段的时间大概是一年的时间。

因为通过一年多的工作与尝试,我想我已经有了更丰富的经验,我已经找到了自己所爱,并可于此扎根了。

接着是第三个阶段——“事业开拓”,这个阶段大概需要10~15年。

在职业锁定的基础下,我当寻找机遇,创造机遇,抓住机遇,然后努力奋斗,竭尽所能创造属于自己的事业。

最后进入第四阶段——“事业平稳”,这时我大概38岁左右了,经过一番努力后,我一拥有自己的事业,并让其趋于平稳,接下来就是守好自己的事业,静静地去感受生活的美好。

当然,在这条漫长而多彩的路上,有诸多的因素可能会阻碍这个规划的实施,其中包括可控与不可控的,可控因素是自己的汗水,而不可控因素则是由于社会的竞争所带来的一些未知的绊脚石阻碍我前进。

以上只是个大概个规划,它也只是个规划而已,我更懂得:想到和得到间还有一个做到!目标是用汗水冲击而成的。

案例3:最优投资策略问题某部门先有资金100万元,五年内有以下投资项目供选择:项目A:从第一年到第四年每年初投资,次年末收回本金且获利15%。

项目B:第三年初投资,第五年末收回本金且获利25%,最大投资额为40万元。

项目C:第二年初投资,第五年末收回本金且获利40%,最大投资额为30万元:项目D,每年初投资,年末收回本金且获利6%。

提供你的投资策略使第五年末本息总额最大。

解:(1)确定决策变量:连续投资问题设:ijx(i=1,2,3,4,5;j=1,2,3,4)(单位:万元)表示第一年初投资于A(j=1)、B (j=2)、C (j=3)、D (j=4)项目的金额。

这样我们建立如下的决策变量:A 11x21x31x 41xB32xC23xD14x24x34x44x54x(2)约束条件:第一年:D 当年年末就可收回投资,故第一年年初应把全部资金投出去 于是:1114100x x +=;第二年:A 次年年末才能收回投资,故第二年年初有资金111.06x ,于是:212324111.06x x x x ++=;第三年:年初有资金11241.15 1.06x x +,于是:31323411241.15 1.06x x x x x ++=+;第四年:年初有资金21341.15 1.06x x +,于是:414421341.15 1.06x x x x +=+;第五年:年初有资金31441.15 1.06x x +,于是:5431441.15 1.06x x x =+;B 、C 的投资限制:3240x ≤,2330x ≤(3)数学模型:目标函数:544132231.06 1.15 1.25 1.4Max Z x x x x =+++约束条件: 1114100x x +=212324111.06x x x x ++=31323411241.15 1.06x x x x x ++=+414421341.15 1.06x x x x +=+5431441.15 1.06x x x =+3240x ≤,2330x ≤0(1,2,3,4,5;1,2,3,4)ij x i j ≥==于以上数学模型,可解得:当:A 11x = 100-30/1.06=71.6981,31x = 42.4528;B 32x = 40;C 23x = 30;D 41x = 30/1.06=28.3019,54x = 48.8207;时(21412434440x x x x x =====),Z 取最小值143.7500。

根据以上数学模型及其答案,我们可以的到以下针对此问题的最优化方案: 第一年用28.3019万元投资项目D ,剩余71.6981万元投资项目A ,年末项目D 获利加本金30万元;第二年用30万元投资项目C ,年末项目A 获利加本金82.4528万元;第三年用42.4528万元投资项目A ,用40万元投资项目B ;第四年年末项目A 获利加本金48.8207万元;第五年用48.8207万元投资项目D ,年末项目B 获利加本金50万元,项目C 获利加本金42万元,项目D 获利加本金51.7500万元。

即第五年年末总共获利加本金143.7500万元,总共获利43.700万元。

参考文献:《运筹学基础及应用》——胡运权等编著,高等教育出版社,2008年; 《运筹学》——《运筹学》教材编写组编著,清华大学出版社,2005年;《管理运筹学》——韩伯棠编著,高等教育出版社,2002年;《运筹学》——马超群主编,湖南大学出版社,2010年;《运筹学教程·第三版》胡运权主编,清华大学出版社,2007年。

相关文档
最新文档