结构设计控制12个重要参数的目的
建筑结构设计计算步骤参数确定分析

建筑结构设计计算步骤参数确定分析建筑结构是一个涉及多学科知识的领域,其中结构设计计算是整个建筑过程中至关重要的一步。
本文将围绕建筑结构设计计算步骤、参数的确定和分析展开讨论。
一、结构设计计算步骤结构设计计算是建筑设计的重要组成部分,建筑结构设计计算步骤通常包括以下内容:1.确定设计荷载:设计荷载是结构计算的基础,荷载分为静载和动载两种。
静载包括自重、建筑材料及构件重量、实用荷载等,动载包括风载、地震荷载等。
2.材料选择:材料的选择直接影响建筑结构的强度和稳定性。
常见的材料包括钢材、混凝土、木材等。
3.结构分析:结构分析是建筑结构设计计算的核心步骤,其目的是确定结构受力状态和结构强度。
常见的结构分析方法包括弹性分析和弹塑性分析。
4.设计结构构件:设计结构构件是根据结构分析结果确定构件的几何形状、尺寸和布置方式。
设计过程需要考虑结构构件的强度、刚度、稳定性等因素。
5.校核设计:校核设计是确保设计结果符合结构安全和稳定性要求的步骤。
在校核设计中,通常会进行结构强度、刚度和稳定性的分析。
二、参数的确定和分析在建筑结构设计计算过程中,参数的确定和分析是关键环节。
参数的确定通常有以下几个方面:1.确定荷载值:荷载值的确定直接影响结构的安全性和稳定性。
确定荷载值需要考虑建筑类型、设计用途、场地条件等多方面因素。
2.确定材料性能:不同材料的性能不同,如强度、韧性、抗裂性等。
根据建筑结构的实际情况,应选择相应材料并确定其性能参数。
3.确定结构分析方法:结构分析方法的选择取决于建筑结构的复杂程度、受力情况和工程需求。
常用的结构分析方法包括有限元方法、力法、位移法等。
4.确定结构构件的尺寸和布置:结构构件的尺寸和布置需要根据受力及使用要求进行合理设计。
尺寸过大过小、布置不合理都会影响建筑的稳定性。
5.确定校核设计方法:校核设计方法的选择需要根据结构的实际情况和需求。
校核设计过程中需要考虑的因素包括强度、稳定性、刚度和振动等。
结构设计常用参数表

一、钢筋的计算截面面积及理论重量101151201注:表中直径d=8.2mm 的计算截面面积及理论重量仅适用于有纵肋的热处理钢筋二、每米板宽内的钢筋截面面积表三、单肢箍Asv1/s(mm2/mm)四、梁内单层钢筋最多根数14 16九、混凝土保护层《混凝土结构设计规范》第9.2.1条纵向受力的普通钢筋及预应力钢筋,其混凝土保护层厚度(钢筋外边缘至混凝土表面的距离)不应小于钢筋的公称直径,且应符合表9.2.1的规定。
表9.2.1 纵向受力钢筋的混凝土保护层最小厚度(mm)梁注:基础中纵向受力钢筋的混凝土保护层厚度不应小于40mm;当无垫层时不应小于70mm。
第9.2.3条板、墙、壳中分布钢筋的保护层厚度不应小于本规范表9.2.1中相应数值减10mm,且不应小于10mm;梁、柱中箍筋和构造钢筋的保护层厚度不应小于15mm。
第9.2.4条当梁、柱中纵向受力钢筋的混凝土保护层厚度大于40mm时,应对保护层采取有效的防裂构造措施。
通常在砼保护离构件表面10-15mm处增配φ4@150钢筋网片。
处于二、三类环境中的悬臂板,其上表面应采取有效的保护措施。
第9.2.5条对有防火要求的建筑物,其混凝土保护层厚度尚应符合国家现行有关标准的要求。
处于四、五类环境中的建筑物,其混凝土保护层厚度尚应符合国家现行有关标准的要求。
注意事项:混凝土最低强度等级和保护层厚度问题1、±0.00以下(基础、底层柱)和屋面、露台梁板环境类别为二(a)类,应采用C25或以上混凝土。
2、基础混凝土保护层厚度为40mm,特别注意基础梁纵向钢筋净距是否满足规范要求。
3、应根据混凝土构件所处的环境类别和强度等级修改结构分析程序的保护层厚度。
十、纵向受力钢筋的配筋率10.1、考虑到满足最小配筋率要求,常见板纵向受力钢筋的最小配筋率应符合《混凝土结构设计规范》第9.5.1条的规定:《混凝土规范》第9.5.1条钢筋混凝土结构构件中纵向受力钢筋的配筋百分率不应小于表9.5.1规定的数值。
最新国家开放大学电大《建筑结构试验》期末题库及答案

最新国家开放大学电大《建筑结构试验》期末题库及答案考试说明:本人针对该科精心汇总了历年题库及答案,形成一个完整的题库,并且每年都在更新。
该题库对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
《建筑结构试验》题库及答案一一、单向选择题(每小题3分,共计36分,将选择结果填入括弧)1.下列各项,( )项不属于生产检验性试验。
A.鉴定服役结构的可靠性B.鉴定结构的设计和施工C.检验预制构件的性能D.新结构应用于实际工程之前的模型试验2.( )不允许试验结构产生转动和移动。
A.固定端支座 B.滚动铰支座C.固定铰支座 D.固定球铰支座3.结构受轴向拉压作用情况,( )的布片和测量桥路的特点是:消除了温度影响,也消除了偏心荷载的影响,桥路测量灵敏度提高一倍,但使用的应变片较多。
A. 外设补偿片的半桥测试方案B.测量应变片互相补偿的半桥测试方案C.外设补偿片的全桥测试方案D.测量应变片互相补偿的全桥测试方案4.下列各项中,( )项不是无损检测技术的主要任务。
A.评定建筑结构和构件的施工质量B.为制定设计规范提供依据C.对古老的建筑物进行安全评估D.对受灾的、已建成的建筑物进行安全评估5.( )检测技术可用于混凝土结合面的质量检测和混凝土内部空洞、疏松等缺陷的检测。
A.超声法 B.钻芯法C.回弹法 D.扁顶法6.在结构试验的试件设计时,对于整体性的结构试验试件,尺寸比例可取为原型的 ( )A. 1/4~1 B.1/2~1C.1/5—1 D.1/10~1/27.常用的弹性模型材料不包括以下哪一种?( )A.石膏 B.水泥砂浆C.金属材料 D.塑料8.用量纲分析法进行结构模型设计时,下列量纲中,( )项不属于基本量纲。
A. 质量 B.应力C.长度 D.时间9.下列原因所引起的误差属于随机误差的是( )。
12个结构参数

1.轴压比目的:控制构件保持一定延性。
规范规定:限值各等级的剪力墙和框架(支)柱轴压比;注意:剪力墙的轴压比对应的荷载为重力荷载代表值的设计值;框架(支)柱轴压比对应的荷载为含水平荷载的工况组合,多为地震工况组合。
2.扭转周期比目的:限制结构抗扭刚度不能太弱。
规范规定:限制结构扭转为主的第一周期Tt与平动为主的第一周期T1之比。
振型判别方法:振型方向因子来判断,因子以50%作为分界。
相关规定:全国超限建筑抗震设防中对周期比比值不足不是一项超限,广东抗震审查技术要求中无该条规定。
3.有效质量参与系数目的:保证考虑充足的地震作用。
要求:计算振型数应使各振型参与质量之和不小于总质量的90%。
4.刚重比目的:确定在水平荷载下,结构二阶效应不致过大,而引起稳定问题。
要求:高规5.4重力二阶效应及结构稳定注意:此处重力为重力荷载设计值,取1.2恒+1.4活。
5.剪重比目的:由于地震影响系数在长周期下降较快,对基本周期大于3s结构水平地震下结构效应可能影响过小,偏于不安全。
要求:高规4.3.12:“剪重比”注:此处此处重力为重力荷载代表值。
6.位移比目的:限制结构平面布置不规则性规定限值:1.2、1.4、1.5和1.6计算要求:(1)风荷载不控制(2)单向地震+偏心算,而且是采用规定水平力的施加模式。
(3)双向地震下控制。
(4)单向地震+偏心,CQC不控制。
新增的1.6出处:7.层间位移角目的:同体系和高度有关,详见规范,以弯曲变形为主的高层建筑不扣除整体弯曲变形。
计算要求:(1)风、单向地震均控制(2)单向地震+偏心不控制(3)双向地震不控制,除扭转特别严重外,一般双向地震同单向地震结构相近。
8.刚度比(软弱)目的:控制结构出现软弱层要求:高规(分结构体系)9.楼层受剪承载力比(薄弱层)目的:检验结构是否存在薄弱层要求:高规注意超限审查和高规中均提到,结构不应在同一层出现软弱层和薄弱层。
10.相邻楼层质量比目的:检验高层建筑中质量沿竖向分布不规则。
结构设计的七个控制指标

2.3.剪重比不满足时的调整方法: 2.3.1.程序调整:在 SATWE 的“调整信息”中勾选“按抗震规范 5.2.5 调整各楼层地
震内力”后,SATWE 按 10 抗规 5.2.5 自动将楼层最小地震剪力系数直接乘以该层及以上 重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。 2.3.2.人工调整:如果还需人工干预,可按下列三种情况进行调整: a:当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提 高刚度; b:当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面, 降低刚度以取得合适的经济技术指标; c:当地震剪力偏小而层间侧移角又恰当时,可在 SATWE 的“调整信息”中的“全楼 地震作用放大系数”中输入大于 1 的系数增大地震作用,以满足剪重比要求。 2.4.电算结果的判别与调整要点: a:对于竖向不规则结构的薄弱层的水平地震剪力应增大 1.15 倍,即上表中楼层最小剪 力系数λ 应乘以 1.15 倍。当周期介于 3.5S 和 5.0S 之间时,可对于上表采用插入法求值。 b:般高层建筑而言,结构剪重比底层为最小 ,顶层最大,故实际工程中,结构剪重比由底层 控制,由下到上,哪层的地震剪力不够,就放大哪层的设计地震内力。 c:构各层剪重比及各楼层地震剪力调整系数自动计算取值,结果详 SATWE 周期、地震 力与振型输出文件 WZQ.OUT) 。 d:层地震内力自动放大与否在调整信息栏设开关;如果用户考虑自动放大,SATWE 将 在 WZQ.OUT 中输出程序内部采用的放大系数。 e 度区剪重比可在 0.7%~1%取。若剪重比过小,均为构造配筋,说明底部剪力过小,要 对构件截面大小、周期折减等进行检查;若剪重比过大,说明底部剪力很大,也应检查结构 模型,参数设置是否正确或结构布置是否太刚。 2.5.设计要点: 2.5.1:剪重比不满足要求时,首先要检查有效质量系数是否达到 90%(剪重比是反映 地震作用大小的重要指标,它可以由“有效质量系数”来控制,当“有效质量系数”大于 90%时,可以认为地震作用满足规范要求) 。若没有,则有以下几个方法:a: 查看结构空间 振型简图,找到局部振动位置,改变布置,去掉局部振动(局部振动是实际存在的,不是重 要的部位,没必要加强,但局部振动有时候会对其它指标的判断有干扰作用,要过滤掉) 。 b.采用强制刚性楼板,过滤掉局部振动,但结构计算可能局部失真;c.通常振型数在 satwe 参数设置时,正常情况下应该足够了,由于有局部振动,可以增加计算振型数,采用总刚分 析;d. 剪重比仍不满足时,对于需调整楼层层数较少(不超过楼层总数的 1/3) ,且剪重 比与规范限值相差不大(不小于规范限值的 80%,或地震剪力调整系数不大于 1.2-1.3)的 情况,我们可以通过选择 SATWE 的相关参数来达到目的。 2.5.2:制剪重比的根本原因在于建筑物周期很长的时候,由振型分解法所计算出的地 震效应会偏小; 剪重比与抗震设防烈度、场地类别、结构形式和高度有关;对于一般多、高 层建筑,最小的剪重比值往往容易满足; 高层建筑,由于结构布置原因,可能出现底部剪重 比偏小的情况,在满足规范规定的前提下,没必要刻意去提高,规定剪重比的指标主要是增 加结构的安全储备。 2.5.3:一个 3 层教学楼若采用混凝土结构,一般会采用框架结构,4%左右的剪重比 对多层框架结构应该是合理的。 结构体系对剪重比的计算数值影响较大, 矮胖型的钢筋混凝 土框架结构一般剪重比比较大,体型纤细的长周期高层建筑一般剪重比会比较小。
结构设计中的七个重要参数

1、轴压比轴压比主要是控制结构的延性,具体要求见抗规6.3.6和6.4.5,高规6.4.2和7.2.14。
轴压比过大则结构的延性要求无法保证,此时应加大截面面积或提高混凝土强度;轴压比过小,则结构的经济性不好,此时应减小截面面积。
轴压比不满足时的调整方法:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
02周期比周期比控制的是结构侧向刚度与扭转刚度之间的相对关系,它的目的是使抗侧力构件的平面布置更合理,使结构不致于出现过大的扭转效应。
一句话,周期比不是要求结构足够结实,而是要求结构承载布置合理,具体要求见高规4.3.5。
刚度越大,周期越小。
抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比,意思是结构外围的抗侧力构件对结构的扭转刚度贡献最大。
结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。
当第一振型为扭转时:说明结构的扭转刚度相对于其两个主轴的侧移刚度过小,此时应沿两个主轴适当加强结构外围的刚度,或沿两个主轴适当削弱结构内部的刚度。
当第二振型为扭转时:说明结构沿两个主轴的侧移刚度相差较大,结构的扭转刚度相对于其中一主轴(第一振型转角方向)的侧移刚度是合理的,但对于另一主轴(第三振型转角方向)的侧移刚度过小,此时应适当削弱结构内部沿第三振型转角方向的刚度或适当加强结构外围(主要是沿第一振型转角方向)的刚度。
周期比不满足时的调整方法:通过人工调整改变结构布置,提高结构的抗扭刚度;总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱的刚度;利用结构刚度与周期的反比关系,合理布置抗侧力构件,加强需要减小周期方向(包括平动方向和扭转方向)的刚度,或削弱需要增大周期方向的刚度。
03、位移比/位移角位移比是指采用刚性楼板假定下,端部最大位移(层间位移)与两端位移(层间位移)平均值的比,位移比的大小反映了结构的扭转效应,同周期比的概念一样都是为了控制建筑的扭转效应提出的控制参数。
【结构设计】浅析结构稳定性的验算要的目的
浅析结构稳定性的验算要的目的A控制意义:对结构稳定性的控制,避免建筑在地震时发生倾覆.当高层、超高层建筑高宽比较大,水平风、地震作用较大,地基刚度较弱时,结构整体倾覆验算很重要,它直接关系到结构安全度的控制。
B规范条文规范:高规5.4.2条,高层建筑结构如果不满足第5.4.1条(即结构刚重比)的规定时,应考虑重力二阶效应对水平力(地震、风)作用下结构内力和位移的不利影响。
规范:高规5.4.4条,规定了高层建筑结构的稳定所应满足的条件.高规5.4.1条,当高层建筑结构的稳定应符合一定条件时,可以不考虑重力二阶效应的不利影响。
高规第12.1.6条,高宽比大于4的高层建筑,基础底面不宜出现零应力区;高宽比不大于4的高层建筑,基础底面与地基之间零应力区面积不应超过基础底面面积的15%。
计算时,质量偏心较大的裙楼与主楼可分开考虑。
C计算方法及程序实现重力二阶效应即P-Δ效应包含两部分,(1)由构件挠曲引起的附加重力效应;(2)由水平荷载产生侧移,重力荷载由于侧移引起的附加效应。
一般只考虑第(2)种,第(1)种对结构影响很小。
当结构侧移越来越大时,重力产生的福角效应(P-Δ效应)将越来越大,从而降低构件性能直至最终失稳。
在考虑P-Δ效应的同时,还应考虑其它相应荷载,并考虑组合分项系数,然后进行承载力设计。
对于多层结构P-Δ效应影响很小。
对于大多数高层结构,P-Δ效应影响将在5%~10%之间。
对于超高层结构,P-Δ效应影响将在10%以上。
所以在分析超高层结构时,应该考虑P-Δ效应影响。
(P-Δ效应对高层建筑结构的影响规律:中间大两端小)框架为剪切型变形,按每层的刚重比验算结构的整体稳定剪力墙为弯曲型变形,按整体的刚重比验算结构的整体稳定整体抗倾覆的控制??基础底部零应力区控制D注意事项>>结构的整体稳定的调整当结构整体稳定验算符合高规5.4.4条,或通过考虑P-Δ效应提高了结构的承载力后,对于不满足整体稳定的结构,必须调整结构布置,提高结构的整体刚度(只有高宽比很大的结构才有可能发生)。
结构设计
钢(框架)结构
一、 普通钢结构
(一) 结构特征、优缺点和适用范围
(1) 普通钢结构是的工业化程度高,工作性能可靠,结构 自重轻,在工程中得到了广泛的应用。有如下一些特点:
1) 强度高、截面小、运输和装拆均较方便。但是,杆件较细长, 因此稳定性问题较其它类型的结构更为突出,设计中应予以充分注 意。 2) 材料的均匀性和同向性好,它最符合一般工程力学的基本规定 ,应力计算比较可靠。 3) 材料的可焊性好,因而可简化制造工艺,提高钢结构的工业化 生产程度。 4) 耐火性和耐腐性较差,在有侵蚀性介质环境中或在有特殊防火 要求的建筑中使用钢结构,应采用有效的防护措施。钢结构的维护 费用较高。
二、 平面大跨结构(19世纪后半叶~二战)
特征:桁架、刚架、拱结构
三、 新型大跨结构(二战~今)
特征:“薄壳、悬索、网架”
1 薄壁结构
合理的外形,充分发挥材料受压性能,以较 薄的壳体跨越很大的空间,而具有足够的强度和 刚度。 2 悬索结构 纤细的索网,充分发挥钢材抗拉性能,轻盈 活波,适宜与大跨度 3 网架结构 利用小型杆件,组合成整体结构,刚度大, 变形小,自重轻,材料省
二、构件受力特点
1 受力特点 竖向荷载下梁的弯-剪,柱的弯-压 2 变形特点 a)框架侧移以整体剪切变形为主 b)梁、柱弯曲变形是框架侧移的主因
三、 适用范围
高抗震烈度地区不宜使用
按《高层建筑结构设计建议》 设防烈度 现浇结构 装配结构 9度 25米 不用 8度 45米 25米 7度 55米 35米 6度 60米 50米 非震区 60米 50米
(2)当前钢结构的适用范围,就民用建筑和工业企业范围 来说,大致如下:
1) 用于重型车间的承重骨架; 2) 受动力荷载影响的结构; 3) 高耸结构; 4) 大跨度结构。
高层建筑结构设计几个指标控制
高层建筑结构设计的几个指标的控制摘要:本文从周期比、位移比、刚重比、刚度比、层间受剪承载力之比、轴压比以及剪重比等六个方面综述了高层建筑结构设计的指标控制,希望对以后的工作有一定的帮助。
关键词:高层建筑;周期比;位移比;刚重比;剪承载力;前言:高层建筑与多层结构相比有明显不同的受力和变形性能,水平荷载混合地震作用是主要的控制内容。
判断结构布置合理性和结构体系的经济性能是高层建筑结构设计的关键,设计结构规范用语控制高层建筑整体性的指标主要有:周期比、位移比、刚重比、刚度比、层间受剪承载力之比、轴压比以及剪重比等。
1.周期比周期比是控制结构扭转效应的重要指标,是结构扭转为主的第一自振周期与平动为主的第一自振周期的比值。
周期比控制的是侧向刚度与扭转刚度之间的一种相对关系。
它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不至于出现过大(相对于侧移)的扭转效应,而不是在要求结构具有足够大的刚度。
调整结构周期比的措施主要有两种:第一种是提高结构的抗扭刚度。
这样可以改善结构的抗扭性能,是解决结构抗扭薄弱的根本方法。
提高抗扭刚度一般需要调整结钩布置,增加结构周边构件的刚度,江都结构中间构件的刚度;有时要改变结构类型,如增加剪力墙、异形柱等。
这种改变一般是整体性的,局部的小调整往往收效甚微。
调整原则是要加强结构外圈刚度,或者削弱内筒降低结构中间的刚度,以增大结构的整体抗扭刚度;第二种是降低平动度,使平移周期加长。
此种方法仅适用于原来结构刚度较大,层间位移远小于规范限值的情况。
2.位移比及其调整措施2.1 位移比位移比是控制结构平面规则性的重要指标,是指楼层竖向构件的最大水平位移和层间位移与本楼层平均值得比值。
结构是否规则、对称、平面内刚度分布是否均匀,是结构本身的性能,可以用结构刚心与质心的相对位置表示,二者相距较远的结构在地震作用下扭转可能较大。
由于刚心与质心位置都无法直接定量计算,规范采用了校核结构位移比的要求。
结构设计规范
4.通用要求
4.2 设计准则
➢应具备防静电、散热、可靠性、安全性、防震性、接 地柱设计。
➢ 接地柱安装孔标准尺寸为ø6.5,连接方式可使用六角 头螺栓或者铆接螺柱,材质应为黄铜H62或者不锈钢 材质。接地应通过面接触导电,不能通过螺纹接触导 电。面板外表面与平垫接触面上不得喷漆(使用M6接 地柱的面板遮喷尺寸建议为ø13mm)。
1.6
2.4~3.2
PMMA
0.8
1.5
2.2
4~6.5
透明PC
0.95
1.8
2.33~4ຫໍສະໝຸດ 55.设计要求5.5 塑胶件设计要求
尽量壁厚均匀一致,壁厚不均匀零件将有缩水痕迹。如 不能保证,需做渐变过渡,过渡的部分长高比例大于等于 3:1。壁厚均匀在拐角处同样适用。如下图所示。
5.设计要求
5.5 塑胶件设计要求
5.设计要求
5.2 钣金件设计要求
➢超过三道工序的钣金件的结构应进行分解,分解成只 由圆形、直线等组成的简单结构,然后焊接在一起。 如下图所示。
5.设计要求
5.3 焊接件设计要求
➢应有足够大的操作空间以方便焊接和检测。如下图所示。
5.设计要求
5.3 焊接件设计要求
➢ 焊接时应方便定位,电极不能和周围的板相粘接。
在三维图的构建中,凡影响外观,影响装配的地方需要 画出斜度,加强筋一般不画斜度。塑胶件的脱模斜度由材 料、表面饰纹状态,零件透明与否决定。硬质塑料比软质 塑料的脱模斜度大,零件越高,孔越深,斜度越小。不同 材料的脱模斜度如下表所示。
塑胶种类
型腔斜度
型芯斜度
ABS 防火ABS PA66+玻纤 PMMA 透明PC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构设计控制12个重要参数的目的
1.轴压比
目的:控制构件保持一定延性。
规范规定:限值各等级的剪力墙和框架
柱轴压比;
注意:剪力墙的轴压比对应的荷载为重力荷载代表值的设计值;框架柱轴压比对应的荷载为含水平荷载的工况组合,多为地震工况组合。
2.扭转周期比
目的:限制结构抗扭刚度不能太弱。
规范规定:限制结构扭转为主的第一周期
Tt与平动为主的第一周期T1之比。
振型判别方法:振型方向因子来判断,因子以50%作为分界。
相关规定:全国超限建筑抗震设防中对周期比比值不足不是一项超限,广东抗震审查技术要求中无该条规定。
3.有效质量参与系数
目的:保证考虑充足的地震作用。
要求:计算振型数应使各振型参与质量之和不小于总质量的90%。
4.刚重比
目的:确定在水平荷载下,结构二阶效应不致过大,而引起稳定问题。
要求:高规重力二阶效应及结构稳定
注意:此处重力为重力荷载设计值,取恒+活。
5.剪重比
目的:由于地震影响系数在长周期下降较快,对基本周期大于3s结构水平地震下结构效应可能影响过小,偏于不安全。
要求:高规:“剪重比”注:此处此处重力为重力荷载代表值。
6.位移比
目的:限制结构平面布置不规则性
规定限值:、、和
计算要求:
(1)风荷载不控制
(2)单向地震+偏心算,而且是采用规定水平力的施加模式。
(3)双向地震下控制。
(4)单向地震+偏心,CQC不控制。
新增的出处:
7.层间位移角
目的:同体系和高度有关,详见规范,以弯曲变形为主的高层建筑不扣除整体弯曲变形。
计算要求:
(1)风、单向地震均控制
(2)单向地震+偏心不控制
(3)双向地震不控制,除扭转特别严重外,一般双向地震同单向地震结构相近。
8.刚度比(软弱)
目的:控制结构出现软弱层
要求:高规(分结构体系)
9.楼层受剪承载力比(薄弱层)
目的:检验结构是否存在薄弱层
要求:高规
注意超限审查和高规中均提到,结构不应在同一层出现软弱层和薄弱层。
10.相邻楼层质量比
目的:检验高层建筑中质量沿竖向分布不规则。
要求:相邻楼层质量之比不宜超过(高规)。
11.倾覆力矩分担比
目的:(1)帮助确定结构体系(2)帮助确定构件抗震等级。
要求:(1)框剪(2)短肢剪力墙
12.框剪结构剪力分担比
目的:控制分担比使外围框架与核心筒发挥协同工作的
双重抗侧力结构体系。