浙教新版数学七年级上知识点总结

合集下载

浙教版七年级(上册)数学知识点复习资料全

浙教版七年级(上册)数学知识点复习资料全
4.绝对值:
数轴上一点a到原点的距离表示a的绝对值。
绝对值的性质:
(1) 正数的绝对值是其本身, 0的绝对值是0, 负数的绝对值 是它的相反数
(2) 绝对值可表示为:

绝对值的问题经常分类讨论;
(3)
5.有理数大小的概念:
(1)正数的绝对值越大, 这个数越大;
(2)正数永远比0大, 负数永远比0小;
(2)常数项: 多项式中,不含字母的项叫做常数项.
(3)多项式次数: 多项式里,次数最高的项的次数,就是这个多项式的次数.
4.整式:
单项式和多项式统称整式。
5.同类项:
所含字母相同,并且相同字母的次数也相同的项,叫做同类项. 常数项都是同类项。
合并同类项法则: 同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
(3)整式的加减运算可归结为去括号和合并同类项。
7、常用的关系:
奇数2n-1或2n+1;偶数2n;三个连续的整数一般写作n-1, n, n+1;三个连续的偶数一般写作2n-2, 2n, 2n+2;三个连续的奇数一般写作2n-1, 2n+1, 2n+3
练习题
1.已知

是同类项, 则
A. 4 B. 37 C. 2或4 D. 2
A
B
4、下列说法,正确是( ) A、零是最小的自然数 B、零是最小的正整数 C、零是最小的有理数 D.零既是负数又是正数
A
1、下列各对数中,互为相反数是( ) A.2和
C.
和2 D.

D
5、火车上的车次号有两个意义,一是数字越小表示车速越快,1∽98次为特快列车,101∽198次为直快列车,301∽398次为普快列车,401∽498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京方向.根据以上规定,杭州开往北京的某一直快列车的车次号可能是( ) A、20 B、119 C、120 D.319

浙教版7年级上数学知识点整理(精要)

浙教版7年级上数学知识点整理(精要)

第一章从自然数到有理数从自然数到分数知识点1.自然数:注意(1)0是最小的自然数,它表示没有,不要遗漏。

(2)表示不同作用的数有不同的性质,表示计数和测量的数可以进行数的运算,而表示标号或排序的数有时有指代作用,即对事物起区别作用,一般不能进行计算,这也是区别数的表示作用的重要性。

剖析用于计数和测量的数往往与量词相连,而用于标号和排序的数往往与顺序有关,在阅读是应特别注意体会这一点。

知识点2.分数:注意(1)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看做分数。

(2)百分数是分母为100的分数,它是分数的特殊形式。

知识点3.数的运算(1)数的加、减、乘、除运算顺序:先乘除,后加减,有括号先做括号内的;(2)加法、乘法的运算律:交换律、结合律、乘法分配律。

注意(1)领悟加、减、乘、除的意义。

(2)明确混合计算的运算顺序,(a)同级运算从左至右依次计算,(b)不同级先乘除后加减,括号内优先。

(3)灵活掌握能运用运算律进行的简便运算。

有理数知识点1正数和负数的定义:1、像4,3,1/2,350等比0大的数叫做正数。

2、像-5,-3,-1/2,-350等在正数前面加上‘‘-’’号的数叫做负数,负数比0小。

(3)零既不是正数也不是负数。

知识点2相反意义的量:注意用正数、负数表示相反意义的量时,哪种意义为正,是可以任意选择的,但习惯上把‘‘前进、上升、收入’’等规定为正,而把‘‘后退、下降、支出’’等规定为负。

剖析对负数表示的意义的正确理解是解答此类问题的关键。

引入负数的意义之一,就是为了用简单的数学符号“+’’或“-”号来表示具有相反意义的量。

知识点3有理数的概念及分数(1)有理数的概念:整数和分数统称为有理数。

(a)整数包括正整数、零、负整数,例如3,5,6,,等。

(b)分数包括正分数和负分数,例如1/2,5/3,-3/7等。

(2)有理数的分类(a)按整数和分数分类: (b)a按正数、零、负数分类:正整数整数零正整数正有理数正分数有理数负整数有理数零负整数正分数负有理数分数负分数负分数注意(1)分类时,一定药注意零所属的数集。

浙教数学七年级上知识点总结

浙教数学七年级上知识点总结

1.有理数:(1)整数和分数统称有理数.(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;a a 和-互为相反数,0的相反数0;(2)注意: a-b+c 的相反数是-a+b-c ;a+b 的相反数是-a-b ; 4.绝对值:(1) 数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“| |”表示。

(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (4) ①非负性:|a|≥0 ②|a|=|-a| ③若|a|=b ,则a=±b ④0a 1aa >⇔= ;0a 1aa <⇔-=;5. 比较两个负数的大小,绝对值大的反而小。

比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值; ②比较两个绝对值的大小; ③根据“两个负数,绝对值大的反而小”做出正确的判断。

1.有理数加法法则:·同号两个数相加,取加数的符号,并把绝对值相加。

·异号的两个数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

·互为相反数的两数相加得0.一个数同0相加仍得这个数2.灵活运用运算律:①相反数相加; ②同号相加; ③同分母相加; ④凑整的相加。

3.加法交换律:a b b a +=+4.加法结合律:()()a b c a b c ++=++5.有理数减法法则:减去一个数等于加上这个数的相反数。

6.有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。

任何数与0相乘积仍得0。

7.倒数:如果两个数互为倒数,则它们的乘积为1。

(如:-2与1-2)注意:①零没有倒数②倒数等于本身的数:1,-1越来越大等于本身的数汇总:相反数等于本身的数:0, 绝对值等于本身的数:正数和0 , 平方等于本身的数:0,1 算术平方根于本身的数:0,1 平方根于本身的数:0 立方等于本身的数:0,1,-1. 立方根于本身的数:0,1,-1 8.有理数乘法法则乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。

七年级上数学浙教版知识点

七年级上数学浙教版知识点

七年级上数学浙教版知识点
一、实数与代数式
实数的概念,有理数、无理数的概念与判断,代数式的概念及
简单的变形。

二、一元一次方程与方程的应用
含有一个未知数的一次方程的基本概念,化简和解一元一次方程,用方程解决实际问题。

三、二元一次方程组
含有两个未知数的一次方程组的基本概念,解二元一次方程组
及应用。

四、图形的认识
各种几何图形的基本概念及简单的性质和应用,画简图、读图。

五、三角形
三角形的基本概念,特殊三角形的性质,三角形的构造和证明、应用。

六、相似
相似的概念和性质,判定、构造和应用。

七、等比数列
等比数列的概念和性质,通项公式及求和公式,等比数列在实际问题中的应用。

八、函数
函数的基本概念,函数图像和简单的函数变换,函数的应用。

九、统计图及其分析
统计图的基本类型,按比例和按数量的统计图制作,统计图的分析。

十、平面直角坐标系
平面直角坐标系的基本概念,坐标系中的图形及其性质,坐标系中的计算问题。

十一、二次根式
二次根式的基本概念,二次根式的化简及应用。

总结:七年级上数学浙教版知识点涵盖了数学基础知识、代数式、方程、几何等方面,是初步掌握数学的基础,学习这些知识点可以使学生打牢数学基础。

(完整版)浙教新版数学七年级上知识点总结,推荐文档

(完整版)浙教新版数学七年级上知识点总结,推荐文档

注意: 3 a 3 a ,如
3 8 3 8 一个正数有一个正的立方根;
一个负数有一个负的立方根;
零的立方根是零。
四、实数大小的比较 (1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较: a b 0 a b,
a b 0 a b,
ab0 பைடு நூலகம்b
(3)求商比较法:设 a、b 是两正实数, a 1 a b; a 1 a b; a 1 a b;
-3 -2 -1 0 1 2 3
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数; a和- a 互为相反数,0 的相反数 0;
(2)注意: a-b+c 的相反数是-a+b-c;a+b 的相反数是-a-b;
4.绝对值:
(1) 数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“| |”表示。
x
11.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。常数也是同类项
12.合并同类项:把多项式中的同类项合成一项,叫做合并同类项。
注意:最后结果一定要合并到不再含有同类项为止。
13.去括号时符号变化规律:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号不变;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2 /5
2、无理数
无理数抓住“无限不循环”,归纳起来主要有三类: (1)开不尽方的数,如 7, 3 2 等;(2)化简后含有 π 的数,如 8 等;(3)有特定结构的无限
3 不循
环小数,如 0.1010010001…等;
二、建平方根议、算收数平方藏根和下立方根载本文,以便随时学习!

浙教版数学七年级上知识点总结

浙教版数学七年级上知识点总结

2024年师德演讲比赛主持词尊敬的评委、亲爱的同学们:大家好!我很荣幸能够在这里担任2024年师德演讲比赛的主持人。

首先,让我们对今天能够聚集在这里的各位老师表示最高的敬意和感谢。

正是你们的辛勤付出和无私奉献,才为我们的成长和未来铺就了坚实的道路。

师德,作为一项常识性的称号,象征着对教育事业的敬爱、热爱和奉献精神。

师德是一种职业道德,是教育工作者必须自觉遵循和践行的准则。

今天,我们将通过这一演讲比赛,探索师德的内涵和意义,分享优秀教师的故事和经验,并共同探讨如何培养师德。

首先,让我们来回顾一下师德的定义。

师德包括教师的职业道德、价值观念、教育理念、教学方法等一系列方面。

教师应该以身作则,做学生道德情操和知识水平的榜样。

他们要具备高尚的道德品质,对学生有高度的责任心和爱心,并能够正确引导学生的行为和价值观。

优秀的教师总是把学生的成长和发展放在首位。

他们以学生为中心,尊重学生的个体差异,注重培养学生的创新精神和实践能力。

他们与学生建立起良好的师生关系,为学生提供必要的关爱和支持,帮助他们全面发展。

同时,优秀教师也要自我反思和不断进取,提升自己的教育教学水平,与时俱进,不断改进自己的教学方法和理念。

在师德的发展过程中,优秀的教师不仅要具备高尚的道德品质和专业素养,还需要具备较强的心理素质和情感敏感度。

教师要能够正确认识和处理学生的心理需求,在学生面临困惑、挫折和压力时,给予他们及时的关心和支持。

只有以关爱的心态对待学生,才能实现真正的教育感化。

另外,师德也要求教师具有良好的职业道德和职业责任心。

在教学中,教师应坚守诚信原则,严禁任何形式的舞弊行为。

教师要尊重学生的知情权和隐私权,严禁泄露学生的个人信息。

教师还要履行教书育人的责任,认真备课、认真上课,并做好学生的发展记录和评价,为学生的未来做好规划和引导。

最后,让我们一起探讨如何培养师德。

首先,教育机构和学校应加强师德教育的力度,培养教师的职业素养和道德观念。

浙教版7年级上数学知识点整理

浙教版7年级上数学知识点整理

第一章:数学算法1.整除与因数-了解整数的概念-掌握整除的定义,以及整除的判断方法-掌握因数的定义,以及如何列举一个数的因数-掌握最大公因数与最小公倍数的概念与求解方法2.分数-了解分数的概念,分子、分母-掌握分数的读法,分子分母的关系-掌握分数的化简方法-掌握分数之间的比较大小方法-掌握分数的加减乘除运算方法-学会将分数转化为小数形式3.有理数-了解有理数的概念,正有理数和负有理数-学会有理数的比较大小-掌握有理数的加减乘除运算方法-能够将分数转化为有理数形式第二章:初一的正数、负数1.正数和负数的认识-了解数轴及其意义-了解正数和负数在数轴上的位置-掌握正数与负数的大小比较规律2.数的相反数-了解数的相反数的概念和性质-掌握求一个数的相反数的方法-掌握正数和负数的加减法第三章:数与运算1.运算法则-掌握加法和乘法的交换律、结合律、分配律-利用运算法则进行简便计算2.效法正数和百分数-学习虚拟的数3.有效数字和科学记数法-了解有效数字的概念和判断方法-掌握科学记数法形式和运算规则4.数与式-学习数的四则运算的规则-学习表示式的概念和性质第四章:比例与比例方程1.比例-了解比例的概念及比例的基本性质-掌握比例中的各种比例关系的性质及其应用-学习三个数的比例和多个数的复比例的概念和求解方法2.比例方程和比例不等式-了解比例方程和比例不等式的概念-学习方程的解法和方程及不等式的应用第五章:数的性质与正方形1.最大公因数和最小公倍数-掌握求最大公因数和最小公倍数的方法-学习最大公因数和最小公倍数的性质和应用2.正方形-了解正方形的性质和判断方法-掌握正方形内外角和周长、面积的计算。

七上数学知识点总结(浙教版)(打印版)

七上数学知识点总结(浙教版)(打印版)

2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。正数的绝对值是它本身,负数的绝对值
是它的相反数。零的绝对值是它本身,也可看成是零的相反数。若|a|=a,则 a≥0;若|a|=-a,则 a≤0。正
数大于零,负数小于零,正数大于一切负数;两个负数,绝对值大的反而小。
3、倒数
如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。倒数等于本身的数是 1 和-1。零没有倒数。
知识点、实数大小的比较 1、数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。 把握数形结合的思想,理解实数与数轴上的点是一一对应的。 2、实数大小比较的几种常用方法 (1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 (2)求差比较:设 a、b 是实数,
知识点、平方根、算数平方根和立方根
1、平方根
如果一个数的平方等于 a,那么这个数就叫做 a 的平方根(或二次方根)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数 a 的平方根记做“ a ”。
2、算术平方根
正数 a 的正平方根叫做 a 的算术平方根,记作“ a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
FJL3
7、直线的性质 (1)直线公理:经过两个点有一条直线,并且只有一条直线。即过两点有且只有一条直线。 (2)过一点的直线有无数条。(3)直线是向两端无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。(5)两条不同的直线至多有一个公共点。 8、线段的性质 (1)线段公理:所有连结两点的线中,线段最短。简单地说:两点之间线段最短。 (2)连结两点的线段的长度,叫做这两点的距离。 (3)把线段分成相等的两条线段的点,叫做线段的中点。线段的中点到两端点的距离相等。 (4)不同线段的大小关系和它们的长度的大小关系是一致的。 (5)若点 C 为线段 AB 内的一点,则 AC+BC=AB,AC=AB-BC,BC=AB-AC. 知识点、角 1、角的相关概念 有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。 一条射线绕它的端点旋转,旋转到和始边在同一条直线上,方向相反时,所构成的角叫平角。 平角的一半叫做直角;小于直角的角叫做锐角;大于直角且小于平角的角叫做钝角。 如果两个角的和是一个直角,那么这两个角叫做互为余角,其中一个角叫做另一个角的余角。 如果两个角的和是一个平角,那么这两个角叫做互为补角,其中一个角叫做另一个角的补角。 同角或等角的余角(补角)相等。 2、角的表示 角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,具体的有以下四种表示方法: ①用数字表示单独的角,如∠1,∠2,∠3 等。 ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。 ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C 等。 ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE 等。 注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。 3、角的度量 角的度量有如下规定:把一个平角 180 等分,每一份就是 1 度的角,单位是度,用“°”表示,1 度 记作“1°”,n 度记作“n°”。 把 1°的角 60 等分,每一份叫做 1 分的角,1 分记作“1’”。 把 1’ 的角 60 等分,每一份叫做 1 秒的角,1 秒记作“1””。 1°= 60’ =(60×60)” 4、角的性质 (1)角的大小与边的长短无关,只与构成角的两条射线叉开的幅度大小有关。 (2)角的大小可以度量,可以比较 (3)若∠1+∠2=∠1+∠3,则∠2=∠3 知识点、直线的相交 1、对顶角:两条直线只有一个公共点,就说这两条直线相交。该公共点叫做这两条直线的交点。两 条直线相交后所得的两个角,只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角。 对顶角相等。 2、垂线:两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条 直线叫做另一条直线的垂线,它们的交点叫做垂足。 直线 AB,CD 互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB 垂直于 CD”(或“CD 垂直于 AB”)。 3、垂线的性质: (1)在同一平面内,过一点有且仅有一条直线与已知直线垂直。 (2)直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。 4、点到直线的距离:直线外一点到这条直线的垂线段的长度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.有理数:(1)整数和分数统称有理数.(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;a a 和-互为相反数,0的相反数0;(2)注意: a-b+c 的相反数是-a+b-c ;a+b 的相反数是-a-b ; 4.绝对值:(1) 数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“| |”表示。

(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (4) ①非负性:|a|≥0 ②|a|=|-a| ③若|a|=b ,则a=±b ④0a 1aa >⇔= ;0a 1aa <⇔-=;5. 比较两个负数的大小,绝对值大的反而小。

比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值; ②比较两个绝对值的大小; ③根据“两个负数,绝对值大的反而小”做出正确的判断。

1.有理数加法法则:·同号两个数相加,取加数的符号,并把绝对值相加。

·异号的两个数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

·互为相反数的两数相加得0.一个数同0相加仍得这个数2.灵活运用运算律:①相反数相加; ②同号相加; ③同分母相加; ④凑整的相加。

3.加法交换律:a b b a +=+4.加法结合律:()()a b c a b c ++=++5.有理数减法法则:减去一个数等于加上这个数的相反数。

6.有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。

任何数与0相乘积仍得0。

7.倒数:如果两个数互为倒数,则它们的乘积为1。

(如:-2与1-2)注意:①零没有倒数②倒数等于本身的数:1,-1等于本身的数汇总:相反数等于本身的数:0, 绝对值等于本身的数:正数和0 ,越来越大平方等于本身的数:0,1 算术平方根于本身的数:0,1 平方根于本身的数:0 立方等于本身的数:0,1,-1. 立方根于本身的数:0,1,-18.有理数乘法法则乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘,积仍为0。

乘法交换律:ab ba = 乘法结合律:()()ab c a bc = 乘法分配律:()a b c ac bc +⨯=+10.有理数除法法则:·除以一个不等于0的数,等于乘这个数的倒数。

·两个有理数相除,同号得正,异号得负,绝对值相除。

·0除以任何数都得0,且0不能作除数,否则无意义。

11.有理数的乘方:求n 个相同因数a 的积的运算叫做乘方,乘方的结果叫做幂。

注意:①非负数:a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0; ②据规律⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位. 立方呢?12.有理数混合运算顺序:· 先算乘方,再乘除,后加减; · 同级运算,从左到右进行;· 如有括号,先算括号内的运算。

13.科学记数法:把一个数记成n a 10⨯(101<≤a ,n 是整数)的形式,这种记数法叫科学记数法. 14. 216000精确到千位表示为:( ),近似数2.14的准确数X 的范围是( )一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 实数 正实数负实数2、无理数无理数抓住“无限不循环”,归纳起来主要有三类:=⨯⨯⨯⨯ an a a a a 个==a a 2(1)开不尽方的数,如32,7等;(2)化简后含有π的数,如83+π等;(3)有特定结构的无限不循环小数,如0.1010010001…等;二、平方根、算数平方根和立方根 1、平方根a 的平方根(或二次方跟):a ±,a 的算术平方根a ,a 的负平方根—a ,0的平方根和算术平方根都是0一个数有两个平方根,他们互为相反数; 零的平方根是零; 负数没有平方根。

a (a ≥0) 注意a 的双重非负性:0≥a (a ≥0)-a (a <0) 如 0x-10101x x =≥-≥∴=3、立方根:a 的立方根(或a 的三次方根) 注意:33a a -=-= 一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零。

四、实数大小的比较(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:,0b a b a >⇔>- ,0b a b a =⇔=- b a b a <⇔<-0 (3)求商比较法:设a 、b 是两正实数,;1;1;1b a ba b a ba b a ba <⇔<=⇔=>⇔>1.代数式的概念:用运算符号(加、减、乘、除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式...。

单独的一个数或一个字母也是代数式。

(注意:代数式中不含有“=、>、<、≠”等符号。

)2.代数式的书写格式:①带分数与字母相乘时,应带分数化成假分数,如a ⨯312应写作a 37;②除法运算转为分数的写法,如4÷(a-4)应写作44-a ;③在表示和(或)差的代差的代数式,把代数式括起来再写单位,如)(22b a -平方米3.代数式的系数: 代数式中的数字中的数字因数叫做代数式的系数......。

如3x,4y 的系数分别为3,4。

注意:①单个字母的系数是1,如a 的系数是1;②只含字母因数的代数式的系数是1或-1,如-ab 的系数是-1。

a 3b 的系数是14.代数式的项:代数式7262--x x 表示6x 2、-2x 、-7的和,6x 2、-2x 、-7是它的项,其中把不含字母的项叫做常数项(符号跟着走) 5.单项式6.系数:单项式前面的数字因数叫做这个单项式的系数。

7.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

8.多项式:几个单项式的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的 项叫做常数项。

9.多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数。

10.整式:单项式与多项式统称整式。

(a 和1x不是单项式,不是整式)11.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

常数也是同类项 12.合并同类项:把多项式中的同类项合成一项,叫做合并同类项。

注意:最后结果一定要合并到不再含有同类项为止。

13.去括号时符号变化规律:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号不变; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

例:a+(b-2c)-(e-2d)=a+b-2c-e+2d1.等式的性质:1、c b c a b a ±=±=那么如果, 2、cb c a c b a bc ac b a =≠===那么如果那么如果),0( ,2.解方程步骤:解一元一次方程一般要去分母、去括号、移项、合并同类项、未知数的系数化为1等,3.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=;(2)工程问题: 工作量=工效·工时 工时工作量工效=工效工作量工时=;工程问题常用等量关系: 先做的+后做的=完成量(3)顺水逆水问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; 水流速度=(顺水速度-逆水速度)÷2 顺水逆水问题常用等量关系: 顺水路程=逆水路程(4)商品利润问题: 售价=定价10几折 ,%100⨯-=成本成本售价利润率; 利润问题常用等量关系:售价-进价=利润(5)储蓄问题:本金+利息=本息和, 利息=本金×利率×期数 本息和=本金+利息 , 利息税=利息×税率(20%)第六章 图形的初步认识1.点、线、面、体统称为几何图形。

几何图形分为平面图形和立体图形。

2. 线段、射线、直线名称 图形表示方法端点 长度 直线 l BA直线AB (或BA ) 直线l 无端点 无法度量 射线 MO射线OM 1个 无法度量 线段lBA线段AB (或BA ) 线段l2个可度量长度3.比较线段的长短比较线段长短的两种方法:①圆规截取比较法; ②刻度尺度量比较法. 用刻度尺或圆规可以画出线段的中点,线段的和、差、倍、分; 线段性质:两点之间的所有连线中,线段最短。

(两点间的线段长度,叫做这两点之....间的..距离..。

) 4.角的度量与表示角:有公共端点的两条射线组成的图形叫做角; 角也可以看成是由一条射线绕着它的端点旋转而成的。

平角..,. 周角.. 5.角度数的换算:1°=60分,1′=60秒6.角平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的..平分线...。

7.互余、互补:∠1+∠2=90°(互余)∠1+∠2=180°(互补)同角或等角的余角相等,同角或等角的补角相等8:直线相交 对顶角相等垂直: 两直线相交所构成的四个角中有一个是直角,则这两条直线互相垂直,他们互为垂线,它们的交点叫做垂足。

①在平面内....,过一点有且只有一条直线与已知直线垂直。

②连结直线外一点与直线上各点的所有线段中,垂线段最短。

从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

相关文档
最新文档