微积分习题

合集下载

微积分练习题带答案

微积分练习题带答案

微积分练习题带答案微积分是数学的分支之一,它研究的是函数的变化规律。

在微积分中,经常会出现各种各样的练习题,这些练习题有助于我们加深对微积分概念和原理的理解。

在这篇文章中,我们将分享一些微积分练习题,并附带答案,希望对你的学习有所帮助。

1. 求函数f(x) = 2x^3 - x^2 + 3x - 5的导数。

答案:f'(x) = 6x^2 - 2x + 32. 求函数g(x) = e^x * sin(x)的导数。

答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2)的导数。

答案:h'(x) = 2/x4. 求函数i(x) = ∫(0到x) t^2 dt的导数。

答案:i'(x) = x^25. 求函数j(x) = ∫(x到1) t^2 dt的导数。

答案:j'(x) = -x^26. 求函数k(x) = ∫(0到x) e^t * sin(t) dt的导数。

答案:k'(x) = e^x * sin(x)7. 求函数l(x) = e^(-x)的不定积分。

答案:∫ e^(-x) dx = -e^(-x) + C (C为常数)8. 求函数m(x) = 1/(x^2+1)的不定积分。

答案:∫ 1/(x^2+1) dx = arctan(x) + C (C为常数)9. 求函数n(x) = 2x * cos(x^2)的不定积分。

答案:∫ 2x * cos(x^2) dx = sin(x^2) + C (C为常数)10. 求函数o(x) = ∫(1到x) e^(t^2) dt的原函数。

答案:o(x) = ∫(1到x) e^(t^2) dt + C (C为常数)以上是一些微积分练习题及其答案。

通过解答这些题目,我们可以巩固对微积分概念和原理的理解,并提升解题能力。

微积分是应用广泛的数学工具,在物理、工程、经济等领域都有重要的应用,掌握微积分对于进一步深入学习这些领域十分必要。

微积分练习题及答案

微积分练习题及答案

微积分练习题及答案微积分练习题及答案微积分是数学中的一门重要学科,它研究的是函数的变化规律和求解各种问题的方法。

在学习微积分的过程中,练习题是非常重要的,它能够帮助我们巩固知识、提高技能。

下面,我将为大家提供一些微积分的练习题及其答案,希望能够对大家的学习有所帮助。

一、求导练习题1. 求函数f(x) = x^3 + 2x^2 - 3x + 1的导数。

答案:f'(x) = 3x^2 + 4x - 32. 求函数g(x) = e^x * sin(x)的导数。

答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2 + 1)的导数。

答案:h'(x) = (2x) / (x^2 + 1)二、定积分练习题1. 计算定积分∫[0, 1] (x^2 + 1) dx。

答案:∫[0, 1] (x^2 + 1) dx = (1/3)x^3 + x ∣[0, 1] = (1/3) + 1 - 0 = 4/32. 计算定积分∫[1, 2] (2x + 1) dx。

答案:∫[1, 2] (2x + 1) dx = x^2 + x ∣[1, 2] = 4 + 2 - 1 - 1 = 43. 计算定积分∫[0, π/2] sin(x) dx。

答案:∫[0, π/2] sin(x) dx = -cos(x) ∣[0, π/2] = -cos(π/2) + cos(0) = 1三、微分方程练习题1. 求解微分方程dy/dx = 2x。

答案:对方程两边同时积分,得到y = x^2 + C,其中C为常数。

2. 求解微分方程dy/dx = e^x。

答案:对方程两边同时积分,得到y = e^x + C,其中C为常数。

3. 求解微分方程d^2y/dx^2 + 2dy/dx + y = 0。

答案:设y = e^(mx),代入方程得到m^2 + 2m + 1 = 0,解得m = -1。

(完整)微积分练习题及解析

(完整)微积分练习题及解析

练习题1、质量为2kg 的某物体在平面直角坐标系中运动,已知其x 轴上的坐标为x=3+5cos2t,y 轴上的坐标为y=—4+5sin2t ,t 为时间物理量,问:⑴物体的速度是多少?()'10sin(2)x dx V x t t dt===- ()'10cos(2)y dy V y t t dt===10V ==⑵物体所受的合外力是多少?222(3)(4)5x y -+-=运动轨迹是圆,半径为5,所以是做匀速圆周运动 22*100405mv F N r === ⑶该物体做什么样的运动?匀速圆周运动⑷能否找出该物体运动的特征物理量吗?圆心(3,4),半径52、一质点在某水平力F 的作用下做直线运动,该力做功W 与位移x 的关系为W=3x-2x 2,试问当位移x 为多少时F 变为零. 34dW F x dx==- ,所以当x=3/4时,F=0 3、已知在距离点电荷Q 为r 处A点的场强大小为E=错误!,请验证A点处的电势公式为:U = 错误!.规定无穷远处电势为零,A 处的电势即为把单位正电荷缓慢的从无穷远处移到A 点所做的功我们认为在r 变化dr 时,库仑力F 是不变的, 则2kQq dW F dr dr r=-•=-• 所以20W r kQq dW dr r ∞=-⎰⎰ 即 21r q kQq dr rϕ∞=⎰ 所以1|r kQ kQ r rϕ∞=-=4、某复合材料制成的一细杆OP 长为L ,其质量分布不均匀。

在杆上距离O 端点为x 处取点A,令M 为细杆上OA 段的质量。

已知M 为x 的函数,函数关系为M=kx 2,现定义线密度ρ=错误!,问当x=错误!处B 点的线密度为何? 2dM kx dxρ== ,2L x kL ρ∴==5、某弹簧振子的总能量为2×10-5J ,当振动物体离开平衡位置错误!振幅处,其势能E P = ,动能E k = 。

首先推导弹簧的弹性势能公式,设弹簧劲度系数为k,伸长量为x 时的势能为E(x )弹簧所具有的弹性势能即为将弹簧从原长拉长x 时所做的功dW F dx kx dx =•=• 00W xdW kx dx ∴=•⎰⎰ 2()2kx E x ∴= 所以在距平衡位置错误!振幅处的弹性势能为总能量的14,即655*10, 1.5*10p k E J E J --== 6、取无穷远处电势为零。

(完整word版)《微积分》各章习题及详细答案

(完整word版)《微积分》各章习题及详细答案

第一单元 函数与极限一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim 22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→x x k x 成立的k 为 。

5、=-∞→x e x x arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、____________22lim22=--++∞→x x n 。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

微积分练习题

微积分练习题

一、单项选择题(1)函数()f x 在0x x =处连续是()f x 在0x x =处可微的( )条件.A.充分B.必要C.充分必要D.无关的 (2)当0x →时,()21x e -是关于x 的( )A.同阶无穷小B.低阶无穷小C.高阶无穷小D.等价无穷小(3)2x =是函数()222x xf x x -=-的( ).A.连续点B.可去间断点C.跳跃间断点D.无穷间断点 (4)函数()2f x x=及其图形在区间()1,+∞上( ). A.单调减少上凹 B.单调增加上凹 C.单调减少上凸 D.单调增加上凸(5)设函数()2; 1;1x x f x ax b x ⎧≤=⎨+>⎩在1x =处可导,则( )A. 0,1a b ==B. 2,1a b ==-C. 3,2a b ==-D.1,2a b =-=(6)设()f x 为可微函数,则在点x 处,当0x ∆→时,y dy ∆-是关于x ∆的( )A. 同阶无穷小B. 低阶无穷小C. 高阶无穷小D. 等价无穷小 (7)设()1;012;12x x f x x x -<≤⎧=⎨-<≤⎩在1x =处为( )A. 连续点B. 可去型间断点C. 跳跃型间断点D. 无穷型间断点 二、填空题(1)()12lim 1sin x x →+=(2)已知xy xe =,n 为自然数,则()n y=(3)曲线ln y x =上经过点(1,0)的切线方程是:y =(4)2x f dx ⎛⎫'= ⎪⎝⎭⎰(5)已知()2xt G x e dt -=⎰,则()0G '=(6)曲线22sin y x x =+上点(0,0)处的法线方程为 (7)已知()32f '=,则()()33lim2x f x f x→--=(8)()=+∞→1!sin lim 32n n n n (9)已知()f x 的一个原函数为cos x ,则()f x '=(10)() 122 1sin 5x x x dx -+=⎰三、计算题1. 011lim 1x x x e →⎛⎫- ⎪-⎝⎭2. 231lim 2x x x x +→∞+⎛⎫⎪+⎝⎭3. 设ln tan 2x y ⎛⎫= ⎪⎝⎭,求dy 4. 设()()sin ln xy y x x +-=确定y 是x 的函数,求0x y ='5. ()sin y f x =,其中f 具有二阶导数,求22d ydx6. 23225x dx x x --+⎰7. 18.22ππ-⎰9.1 ln eex x dx ⎰10. ()011lim ln 1x x x →⎡⎤-⎢⎥+⎣⎦11. arctan x xdx ⎰12.13.4⎰14.求0,8y x y ===所围成的图形分别绕y 轴及直线4x =旋转所得的旋转体体积.15. 222x y a +=绕直线x a =旋转的旋转体的体积.四、应用题(1)已知销售量Q 与价格P 的函数关系Q = 10000-P ,求销售量Q 关于价格P 的弹性函数. (2)设某工厂生产某产品的产量为Q 件时的总成本()21500081000C Q Q Q =+-元,产品销售后的收益()2120500R Q Q Q =-元,国家对每件产品征税2元,问该工厂生产该产品的产量为多少件时才能获得最大利润?最大利润是多少? 五、证明题1.设()f x 在区间[0,1]上可微,且满足条件()()1212f xf x dx =⎰,试证:存在()0,1ξ∈,使得()()0f f ξξξ'+=§8.1向量及其线性运算(1)、(2)、(3)、(4)一、设2,2u a b c v a b c =-+=++,试用,,a b c 表示24u v -.二、,,a b c 为三个模为1的单位向量,且有0a b c ++=成立,证明:,,a b c 可构成一个等边三角形.三、把△ABC 的BC 边四等分,设分点依次为123D D D 、、,再把各分点与点A 连接,试以AB c BC a ==、表示向量12D A D A 、和3D A .四、已知两点()11,2,3M 和()21,2,1M --,试用坐标表示式表示向量12M M 及123M M -.五、在空间直角坐标系中,指出下列各点在哪个卦限?并画出前两个:()1,1,1A ,()2,1,1B -,()2,3,4C ---,()3,4,5D --.六、指出下列各点的位置,观察其所具有的特征,并总结出一般规律:)0,4,3(A ,)3,0,4(B ,)0,0,1(-C ,)0,8,0(D .七、求点(),,x y z 关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.§8.1向量及其线性运算(5) §8.2数量积 向量积一、 试证明以三点()()()10,1,64,1,92,4,3A B C -、、为顶点的三角形是等腰直角三角形.二、设已知两点()()124,0,3M M 和,计算向量12M M 的模、方向余弦和方向角,并求与12M M 方向一致的单位向量.三、 设234,4223m i j k n i j k p i j k =++=-+=-++及,求232a m n p =+-在x 轴上的投影及在z 轴上的分向量. 四、 已知,,a b c 为三个模为1的单位向量,且0a b c ++=,求a b b c c a ++之值.五、已知23,a i j k b i j k c i j =++=--=+和,计算:()()()1a b c a c b -; ()()()2a b b c +⨯+; ()()3a b c ⨯.六、 设()()2,1,3,1,2,1a b =-=--,问λμ和满足何关系时,可使a b λμ+与z 轴垂直?七、 已知()1,2,3OA =,()2,1,1OB =-,求△AOB 的面积.§8.3曲面及其方程一、 一动点与两定点()()1,2,33,0,7和等距离,求这动点的轨迹方程.二、 方程2222460x y z x y z ++-+-=表示什么曲面?三、 将xoz 平面上的双曲线224936x z -=分别绕x 轴及z 轴旋转一周,求所生成的旋转曲面的方程.四、 指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形? 1.24y x =+; 222.326x y -=.五、 说明下列旋转曲面是怎样形成的?2221.226x y z ++=; ()2222.z a x y +=+.六、指出下列方程所表示的曲面:2221.22x y z+-=;2222.33x y z--=;223.345x y z+=.§8.4空间曲线及其方程 §8.5平面及其方程(1)一、填空题:1.曲面22x y +-209z =与平面3z =的交线圆的方程是 ,其圆心坐标是 ,圆的半径为 .2.曲线222221(1)(1)1x y x y z ⎧+=⎪⎨+-+-=⎪⎩在yoz 面上的投影曲线为 . 3.螺旋线cos x a θ=,sin y a θ=,z b θ=在yoz 面上的投影曲线为 .4.上半锥面z =(01z ≤≤)在xoy 面上的投影为 ,在xoz 面上的投影为 ,在面上的投影为 .二、选择题:1.方程22149x y y z ⎧+=⎪⎨⎪=⎩在空间解析几何中表示 . (A)、椭圆柱面 (B)、椭圆曲线 (C)、两个平行平面 (D)、两条平行直线2.参数方程cos sin x a y a z b θθθ=⎧⎪=⎨⎪=⎩的一般方程是 .(A)、222x y a += (B)、cos z x a b = (C)、sin z y a b = (D)、cos sin z x a b zy a b ⎧=⎪⎪⎨⎪=⎪⎩3.平面20x z -=的位置是 . (A)、平行xoz 坐标面。

(完整版)经典的微积分习题库(最新整理)

(完整版)经典的微积分习题库(最新整理)

(3) y x ; x2
(4) y x 2 3 x 。 x5
4.已知函数 f (x) 1 ,求 f (1), f (2) 。 x
5.已知函数 f (x) x ,求 f (2), f (4) 。
6.自由落体运动 s 1 gt 2 (g=9.8 米/秒 2)。 2
5
(1)求在从 t 5 秒到( t t )秒时间区间内运动的平均速度,设 t 1 秒, 0.1 秒,0.001
习题 1—2
1.确定下列函数的定义域: (1) y 1 ;
x2 9
(2) y loga arcsin x ;
(3) y 2 ; sin x
(4) y 3
1 x2
loga
(2x
3)
;(5)
y
arccos
x
1 2
loga
(4
x2
)
2.求函数
y
sin
1 x
(x 0)
0 (x 0)
的定义域和值域。
充或改变函数的定义使它连续。
(1) y
x2 1
; (2) y
n

x2 3x 2
tan x
(3) y cos2 1 。 x
3. a
为何值时函数
f
(x)
ex
a
x
(0 x 1)
在[0,2]上连续?
(1 x 2)
4.讨论函数
f (x)
1 lim n 1
x 2n x 2n
x 的连续性,若有间断点,判断共类型。
(2)当 x 时,上述各函数中哪些是无穷小?哪些是无穷大?
(3)“ 1 是无穷小”,这种说法确切吗? x
3.函数 y x cos x 在 (, ) 是是否有界?又当 x 地,这个函数是否为无穷

微积分(数学分析)习题及答案.doc

统计专业和数学专业数学分析(3)练习题一 填空题1. 函数 xy xyz +=arcsin 的定义域是 . 2. 函数y x z -=的定义域是 .3. 设 )ln(),(22y x x y x f --=,其中 0>>y x ,则),(=-+y x y x f .4. 设 yx xy y x y x f tan ),(22-+=,则 =),(ty tx f .5. 设2R E ⊂为 点集,则E 在2R 中至少有一个聚点.6. 32),,(yz xy z y x f +=,则 =-)1,1,2(gradf 。

7. xyz z xy u -+=32在点)2,1,1(0P 处沿方向→l (其中方向角分别为00060,45,60)的方向导数为=→)(0P u l.8. ,y x z =其中,0>x ,0≠x 则=dz 。

9. 函数),(y x f 在),(00y x 处可微,则 =-∆df f 。

10. 若函数 ),(y x f 在区域D 上存在偏导数,且,0==y x f f ,则),(y x f 在区域上为 函数。

11. 由方程1(,)sin 02F x y y x y =--=确定的隐函数)(x f y =的导数'()f x = . 12. 设243340x y x y +-=, 则dy dx= . 13. 平面上点P 的直角坐标),(y x 与极坐标),(θr 之间的坐标变换公式为 .其雅可比行列式(,)(,)x y r θ∂=∂ .14. 直角坐标),,(z y x 与球坐标),,(θϕr 之间的变换公式为 . 其雅可比行列式(,,)(,,)x y z r ϕθ∂=∂ .15. 设平面曲线由方程0),(=y x F 给出, 它在点),(000y x P 的某邻域内满足隐函数定理的条件,则该曲线在点0P 处存在切线和法线,其方程分别为切线: , 法线: .16. 设空间曲线由参数方程βα≤≤===t t z z t y y t x x L ),(),(),(:给出, 它在点0000000(,,)((),(),())P x y z x t y t z t =处的切线和法平面方程为 切线: ,法平面: . 17. 设空间曲线L 由方程组(,,)0,(,,)0F x y zG x y z =⎧⎨=⎩ 给出, 若它在点0000(,,)P x y z 的某邻域内满足隐函数定理的条件,则该曲线在点0P 处存在切线和法平面,其方程分别为切线: , 法平面: .18. 设曲面由方程0),,(F =z y x 给出,它在点),,(0000z y x P 的某邻域内满足隐函数定理条件,则该曲面在0P 处有切平面与法线,它们的方程分别是切平面: , 法线: . 19. 条件极值问题的一般形式是在条件组)(,,2,1,0),,,(21n m m k x x x n k <== ϕ的限制下,求目标函数 ),,,(21n x x x f y = 的极值.其拉格朗日函数是 , 其中m λλλ,,,21 为拉格朗日乘数.20. 若(,)f x y 在矩形区域R 上连续, 则对任何[]0,x a b ∈, 都有0lim (,)dcx x f x y dy →=⎰.21. (可微性)若函数),(y x f 与其偏导数),(y x f x∂∂都在矩形区域[][]d c b a R ,,⨯=上连续,则⎰=dcdy y x f x I ),()(在[]b a ,上可微,且(,)dcd f x y dy dx =⎰ .22. (可微性) 设),(),,(y x f y x f x 在[][]q p b a R ,,⨯=上连续,()()x d x c ,为定义在[]b a ,上其值含于[]q p ,内的可微函数,则函数⎰=)()(),()(x d x c dy y x f x F 在[]b a ,上可微,且'()F x = .23. (两个累次积分的关系)若),(y x f 在矩形区域[][]d c b a R ,,⨯=上连续,则(,)bdacdx f x y dy =⎰⎰ .24. 含参量反常积分(,)cf x y dy +∞⎰在[]b a ,上一致收敛的充要条件是:对任一趋于∞+的递增数列{}n A (其中c A =1),函数项级数 在[]b a ,上一致收敛. 25. 设有函数)(y g ,使得.,),(),(+∞<≤≤≤≤y c b x a y g y x f 若⎰+∞cdy y g )(收敛,则⎰+∞cdy y x f ),(在[]b a ,上 .26. (连续性)设),(y x f 在[][)+∞⨯,,c b a 上连续,若含参量反常积分⎰+∞=cdyy x f x I ),()(在[]b a ,上 ,则)(x I 在[]b a ,上 .27. (可微性)设),(y x f 与),(y x f x 在区域[][)+∞⨯,,c b a 上连续。

微积分综合练习题及参考答案精选全文完整版

可编辑修改精选全文完整版综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,0,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:x xx x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。

微积分习题

e e 1 e
1
e
9、广义积分 1 A、-2

1 x x
dx (
) D、1
B、2
C、-1
10、已知函数f(x)在闭区间[a,b]连续,在开区间(a,b)内 存在一点x0,使得函数值f(x0)=0,且,当a x x0 时函数f(x)>0;且当 x0 x b 时,函数f(x) <0。若 函数F(x)为f(x)的一个原函数,则由曲线y=f(x)与 直线y=0,x=a,x=b围成平面图形面积S=( )
1 R( x) 20 x (万元/单位) 5
(1)求生产x单位产品时的总收入R(x)及平均收入P(x) (2)如果已生产10个单位产品,求再生产10个单位 产品增加的总收入R
0
xe
x2
dx
1
dx (6) 0 1 x
3、求连续函数f(x),使它满足20 f ( x)dx f ( x) x sin x
4、抛物线y2=2x将圆x2+y2=8分成两部分,求每一部 分的面积。(只要求列出式子)
5、求曲线y x 的一条切线l,使该曲线及切线与 x=0,x=2所围成的平面图形面积最小。 6、求由y=2-x,y=x2 x 0 及y轴所围成的平面图 形绕x轴旋转所得的旋转体的体积 7、已知生产某产品x单位时,总收入的变化率为
x 2 1
x b
B、a xf (t )dt 是x的函数 D、 xf (tx)dt 是x和t的函数 )
b x 0
b
12、设 f ( x) a 12t dt ,且0 f ( x)dx 1 ,则a=( A、0 B、-1 C、1
D、2
13、设曲线y=f(x),在[a,b]上连续,则曲线y=f(x),x=a, x=b及x轴所围成的图形的面积S=( ) A、 a f ( x)dx C、a f ( x) dx

微积分综合练习题及答案

北京邮电大学高等函授、远程教育04—05学年春季学期《高等数学(微积分)》综合练习题与答案经济管理、电子邮政专业第一部分练习题、判断题设f (x )的定义域为(,1),则f (1的定义域为(0,1). x设f (X )的值域为(,1),则arctgf (x )的值域为(一,一).2 411.12.如果0 113.如果级数n1. 2. 3.e (x 1^是偶函数.4. 1 xy ln—是奇函数.5.1lim (1 x), e6. d22设 f (u)是可导函数,则 一 f (sinx2) 2xcosx 2f (u) dxu sin x 27. 设函数y f (ex)可微,则dy e xf(e x)dx . 9.10.设 df (x)」^dx ,则 f (x)1 xdxf(x)df(x) f(x)df(x).f (x)dx f (x) c .arctgx .1un发散,则nimun0.14.级数X n (x 0)收敛的充分必要条件是 X 1.115.级数1nz 收敛的充分必要条件是p 16.如果a(|)n 1 41,则常数a 1417. —f(x,y) X X X 0y y 0f (x,y 。

)x Xo -18.设 z xy r 「 ZX ,则—— X xy 1 xyx 19. d-f[x,y(x)] dx X f y y (X). 20.设 f 、u 、v 都是可微函数,则 一 f [u(x, y), v(x, y)] f^UX X f£. X 二、单项选择题 1.设 f(x) X, 0 X, 2 2, X 0则f(X)的定义域为 A.( B.[ 2,2)C. (,2] D.[ 2,2]2.设 f(X)的定义域为(,0),则函数f (In X)的定义域是A.(0,B.(0,1]C.(1,D.(0,1)3.设 f(X 1) X (X 1),则 f(X)=A. x(x 1)B. x(x 1)C.(x 1)(x 2)D.X24.下列函数中,奇函数为 A.sin(cosx)B.l n(x J x21)1 XC.tgxlnCf si nxD. esin n5. lim -----nn 1A.0B.1C. 1D.6. 当X X 0时,和 都是无穷小,下列变量中,当X X o 时可能不是无穷小的是A. B. C.D. —( 0)7. 设f(X)1 .-SI nx, Xk,.1xsin —X1,X A.0 B.1 0 且f (X)在X 0处连续,则k C.2D. 18.设f(X)在点X o 可导,则lim h 0 f(X oh) f(X o h) 2hA. f(X 0)B. f (X 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
r
t
o
ax
机动 目录 上页 下页 返回 结束
例2. 计算
其中 为曲线
z
解: 利用轮换对称性 , 有
x2 ds y2 ds z2 ds
y
o
x
I 2 ( x2 y2 z2 )ds
3
4 a3
3
机动 目录 上页 下页 返回 结束
3.计算
其中L为摆线
上对应 t 从 0 到 2 的一段弧.
机动 目录 上页 下页 返回 结束
8. 计算
其中L为上半圆周
沿逆时针方向.
解: P e x sin y, Q e x cos y 2
P e x cos y 2, Q e x cos y
y
x
L AB AB
D 2d x d y AB
a2 0
y L
D
oA a B x
AB : y 0,
L
L
y
C
L
D
L AB
AB
y2 dx
L
dxdy x2 d x π a3 sin3 t d t
AB
0
D
1 πa2
a x2 d x 2
π
2 a3 sin3 t d t
2
a
0
B o Ax
x a cos t
L
:
y
a
sin
t
t :0
1 a2 2 a3 23
1 a2 2a3 2
且都取正向, 问下列计算是否正确 ?
xd y 4ydx l x2 y2
DL o 1 2x
l
1
4 l
xd
y 4yd x
1 4
D
5
d
5
x d y y d x 提示:x2 y2 0时
l x2 y2
(1) Q P
1 4
l
x
d
y
yd x
1 4
D
2
d
x y (2) Q P
2
x y
机动 目录 上页 下页 返回 结束
曲面积分
第一类(
第二类(
对面积 对坐标
) )
转化
二重积分
(1) 统一积分变量 — 代入曲面方程
(2)
积分元素投影第第二一类类::
始终非负 有向投影
(3) 确定二重积分域
机动 目录 上页 下页 返回 结束
2. 基本技巧
(1) 利用对称性简化计算
注意公式使用条件
(2)
利用高斯公式
添加辅助面的技巧
(辅助面一般取平行坐标面的平面)
x
机动 目录 上页 下页 返回 结束
解法2 添加辅助线段 BA,它与L所围区域为D, 则
I LBA(x2 y) d x ( y2 x) d y
y
C
BA(x2 y) d x ( y2 x) d y
D
L
D 0 d x d y
a x2 dx 2 a3
a
3
B o Ax
(利用格林公式)
( x,0) x
由定理 2 可知存在原函数
x
0 dx
1
x
y dy 0 x2 y2
机动 目录 上页 下页 返回 结束

y dy 0 1 y2
π arctan x
2
y
y (1, y) (x, y) o (1,0) ( x,0) x
机动 目录 上页 下页 返回 结束
思考与练习
y
1. 设
2 l
习题课
第五章
曲线与曲面积分的计算
一、 曲线积分的计算法 二、曲面积分的计算法
机动 目录 上页 下页 返回 结束
一、 曲线积分的计算法
1. 基本方法 曲线积分
第一类 ( 对弧长 ) 第二类 ( 对坐标 )
转化
定积分
用参数方程
(1) 统一积分变量 用直角坐标方程 用极坐标方程
第一类: 下小上大 (2) 确定积分上下限 第二类: 下始上终
(3) 两类曲面积分的转化
机动 目录 上页 下页 返回 结束
1. 计算
其中L为圆周
方法1: 用参数方程计算 则
d s x2 y2 d t
原式 = ax ds L
y
t
o
ax
机动 目录 上页 下页 返回 结束
1. 计算
其中L为圆周
方法2: 利用极坐标 ,
ds r2 r2 d a d
原式 = ax ds L
机动 目录 上页 下页 返回 结束
9.求力
沿有向闭曲线 所作的功, 其中
为平面 x + y + z = 1 被三个坐标面所截成三角形的整个
边界,从 z 轴正向看去沿顺时针方向.
提示: 方法1
利用轮换对称性
z B
oC
3 y d x z d y xdz AB
A x
y
3 x d z AB
解:
ห้องสมุดไป่ตู้
原式 a2

t sin t d t
0
a2
t
cos
t
sin
t

0
机动 目录 上页 下页 返回 结束
4. 计算
其中由平面 y = z 截球面
从 z 轴正向看沿逆时针方向.
解: 曲线 的参数方程
z
原式 =
o 1y
x

机动 目录 上页 下页 返回 结束
原式 =
2 1 π 3 1 π
机动 目录 上页 下页 返回 结束
7. 计算 I ( x2 2 y y 2 )d x ( y2 x)d y L
其中L 为以原点为中心, a 为半径的上半圆周顺时针方向。
解法 I ( x2 2 y y 2 )d x ( y2 x)d y L
( x2 2 y)d x ( y2 x)d y y2 dx
2. 设
提示: d u( x, y) ( x4 4xy3 )dx (6x2 y2 5 y4 )dy
( x4 4xy3 )dx (6x2 y2 5 y4 )dy C
x x4 dx y (6x2 y2 5y4 ) dy C
0
0
1 x5 2x2y3 y5 C y
(x, y)
AB BC CA
5
o (x,0) x
第四节 目录 上页 下页 返回 结束
例6. 计算
其中L 是沿逆
时针方向以原点为中心, a 为半径的上半圆周.
解法1 令 P x2 y, Q y2 x, 则
这说明积分与路径无关, 故
y
C
L
I AB (x2 y) d x ( y2 x)dy B o A x
a
a
x2
d
机动 目录 上页 下页 返回 结束
2. 基本技巧 (1) 利用对称性简化计算 ; (2) 利用积分与路径无关的等价条件; (3) 利用格林公式 (注意加辅助线的技巧) ; (4) 利用斯托克斯公式 ; (5) 利用两类曲线积分的联系公式 .
机动 目录 上页 下页 返回 结束
二、曲面积分的计算法
1. 基本方法
22 422
z
o 1y
x
机动 目录 上页 下页 返回 结束
例5. 验证 x d y y d x 在右半平面 ( x > 0 ) 内存在原函
x2 y2
数 , 并求出它.
y
(x, y)
证: 令 P
y x2 y2
,
Q
x2
x
y2

P x
y2 x2 (x2 y2)2
Q y
( x 0 ) o (1,0)
相关文档
最新文档