11质点动力学

合集下载

11第11章质点动力学的基本方程PPT课件

11第11章质点动力学的基本方程PPT课件

略摩擦及AB质量;λ=r/l 较小时,以O为坐标原点,滑块B的运动方
程近似为
x l( 1 24 ) r [ct o (s 4 )c,试2 o 求t]s
t0和 时2,AB所受的力。
解:以滑块B为研究对象
mxaFcos
yA
O
F
FN
x
由滑块B的运动方程得
a x x r 2 (c to c s2 o t)s
§11-2 动力学的基本定律
牛顿三定律
第一定律(惯性定律) 不受力作用的质点,将保持静止或作匀速直线运动。
包括受平衡力系作用的质点
不受力作用的质点处于静止状态,或保持其原有的 速度(包括大小和方向)不变的性质称为惯性。
第一定律阐述了物体作惯性运动的条件,故称为惯 性定律。
§11-2 动力学的基本定律
从这种意义上说,动力学是理论力学中最具普遍意义 的部分,静力学、运动学则是动力学的特殊情况。
动力学的研究对象:低速、宏观物体的机械运动的普 遍规律。
动力学的力学模型
质点:质点是具有一定质量而几何形状和尺寸大小可以 忽略不计的物体。 地球绕太阳的公转——质点 刚体的平动——质点
质点系:系统内包含有限或无限个质点,这些质点都具有惯性, 并占据一定的空间;质点之间以不同的方式连接或者 附加以不同的约束。 地球的自转——质点系
刚体:质点系的一种特殊情形——不变形的质点系 其中任意两个质点间的距离保持不变。
工程实际中的动力学问题
v1
F
v2
棒球在被球棒击 打后,其速度的大 小和方向发生了变 化。如果已知这种 变化即可确定球与 棒的相互作用力。
工程实际中的动力学问题 载人飞船的交会与对接
v2 v1
B A

理论力学 第11章 质点运动微分方程

理论力学  第11章  质点运动微分方程
必须指出,牛顿定律中涉及到物体的运动与作用在 物体上的力。显然,物体及其所受的力不因参考系的选 择而改变,但同一物体的运动在不同的参考系中的描述 可能是完全不同的,这就存在着根本性的矛盾。这决定 了牛顿定律不可能适用于一切参考系,而只能适用于某 些参考系。凡牛顿定律成立的参考系,称为惯性参考系。 凡牛顿定律成立的参考系,称为惯性参考系 凡牛顿定律成立的参考系
2 d 2ρ dϕ m 2 −ρ = Fρ dt dt 2 d ρ dϕ d ϕ m 2 + ρ 2 = Fϕ dt dt dt
(11.6)
这就是极坐标形式的质点运动微分方程。
11.3 质点动力学的两类基本问题
应用质点运动微分方程,可以求解质点动力学的两 类基本问题。 第一类基本问题 已知质点的运动规律,即已知质点 的运动方程或质点在任意瞬时的速度或加速度,求作用 在质点上的未知力。这一类问题可归结为数学中的微分 问题。 求解该问题比较简单。若已知质点的运动方程,则 只须将它对时间求两次导数即可得到质点的加速度,代 入适当形式的质点运动微分方程,得到一个代数方程组, 求解这个方程组即可得到所求的未知力。
11.1 动力学基本定律
质点动力学的基本定律是牛顿在总结前人特别是伽 利略的研究成果的基础上,1687年在其著作《自然哲学 的数学原理》中提出来的,通常称为牛顿三定律 牛顿三定律。这些 牛顿三定律 定律是动力学的基础。
11.1 动力学基本定律
第一定律 任何质点都保持其静止的或作匀速直线运 动的状态, 动的状态,直到它受到其他物体的作用而被迫改变这 种状态为止。 种状态为止 质点保持静止或匀速直线运动状态的属性称为惯性 惯性, 惯性 质点作匀速直线运动称为惯性运动,因此第一定律又称 惯性运动, 惯性运动 惯性定律。此定律表明:质点必须受到其他物体的作用 惯性定律 时,也就是受到外力的作用时,才会改变其运动状态, 即外力是改变质点运动状态的原因 外力是改变质点运动状态的原因。 外力是改变质点运动状态的原因

大学物理章质点动力学习题答案

大学物理章质点动力学习题答案

第二章 质点动 力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数;解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式2代入式1得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r ;解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdt v F T mg mR αα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩习题2-2图擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件;解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m,用质量不计的滑轮和细绳连接,并不计摩擦,则A和B 的加速度大小各为多少 ; 解:如图由受力分析得(1)(2)2(3)2(4)ggA AB B A B A BA B mg T ma T mg ma a a T T a a -=-===1解得=-52=-52-5如本题图所示,已知两物体A 、B 的质量均为m=,物体A 以加速度a =s 2 运动,求物体B 与桌面间的摩擦力;滑轮与连接绳的质量不计解:分别对物体和滑轮受力分析如图,由牛顿定律和动力学方程得,()()()1f 111f (1)''(2)2'(3)'2(4)5'6'7(4)7.22A T A TB T T A B T T T T m g F m a F F m a a a F F m m m F F F F mg m m aF N-=-======-+===解得2-6质量为M 的三角形木块,放在光滑的水平桌面上,另一质量为m 的木块放在斜面上如本题图所示;如果所有接触面的摩擦均可忽略不计,求M 的加速度和m 相对M 的加速度;AB 习题2-4图习题2-5图aθ习题2-3图ma AmgT A T B a Bmg解:如图m 相对M 的相对加速度为m a ',则 cos ,sin ,mxm my m a a a a θθ''''== 在水平方向,cos mxmx Mx mx mxMx m M a a a a a a a a θ'=-''∴=+=-+在竖直方向sin mymy myma a a a θ'='∴=由牛顿定律可得,sin cos cos sin sin mx mM my m MN ma ma ma mg N ma ma N Ma θθθθθ'-==-+'-===解得θ+θθ=2sin cos sin m M mg a M , 2()sin sin m M m g a M m θθ++= 2-7在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球;当钢球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高解:取钢球为隔离体,受力分析如图所示,在图示坐标中列动力学方程得,2sin sin cos cos ()/n F ma mR F mg R h Rθωθθθ====-解得钢球距碗底的高度2ω-=g R h2-8光滑的水平面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦系数为μ;物体的初速率为v 0,求:1t 时刻物体的速率;2当物体速率从v 0减少到v 0/2时,物体所经历的时间及经过的路程;解:1设物体质量为m,取图示的自然坐标系,由牛顿定律得,02222tv 2v (1)(2)(3)4dv 4dt u v N n f t f Nv F ma m R dv F m a m dtF uF v dvu R dt ===-=-=-⎰⎰0由上三式可得=()R 对()式积分得=-习题2-6图00Rv v R v tμ∴=+(2) 当物体速率从v 0减少到v 0/2时,由上式00Rv vR v tμ∴=+可得物体所经历的时间0t R v μ'=经过的路程t t 000vdt dt ln 2Rv Rs R v t μμ''=+⎰⎰==2-9从实验知道,当物体速度不太大时,可以认为空气的阻力正比于物体的瞬时速度,设其比例常数为k;将质量为m 的物体以竖直向上的初速度v 0抛出; 1试证明物体的速度为t m ktm ke v e kmg v --+-=0)1(2证明物体将达到的最大高度为)1ln(020mgkv k g m k mv H +-=3证明到达最大高度的时间为)1ln(0mgkv k mt H +=证明:由牛顿定律可得0000220200ln (1)(2),()ln(13tvv mmt t k kx mg mg kv mdv dt mg kvmg kv m mg t v e v e k mg kv kmvdvdx mg kvmg kv u du kdvk mgdu k mgdudx mdu dx mdu m u m u mv kv m g x k k mg m t k --+-=++∴==-++=-++==∴=-+=-+∴=-+=⎰⎰⎰⎰dv(1)-mg-kv=m ,dt,dv -mg-kv=mv ,dx 令,)()0ln0t ln mg kv mg kvmg kv m v k mg k +++∴=+当时,=即为到达最高点的时间2-10质量为m 的跳水运动员,从距水面距离为h 的高台上由静止跳下落入水中;把跳水运动员视为质点,并略去空气阻力;运动员入水后垂直下沉,水对其阻力为-b v 2,其中b 为一常yf =-kvmgv量;若以水面上一点为坐标原点O,竖直向下为Oy 轴,求:1运动员在水中的速率v 与y 的函数关系;2跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0的1/10假定跳水运动员在水中的浮力与所受的重力大小恰好相等解:运动员入水可视为自由落体运动,所以入水时的速度为0v =入水后如图由牛顿定律的0220//0100mg-f-F=ma mg=F f=bv dv a=dt v dy (2)0.4,0.1m vy ln 5.76m b y v v by m by m dv v dy dvb mv dyb dv m vv v e m v v v ---=∴-=-=====⎰⎰b将已知条件代入上式得,m=-=2-11一物体自地球表面以速率v 0竖直上抛;假定空气对物体阻力的值为f =-km v 2,其中k 为常量,m 为物体质量;试求:1该物体能上升的高度;2物体返回地面时速度的值;解:分别对物体上抛和下落时作受力分析如图,h120m 1ln()2v 01ln()2(2)m v=v 1gyvv vvdv dy g k g k y k g k g k k g vdvdy g k k =-++∴=-+∴+=-∴+⎰⎰⎰⎰222220max 222-/0dv mvdv (1)-mg-k v =m=,dt dy v v v 物体达到最高点时,=,故v h=y =dv mvdv下落过程中,-mg+k v =m=dt dy-v v ()2-12长为60cm 的绳子悬挂在天花板上,下方系一质量为1kg 的小球,已知绳子能承受的最大张力为20N ;试求要多大的水平冲量作用在原来静止的小球上才能将绳子打断解:由动量定理得000I mv I v m∆=-∆∴=,如图受力分析并由牛顿定律得,2020220/202.47mv T mg l mv T mg lmg I l I Ns-==+≥∴+∆≥∆≥2-13一作斜抛运动的物体,在最高点炸裂为质量相等的两块,最高点距离地面为;爆炸后,第一块落到爆炸点正下方的地面上,此处距抛出点的水平距离为100m;问第二块落在距抛出点多远的地面上 设空气的阻力不计解:取如图示坐标系,根据抛体运动规律,爆炸前,物体在最高点得速度得水平分量为()1010x 2x 12y 2x 0x (1),v 2mv mv 30mv mv 414v v 100x x v x t==+=2111121物体爆炸后,第一块碎片竖直下落的运动方程为1y =h-v t-gt 2当碎片落地时,y =0,t=t 则由上式得爆炸后第一块碎片抛出得速度为1h-gt 2=()t 又根据动量守恒定律,在最高点处有1=()211=-22联立以上()-()式得爆炸后第二块碎片抛出时的速度分量分别为=2=2x 11212x 2222y 222214.7v t 5y =h+v t -60,x 500my ms v v ms gt y --====21211h-gt 2t 爆炸后第二块碎片作斜抛运动,其运动方程为x =x +()1()2落地时由式(5)和(6)可解得第二块碎片落地点得水平位置=2-14质量为M 的人手里拿着一个质量为m 的物体,此人用与水平面成θ角的速率v 0向前跳去;当他达到最高点时,他将物体以相对于人为u 的水平速率向后抛出;问:由于人抛出物体,他跳跃的距离增加了多少假设人可视为质点解:取如图所示坐标,把人和物视为一系统,当人跳跃到最高点处,在向左抛物得过程中,满足动量守恒,故有()00000m cos ()v u mu v cos m mu v v- cos m sin t g m sin x vt um gv Mv m v u v v v v v θθθθθ=+-∆∆∆+M 式中为人抛物后相对地面的水平速率,-为抛出物对地面得水平速率,得=++M人的水平速率得增量为==+M而人从最高点到地面得运动时间为=所以人跳跃后增加的距离为==(+M )2-15铁路上有一静止的平板车,其质量为M,设平板车可无摩擦地在水平轨道上运动;现有N 个人从平板车的后端跳下,每个人的质量均为m,相对平板车的速度均为u;问:在下列两种情况下,1N 个人同时跳离;2一个人、一个人地跳离,平板车的末速是多少所得的结果为何不同,其物理原因是什么解:取平板车及N 个人组成的系统,以地面为参考系,平板车的运动方向为正方向,系统在该方向上满足动量守恒;考虑N 个人同时跳车的情况,设跳车后平板车的速度为v,则由动量守恒定律得 0=Mv+Nmv -uv =Nmu/Nm+M 1又考虑N 个人一个接一个的跳车的情况;设当平板车上商有n 个人时的速度为v n ,跳下一个人后的车速为v n -1,在该次跳车的过程中,根据动量守恒有M+nmv n =M v n -1+n-1m v n -1+mv n -1-u 2 由式2得递推公式v n -1=v n +mu/M+nm 3当车上有N 个人得时即N =n,v N =0;当车上N 个人完全跳完时,车速为v 0, 根据式3有,v N-1=0+mu/Nm+Mv N-2= v N-1+mu/N-1m+M ………….v 0= v 1+mu/M+nm将上述各等式的两侧分别相加,整理后得,0n 0mu v nm,1,2,3....v vM nm M Nm n N N +≤+=∑N=1=M+由于故有,即个人一个接一个地跳车时,平板车的末速度大于N 个人同时跳下车的末速度。

理论力学第十一章 质点系动量定理讲解

理论力学第十一章 质点系动量定理讲解

结论与讨论
牛顿第二定律与 动量守恒
牛顿第二定律 动量定理 动量守恒定理
工程力学中的动量定理和动量守恒定理比 物理学中的相应的定理更加具有一般性,应 用的领域更加广泛,主要研究以地球为惯性 参考系的宏观动力学问题,特别是非自由质 点系的动力学问题。这些问题的一般运动中 的动量往往是不守恒的。
结论与讨论

O
第一种方法:先计算各个质点 的动量,再求其矢量和。
第二种方法:先确定系统 的质心,以及质心的速度, B 然后计算系统的动量。
质点系动量定理应用于简单的刚体系统
例题1
y vA
A

O
解: 第一种方法:先计算各个质点 的动量,再求其矢量和。
p mA v A mB vB
建立Oxy坐标系。在角度为任 意值的情形下
p mi vi
i
§11-1 质点系动量定理
动量系的矢量和,称为质点系的动量,又称 为动量系的主矢量,简称为动量主矢。
p mi vi
i
根据质点系质心的位矢公式
mi ri
rC
i
m
mi vi
vC i m
p mvC
§11-1 质点系动量定理
质点系动量定理
对于质点
d pi dt
质点系动量定理应用
动量定理的
于开放质点系-定常质量流 定常流形式
考察1-2小段质量流,其 受力:
F1、F2-入口和出口 处横截面所受相邻质量流 的压力;
W-质量流的重力; FN-管壁约束力合力。
考察1-2小段质量流, v1、v2-入口和出口处质量流的速度; 1-2 :t 瞬时质量流所在位置; 1´-2´ :t + t 瞬时质量流所在位置;

质点动力学习题解答

质点动力学习题解答

第2章 质点动力学2-1. 如附图所示,质量均为m 的两木块A 、B 分别固定在弹簧的两端,竖直的放在水平的支持面C 上。

若突然撤去支持面C ,问在撤去支持面瞬间,木块A 和B 的加速度为多大? 解:在撤去支持面之前,A 受重力和弹簧压力平衡,F mg =弹,B 受支持面压力向上为2mg ,与重力和弹簧压力平衡,撤去支持面后,弹簧压力不变,则A :平衡,0A a =;B :不平衡,22B F mg a g =⇒=合。

2-2 判断下列说法是否正确?说明理由。

(1) 质点做圆周运动时收到的作用力中,指向圆心的力便是向心力,不指向圆心的力不是向心力。

(2) 质点做圆周运动时,所受的合外力一定指向圆心。

解:(1)不正确。

不指向圆心的力的分量可为向心力。

(2)不正确。

合外力为切向和法向的合成,而圆心力只是法向分量。

2-3 如附图所示,一根绳子悬挂着的物体在水平面内做匀速圆周运动(称为圆锥摆),有人在重力的方向上求合力,写出cos 0T G θ-=。

另有沿绳子拉力T 的方向求合力,写出cos 0T G θ-=。

显然两者不能同时成立,指出哪一个式子是错误的 ,为什么?解:cos 0T G θ-=正确,因物体在竖直方向上受力平衡,物体速度竖直分量为0,只在水平面内运动。

cos 0T G θ-=不正确,因沿T 方向,物体运动有分量,必须考虑其中的一部分提供向心力。

应为:2cos sin T G m r θωθ-=⋅。

2-4 已知一质量为m 的质点在x 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即2kf x=-,k 为比例常数。

设质点在x A =时的速度为零,求4Ax =处的速度的大小。

解:由牛顿第二定律:F ma =,dvF mdt=。

寻求v 与x 的关系,换元: 2k dv dx dvm m v x dx dt dx-=⋅=⋅,分离变量: 2k dx vdv m x =-⋅。

质点动力学

质点动力学

质点动力学
t t0
Fi
dt
n
mi vi
n
mi vi0
i 1
i 1
其分量式: t t0
Fixdt
mivix
mi
vi
0
x
t t0
Fiydt
miviy
mi
vi
0
y
t t0
Fizdt
miviz
mivi0 z
此式表明,外力矢量和在某一方向的冲量等于 在该方向上质点系动量分量的增量。
1)动量定理说明,质点动量的改变是由外力和 外力作用时间两个因素,即由冲量决定的。
2)冲量的方向不是与动量的方向相同,而是与 动量增量的方向相同。
质点动力学
3) 动量定理 P 是矢量式,其直角坐标
的分量式为:
I Ixi Iy j Izk
I x
t2 t1
Fx
dt
mv2 x
mv1 x
2)若合外力不为 0,但在某个方向上合外力分量 为 0,则在该方向上动量守恒。
ΣFix 0 , ΣFiy 0 , ΣFiz 0 ,
px mi vix C x p y mi viy C y pz mi viz C z
质点动力学
3)自然界中不受外力的物体是没有的,但如果系 统的内力 >> 外力,可近似认为动量守恒。在碰 撞、打击、爆炸等相互作用时间极短的过程中, 往往可忽略外力。
1、恒A 力F直c线os运 动| 的rr |功:F
Δr
r
r
F
F
θ
位移无限小时:dA
r F
drr
Δr
dA F cos drv F cosds = Fτ ds

质点力学习题与参考解答

【郑重说明】《理论力学》课程的习题及解答方面的参考书很多,学习者可以通过各种形式阅读与学习,按照学院对教学工作的要求,为了满足学习者使用不同媒体学习的实际需要,通过各种渠道收集、整理了部分习题及参考解答,仅供学习者学习时参考。

由于理论力学的题目解答比较灵活,技巧性也比较强,下面这些解答不一定是最好的方法,也可能会存在不够完善的地方,希望阅读时注意之。

学习理论力学课程更重要的是对物理概念的掌握与理解,学习处理问题的思想与方法,仅盲目的做题目或者阅读现成的答案,很难达到理想的结果。

质点动力学思考题与习题及参考解答思考题(1) 有一质量为m 的珠子, 沿一根置于水平面内的铁丝滑动, 采用自然坐标法描述. 珠子受重力g m W=, 铁丝施与的约束力b Nb n Nn t Nt Ne F e F e F F ++=.t Nt e F 即为滑动摩擦力f F, 设动摩擦因数为μ. 试判断下列各式正误: (1) mg F f μ=; (2) Nb f F F μ= (3)Nn f F F μ=;(4) 22Nb Nnf F F F +=μ(2) 用极坐标系描述单摆的运动. 某甲如思考题(2图(a)规定θ角正向, 得到动力学方程θθsin mg ml -= ; 某乙如思考题(2图(b)规定θ角正向, 则得到θθsin mg ml += . 你认为谁的做法正确?(a) (b)思考题(2图(3) 质量为m 的质点, 由静止开始自高处自由落下. 设空气阻力f F与速度成正比, 比例系数为k . 某甲建立竖直向上的坐标如思考题(3图(a), 得到方程为y k mg y m+-=. 某乙建立竖直向下的坐标如思考题(3图(b), 得到方程为y k mg y m-=.他们列出的方程对吗?(a) (b)思考题(3(4)有人认为: 用极坐标系讨论质点的平面运动时, 如果0≡r F , 则沿径向动量守恒,==rm p r 常量;若0≡θF , 则沿横向动量守恒. 这种看法对吗? (5) 试判断以下二论断是否正确:(1) 若质点对固定点O 的角动量守恒, 则对过O 点的任意固定轴的角动量守恒. (2) 若质点对固定轴的角动量守恒, 则对该轴上任一固定点的角动量守恒.(6) 一质点动量守恒, 它对空间任一固定点的角动量是否守恒? 如质点对空间某一固定点角动量守恒, 该质点动量是否守恒?(7) 当质点做匀速直线运动时, 其动量是否守恒? 角动量是否守恒?(8) 在固定的直角坐标系Oxyz 中, 质量为m 的质点的速度k v j v i v v z y x++=, 所受合力为k F j F i F F z y x ++=. 能否将质点的动能定理r F mv d )21(d 2⋅=向x 轴方向投影而得出分量方程x F mv x x d )21(d 2= 该方程是否正确?思考题解答(1) 仅(4)式正确.(2) 甲正确. 乙错在角度不可以定义为从动线指向定线.(3) 乙的方程正确. 甲错在空气阻力亦应为yk -,y 取负值,y k -取正值. (4) 仅对固定方向才有动量守恒的分量形式. 径向和横向均不是空间固定方向. (5) (1)对;(2)错. (6) 一质点动量守恒,则对空间任一固定点角动量守恒. 质点对空间某一固定点角动量守恒,其动量不一定守恒.(7) 质点作匀速直线运动时,其动量和角动量均守恒.(8) 动能定理是标量方程,不可能投影而得出分量方程. 但xF mv x d )21(d 2=是正确的. 仿照动能定理的导出,用x t v x d d =乘牛顿第二定律的x 分量方程x xF t v m=d d 即可证明.质点动力学习题及参考解答【1】研究自由电子在沿x 轴的振荡电场中的运动. 已知电场强度i t E E)cos(0ϕω+=,ϕω,,0E 为常量. 电子电量为e -, 质量为m . 初始时, 即当0=t 时i x r00=, i v v 00=. 忽略重力及阻力, 求电子的运动学方程.【解】力为时间的函数,积分两次可得)cos(200ϕωω+++=t m eE t V X x ,其中ϕωcos 2000m eE x X -=,ϕωsin 00m eE v V +=.【2】 以很大的初速度0v自地球表面竖直上抛一质点, 设地球无自转并忽略空气阻力, 求质点能达到的最大高度. 已知地球半径为R , 地球表面处重力加速度为g .【解】以地心O 为原点,建立x 轴经抛出点竖直向上. 质点受万有引力沿x 轴负方向. 所以2x GMm xm -= . 因为2R GMmmg =,故g R GM 2=. 故有22x g R x -= . 做变换)2(d d d d d d d d 2x x x x x t x x x x ===,则x x g R x d )2(d 222-= . 积分并用0=t 时R x =,0v x = 定积分常数,得到 )11()(212202R x g R v x -=- . 质点达最大高度时H R x +=,0=x,可求出 1220)21(2--=Rg v g v H .三点讨论:(1)令∞=H ,对应Rg v 20=为第二宇宙速度.(2)若Rg v 220<<,则回到重力场模型所得结果. (3)题中不考虑地球自转及空气阻力,均不大合理,试进一步讨论之.【3】 将质量为m 的质点竖直上抛, 设空气阻力与速度平方成正比, 其大小22gv mk F R =.如上抛初速度为0v , 试证该质点落回抛出点时的速率2201v k v v +=.【解】质点运动微分方程为(Oy 轴竖直向上);上升阶段22y g mk mg y m--=,下降阶段22y g mk mg ym +-=. 【4】向电场强度为E 、磁感应强度为B 的均匀稳定电磁场中入射一电子. 已知B E⊥, 电子初速0v 与E 和B 均垂直, 如题4图所示. 试求电子的运动规律. 设电子电量为e -.题4图【解】令m eB=ω,电子运动微分方程为y xω-=, (1) m eEx y-= ω, (2)0=z . (3)对(2)式求导,利用(1)式得02=+y yω,解出)sin(αω+=t A y . 0=t 时0=y 故0=α,由t A y ωωcos = ,且0=t 时m eBv Ee y0+-= ,故B Bv E A 0+-=,则t B Bv E y ωsin 0+-= . 积分得)cos 1()(20t m eB eB Bv E m y -+-=. 代入(1)式积分可得t m eB eB Bv E m t B E x sin )(20--=.【5】 旋轮线如题5图所示, 可理解为一半径为a 的圆轮在直线上做无滑滚动时轮缘上一点P 的轨迹, 其参数方程为)sin (ϕϕ+=a x , )cos 1(ϕ-=a y . 在重力场中, 设y 轴竖直向上, 一质点沿光滑旋轮线滑动, 试证质点运动具有等时性(绕O 点运动周期与振幅无关).题5图【解】(旋轮线是如图圆轮在直线AB 上作无滑滚动时P 点的轨迹,曲线上P 点切线方向即为轮上P 点速度方向. 因无滑,0P 为瞬心,故P 点切线与P P 0垂直,因此可知P 点切线与x 轴夹角为2ϕ. )以曲线最低点(0=ϕ)为自然坐标原点,弧长正方向与t e 一致. 质点运动微分方程为2sinϕmg s m -= .对曲线参数方程求微分,得ϕϕd )cos 1(d +=a x 和ϕϕd sin d a y =,所以ϕϕd 2cos 2d d d 22a y x s =+=,积分并用0=ϕ时0=s 定积分常数,得2sin 4ϕa s =. 代入质点运动微分方程消去ϕ,得到4=+s a gs ,s 作简谐振动而具有等时性. 其解为)cos(0αω+=t A s ,a g40=ω与振幅无关.【6】 一小球质量为m , 系在不可伸长的轻绳之一端, 可在光滑水平桌面上滑动. 绳的另一端穿过桌面上的小孔, 握在一个人的手中使它向下做匀速运动, 速率为a , 如题【6图所示. 设初始时绳是拉直的, 小球与小孔的距离为R , 其初速度在垂直绳方向上的投影为0v . 试求小球的运动规律及绳的张力.题6图【解】小球运动微分方程为T F r r m -=-)(2θ , (1) 0)2(=+θθr r m , (2)a r-= . (3) 由(3)式求出at R r -=,代入(2)式求出)/(0at R t v -=θ,再由(1)式求出3220)(at R R mv F T -=.【7】 一质量为m 的珠子串在一半径为R 的铁丝做成的圆环上, 圆环水平放置. 设珠子的初始速率为0v , 珠子与圆环间动摩擦因数为μ, 求珠子经过多少弧长后停止运动 (根据牛顿第二定律求解).【解】珠子的运动微分方程为2b 2n d d N N F F t v m+-=μ, (1)n 2/N F mv =ρ, (2)mg F N -=b 0, (3)R =ρ(约束方程). (4)把(2)、(3)、(4)式代入(1)式,作变换sv t v d /)21(d d d 2=,可求出]/)ln[()2/(224020Rg g R v v R s ++=μ.【8】 质量为m 的小球沿光滑的、半长轴为a 、半短轴为b 的椭圆弧滑下, 此椭圆弧在竖直平面内且短轴沿竖直方向. 设小球自长轴端点开始运动时其初速度为零. 求小球达到椭圆弧最低点时对椭圆弧的压力 (根据牛顿第二定律求解). 【解】以椭圆最低点为自然坐标原点O ,弧长正方向指向小球初始位置,θ为切向与水平方向的夹角,小球的运动微分方程为θsin mg vm -= , (1) θρcos /2mg F mv N -=. (2)Oy 竖直向上,将s y d /d sin =θ代入(1)式得s y g s v v d /d d /d -=,积分可求出小球达最低点时gb v 22=. 由轨道方程22x a a by --=求出当0=x 时0='y ,2/a b y ='',由公式可求出22/32)1(1a b y y ='+''=ρ. 再由(2)式求出0=θ时)/21(/cos 22a b mg mv mg F N +=+=ρθ.【9】 力1F 和2F分别作用在长方体的顶角A 和B 上, 长方体的尺寸和坐标系如题【9图所示. 试计算1F 和2F对原点O 及3个坐标轴的力矩.题9图【解】11bF M x =,11aF M y -=,01=z M ,2222/b a bcF M x +=,2222/b a acF M y +-=,02=z M .【10】 已知质量为0m 的质点做螺旋运动, 其运动学方程为t r x ωcos 0=, t r y ωsin 0=,kt z =,k r ,,0ω为常量. 试求: (1)t 时刻质点对坐标原点的角动量;(2) t 时刻质点对过),,(c b a P 点, 方向余弦为),,(n m l 的轴的角动量.【解】由运动学方程求出→v ,根据定义即可求出→→→→→→++--=⨯=k r m j t t t r km i t t t r km v r m L ωωωωωωω200000000)sin (cos )cos (sin ,)]cos ()sin )([(]cos )()sin ([000000),,(a t r k t r c kt m m t r c kt b t r k l m L n m l -+-----=ωωωωωω)sin cos (00200t br t ar r n m ωωωωω--+.【11】 如题【11图所示, 质量为m 的小球安装在长为l 的细轻杆的A 端, 杆的B 端与轴21O O 垂直地固连. 小球在液体中可绕21O O 轴做定轴转动, 轴承1O 和2O 是光滑的. 转动中小球所受液体阻力与角速度成正比, ωαm F R =,α为常量. 设初始角速度为0ω,试求经多少时间后, 角速度减小为初始值的一半,以及在这段时间内小球所转圈数.(忽略杆的质量及所受阻力.)题 11图【解】由对21O O 轴的角动量定理ωαωm l ml t -=)(d d2,积分可得lt /0e αωω-=,求出α/)2ln (l t =. 将角动量定理化为l /d d θαω-=,积分可以求得αωαωθπ4/)r a d (2/00l l ==(圈)【12】 质量为m 的质点沿椭圆轨道运动, 其运动学方程为kt a x cos =, kt b y sin = (k b a ,,为常量). 用两种方法计算质点所受合力在0=t 到k t 4π=时间内所做的功.【解】(1)由动能定理)(4121212222122b a mk mv mv W -=-=.(2)用曲线积分算⎰⎰+=⋅=→→2121)d d (y ym x x m r d F W ,把轨道参数方程kt b y kt a x sin ,cos ==代入,则曲线积分化为对t 的积分,可得同样结果.【13】 试用动能定理求解7题.【解】珠子的动能定理为sF F mv N N d )21(d 2b 2n 2--=μ,参见3.7提示【14】 有一小球质量为m , 沿如题【14图所示的光滑的水平的对数螺旋线轨道滑动. 螺旋线轨道方程为θa e r r -=0, a 为常数. 已知当极角0=θ时,小球初速为0v . 求轨道对小球的水平约束力N F 的大小. (用角动量及动能定理求解, 图中δ为θe 与v 方向间夹角,a =δtg.)题14图【解】因机械能守恒,小球动能不变,因此0v v =.过O 点作z 轴竖直向上(垂直纸面向外),质点对z 轴的角动量δcos rmv L z =. 质点所受对z 轴力矩δsin N z rF M -=. 由对z 轴的角动量定理得δδsin )cos (d d0N rF rmv t -=.由于θθθθθ ar ar t r r v a r -=-===-e d d d d 0,θθ r v =. 故a v v r =-=θδtan . 将它代入角动量定理方程,得到N N arF rF rmv -=-=δtan 0 . 而δδsin sin 0v v v r r -=-== ,所以θδδδa N a r mv a r mv ar mv ar mv F e 11tan 1tan sin 2020220222020+=+=+==.【15】 已知质点所受力F 的3个分量为z a y a x a F x 131211++=,z a y a x a F y232221++=, z a y a x a F z 333231++=,系数)3,2,1,(=j i a ij 都是常量. 这些ij a 满足什么条件时与力F相关的势能存在? 在这些条件被满足的条件下, 计算其势能.【解】当0=⨯∇→F 时势能存在,要求311332232112,,a a a a a a ===. 以原点为势能零点,则)222(21132312233222211xz a zy a xy a z a y a x a V +++++-=.【16】 一带有电荷q 的质点在电偶极子的场中所受的力为3c o s 2r pq F r θ=,3sin r pq F θθ=,p 为偶极距, r 为质点到偶极子中心的距离.试证此力场为有势场.【解】)/cos (d d d )d d (d 2r pq r F r F e r e r F r F r r θθθθθ-=+=+⋅=⋅→→→→→,故为有势场 【17】 如题17图所示, 自由质点在Oxy 平面内运动, 静止中心A 和B 均以与距离成正比的力吸引质点M , 比例系数为k . 试证明势能存在并求出质点的势能.v题【17图【解】y ky x kx y ky ky x b x k b x k r F d 2d 2d )(d )]()([d --=--+--+-=⋅→→)](d [22y x k +-=.故势能存在. 以O 为势能零点,则)(22y x k V +=.【18】 试用机械能守恒定律求解8题.【解】根据机械能守恒定律,以椭圆弧最低点为势能零点,mgbmv =221,可知gb v 2=,参见3.8提示.【20】 将质量为m 的质点竖直抛上于有阻力的媒质中。

质点动力学 习题答案优秀PPT


(120t
40)i
(12t
4) i
m
10
v
t adt
0
t 0
(12t
4)
i dt
(6t
2
4t )
i
v0
(6t 2 4t 6)i
v(3)
72i
m
s
1
2020/4/28
3
2-3. 一物体质量为10kg,受方向不变的力 F 30 40t
的作用,在开始的2s内,此力的冲量大小为?若物体的
(2)解:物体系的加速度:
a (mA mB )g mC g
f
T
(mA mB mC )
1.1 m s2
分析物体C,T mC g mCa
2020/4代/28 入数据解得:T 1.7 N
8
2-12. 已知条件如图,求物体系的加速度和A、B两绳中 的张力。绳与滑轮的质量和所有摩擦不计。
解:由动能定理,链条刚 好离开桌面时,重力做 功等于链条此时的动能:
1 mv 2 1 mg l 1 mg l
2
2 22 4
v 3 gl 2
2020/4/28
5
2-5. 一弹簧原长0.5m,弹力系数k,上端固定在天花板 上,当下段悬挂一盘子时,其长度为0.6m,然后在盘中 放置一物体,长度变为0.8m,则盘中放入物体后,在弹 簧伸长过程中弹力做的功为?
(1)求物体C与水平桌面的摩擦系数;
(1)解:分析物体系的受力
mB g (mA mC )g
代入数据解得:
1 0.111
9
2020/4/28
7
2-11. A、B、C三个物体,质量分别是 mA mB 0.1kg, mC 0.8kg,当如图(a)放置时,物体系正好作匀速运动。

工程力学(动力学、静力学、运动学)


r LO
=
r MO
(mivri
)
=
rri × mivri
LOz = J zω
二、动力学普遍定理
1、物理量
(4)转动惯量 ① 定义
∑ J zz = rii22mii
ii
Jz
=

2 z
回转半径
z
ri
vi
mi
ω
mO
y
x
二、动力学普遍定理
1、物理量
② 简单形体的转动惯量
● 均质细圆环 JCC = mr 22
[例 题]
两重物的质量均为m,分别系在两软绳上。此两绳又分别绕在半 径各为r与2r并固结一起的两圆轮上。两圆轮构成之鼓轮的的质量亦
为m,对轴O的回转半径为ρ0。两重物中一铅垂悬挂,一置于光滑平 面上。当系统在左重物重力作用下运动时,鼓轮的角加速度α为:
(A)
α
=
5r
2
2
g+rρ02(B)
α = 2gr 3r 2 + ρ02
置作用于物块的约束力FN大小的关系为:
y
(A)FN1 = FN0 = FN2 = W (B) FN1 > FN0 = W > FN2 (C) FN1 < FN0 = W < FN2
A
a1
0 a
2
(D) FN1 = FN2 < FN0 = W
答案:C
一、质点动力学
[例 题]
r F
已知:以上抛的小球质量为m,受空气阻力
牛顿第二定律(力与加速度之间的关系定律)
∑ m ar =
r Fii
ii
牛顿第三定律(作用与反作用定律)

11 理论力学--动量定理


运动这过程中,在水平方向上,A上有两个冲量作用:
一个是B对它的撞击冲量,设其大小为I,一个是平面对
A块作用的动滑动摩擦力的冲量,其大小为FA t,其中:
FA fs FN A fs mA g
这两个冲量的方向都与运动方向相反,取 x 轴的水平指 向与运动方向相同,于是根据动量定理,有:
0 mAv0 I FA t
11 动量定理
对于质点系,可以逐个质点列出其动力学基本方 程,但是很难联立求解。
动量、动量矩和动能定理从不同的侧面揭示了质 点和质点系总体的运动变化与其受力之间的关系,可 用以求解质点系动力学问题。动量、动量矩和动能定 理统称为动力学普遍定理。本章将阐明及应用动量定 理。
11.1 动量与冲量 11.1.1 动量 物体运动的强弱,不仅与它的速度有关,而且
的乘积。质点系的动量为质点系内各质点动量的矢量
和。因此,可能存在质点的动量大于质点系的动量,
甚至质点系内的质点具有动量,而质点系的动量等于
零。 质点系的运动不仅与作用在质点系上的力与有关,
而且与质量的大小及其分布情况有关。
质心( Center of mass )就是对质点系质量分布特征
的一种描述,它时质点系的质量中心。设一质点系由
(1)
B 块动量变化为零,作用于 B 上水平方向的冲量也有两
个:一个是 A 对 B 撞击时作用的冲量;另一个是滑动摩
擦力的冲量,大小为 :FB t
FB fs FN B fs mB g
0 I FB t
(2)
联解式(1)与式(2)得:
v0

f s mA mB g t
mA
方向如图所示。
px m1 ew cosw t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d2 d 2 at = l 2 = l, an = l( ) = l2 dt dt
t
M0 M
O φ0 φ FN M0 at φ
写出质点的自然形式的运动微分方程
W mat = l = W sin g W man = l2 = FN W cos g (1) (2)
an M W
第十章 质点动力学基础
上式第一部分称为静压力 静压力, 上式第一部分称为静压力,第二部分称为 附加动压力 动压力, 称为动压力 动压力. 附加动压力, FN' 称为动压力. 讨论 令
M
FN M W
a
a n =1+ g

F′ = nW
1. n>1, 动压力大于静压力,这种现象称为超重. 动压力大于静压力,这种现象称为超重 超重. 动压力小于静压力,这种现象称为失重 失重. 2. n<1, 动压力小于静压力,这种现象称为失重.
第十章 质点动力学基础
§10-2 质点运动微分方程
d2r m 2 =F dt
这就是质点运动微分方程的矢量形式. 这就是质点运动微分方程的矢量形式. 质点运动微分方程的矢量形式 三,自然形式 如采用自然轴系 Mtnb,并把式 并把式(1-2)向各轴投 向各轴投 并把式
O r n
(1 2)
z M
b F a
x
F = ma ma = FN W
FN M M W
a
注意到 m = W /g ,则由上式解得地板反力
F =W + N
W a a = W(1+ ) g g
例题 1-1
第十章 质点动力学基础
质点动力学基本问题
所以地板所受的压力为
例题1 例题1-1
x
W a F′ = W + a = ቤተ መጻሕፍቲ ባይዱ(1+ ) N g g
思考题 加速度可分为a 公式F 中的a指 加速度可分为 a,ae,ar,ac, 公式 = ma中的 指 中的 的是什么加速度. 的是什么加速度.
第十章 质点动力学基础
§10-2 质点运动微分方程
一,矢量形式 设有可以自由运动的质点 M,质 , 量是 m,作用力的合力是 F,加速 , , 度是 a .
F ≤ Fmax = fFN
y 即 a F φ mg FN x
a mg( + sin ) ≤ fmgcos g a ( + sin ) g fmin = cos
第十章 质点动力学基础
质点动力学基本问题
例题1-4 粉碎机滚筒半径为R,绕通过中心的水平匀速转动,筒内 例题 粉碎机滚筒半径为 , 绕通过中心的水平匀速转动, 铁球由筒壁上的凸棱带着上升.为了使铁球获得粉碎矿石的能量, 铁球由筒壁上的凸棱带着上升.为了使铁球获得粉碎矿石的能量,铁球 如图)才掉下来.求滚筒每分钟的转数n. 应在θ=θ0 时(如图)才掉下来.求滚筒每分钟的转数 . 应在
第十章 质点动力学基础
质点动力学基本问题
磅秤指针如何变化
?
第十章 质点动力学基础
质点动力学基本问题
质点动力学解题步骤: 质点动力学解题步骤: 1. 明确研究对象; 明确研究对象; 2. 进行受力分析,并画出受力图; 进行受力分析,并画出受力图; 3. 进行运动分析,并画出相应的运动学量,如速度,加速度,角速度, 进行运动分析,并画出相应的运动学量,如速度,加速度,角速度, 角加速度等; 角加速度等; 4. 选择动力学定理进行分析求解. 选择动力学定理进行分析求解.
质点系——一群具有某种联系的质点,刚体可以看成不变形的质点系. 一群具有某种联系的质点,刚体可以看成不变形的质点系. 质点系 一群具有某种联系的质点 第十章 质点动力学基础
绪论

第 十 章 质 点 动 力 学 基 础


§10-1 动力学的基本定律
§10-2 质点运动微分方程
目录
第十章 质点动力学基础
§10-1 动力学的基本定律
第一定律 第二定律 第三定律 惯性定律 力与加速度关系定律 作用与反作用定律
第十章 质点动力学基础
§10-1 动力学的基本定律
第一定律 惯性定律 质点如不受力作用,则保持其运动状态不变,即作直线匀速运动或者静止. 质点如不受力作用,则保持其运动状态不变,即作直线匀速运动或者静止. 第一定律说明了任何物体都具有惯性. 第一定律说明了任何物体都具有惯性. 第二定律 力与加速度关系定律 质点因受力作用而产生的加速度,其方向与力相同, 质点因受力作用而产生的加速度,其方向与力相同,其大小与力成正比 而与质量成反比. 而与质量成反比.
质点动力学基本问题
质点动力学的两类问题: 质点动力学的两类问题:
ma=F
d2r m 2 =F dt
(1-1)
(1 2)
质点动力学的第一类问题:已知运动,求力. 质点动力学的第一类问题:已知运动,求力. 质点动力学的第二类问题:已知力,求运动. 质点动力学的第二类问题:已知力,求运动. ● 解决第一类问题 , 只需根据质点的已知运动 解决第一类问题, 规律 r = r (t),通过导数运算,求出加速度, ,通过导数运算,求出加速度, 代入(1-1) (1-4), F. 代入(1-1) —— (1-4),即得作用力 F. ● 求解第二类问题,是个积分过程. 求解第二类问题,是个积分过程. 必须注意:在求解第二类问题时, 必须注意 : 在求解第二类问题时 , 方程的积 分中要出现积分常数,为了完全确定质点的运动, 分中要出现积分常数,为了完全确定质点的运动, 必须根据运动的初始条件定出这些积分常数. 必须根据运动的初始条件定出这些积分常数.
质点动力学基本问题
d d d d 1 d2 考虑到 = = = = dt d dt d 2 d 1 d2 g 则式(1) (1)化成 则式(1)化成 = sin 2 d l
(3) O φ0 φ FN an
例题 1-2
M0 at
对上式采用定积分,把初条件作为积分下限, 对上式采用定积分,把初条件作为积分下限,有
§10-1 动力学的基本定律
说 1. 明:
F = ma
该式称为质点动力学基本方程. 该式称为质点动力学基本方程.
牛顿第一定律和第二定律不是在任何参考系中皆成立的. 2. 牛顿第一定律和第二定律不是在任何参考系中皆成立的. 牛顿定律适用的参考系称为基础坐标系 基础坐标系. 3. 牛顿定律适用的参考系称为基础坐标系. 惯性参考系——相对于基础参考系作惯性运动的坐标系. 相对于基础参考系作惯性运动的坐标系 4. 惯性参考系 相对于基础参考系作惯性运动的坐标系. 在惯性参考系中牛顿定律也同样适用. 5. 在惯性参考系中牛顿定律也同样适用.
动 力 学
动力学
质点动力学的基 本方程
第十章 质点动力学基础
动 力 学
研究物体的机械运动与作用力之间关系的科学. 研究物体的机械运动与作用力之间关系的科学 一, 动力学的任务 ——研究物体的机械运动与作用力之间关系的科学. 二, 动力学的应用 动力学的形成与发展是和生产的发展密切联系的, 动力学的形成与发展是和生产的发展密切联系的,特别是在现代 工业与科学技术迅猛发展的今天,对动力学提出了更加复杂的课题. 工业与科学技术迅猛发展的今天,对动力学提出了更加复杂的课题. 例如:高速转动机械的动力计算,航空航天高技术,动强度分析, 例如:高速转动机械的动力计算,航空航天高技术,动强度分析, 机械手,机器人,系统的动力稳定性等都需要动力学理论. 机械手,机器人,系统的动力稳定性等都需要动力学理论. 三, 动力学的分类 动力学 质点系动力学 质 具有一定质量但可以忽略其尺寸大小的物体. 点——具有一定质量但可以忽略其尺寸大小的物体. 具有一定质量但可以忽略其尺寸大小的物体 质点动力学
W l = W sin g W 2 l = FN W cos g
(1) (2)
质点动力学基本问题
小车载着质量为m物体以加 例题 1-3 小车载着质量为 物体以加 速度a沿着斜坡上行 , 如果物体不捆扎, 速度 沿着斜坡上行, 如果物体不捆扎 , 沿着斜坡上行 也不致于掉下, 也不致于掉下 , 物体与小车接触面的摩擦 系数至少应为多少? 系数至少应为多少? 解: 取物体为研究对象. 取物体为研究对象. φ a
d2x m 2 = Fx dt d2 y m 2 = Fy (1 3) dt d2z m 2 = Fz dt
d2s 2 v m 2 = Ft , m = Fn , 0 = Fb dt ρ
第十章 质点动力学基础
(1 4)
质点动力学基本问题
设电梯以不变的加速度a 上升,求放在电梯地板上重W 例题 1-1 设电梯以不变的加速度 上升,求放在电梯地板上重 的物块 M 对地板的压力. 对地板的压力. 解: 分析物体 M ,它受重力 W 和 的作用. 地板反力 FN 的作用. 根据 可得
ma = F mg sin
y
a F φ mg FN
x
0 = FN mg cos
解得
a F = mg( + sin ) g
FN = mg cos
第十章 质点动力学基础
例题 1-3
质点动力学基本问题
a F = mg( + sin ) g
a
例题 1-3
FN = mg cos
要保证物体不下滑, 要保证物体不下滑,应有 φ
t
影,可得
y
x
d2s v2 m 2 = Ft , m = F , 0 = F (1 4) n b dt ρ d2s v2 at = 2 , an = 和 ab = 0 式中 dt ρ
在切线,主法线和副法线正向的投影; 是加速度 a 在切线,主法线和副法线正向的投影;Ft , Fn 和 Fb 是合力 F 在相应轴上的投影. 就是自然形式的质点运动微分方程 在相应轴上的投影.式(1-4)就是自然形式的质点运动微分方程. 就是自然形式的质点运动微分方程. 第十章 质点动力学基础
相关文档
最新文档