下册七人数教用课件:第五章相交线与平行线21-22
合集下载
人教版七年级数学下册《平行线的性质》PPT教学课件

c
1
a
2 b
∵ a∥b, ∴ ∠1 = ∠2.
例1 如图,a∥b,∠1 = 60°,则∠2 的度数为 ( D)
A.90°
B.100°
C.110°
D.120°
分析:
a∥b
∠1 = ∠3 ∠2+∠3 = 180°
∠2 = 120°
1a 23
b
能否利用两条直线平行来证明内错角、同旁内角之间 的数量关系呢?
交,标出如图所示的角. 任选一组同位角度量,把结果
填入下表:
c
角 ∠1 ∠2 ∠3 ∠4 度数 角 ∠5 ∠6 ∠7 ∠8 度数
21 a 34
65 b 78
如果改变截线位置,你发现的结论是否还成立?
c 21 a 34 65 b 78
总结 性质1 两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.
1. 如图,如果 AB∥CD∥EF ,那么 ∠BAC +
∠ACE + ∠CEF = ( C )
A. 180°
B. 270°
C. 360°
D. 540°
2. 如图,一条公路两次拐弯的前后两条路互相平行. 若第一次拐弯时∠B 是 142°,则第二次拐弯时∠C 是多少度?为什么? C B
解:∠C = 142°. 两直线平行,内错角相等.
两直线平行, 同旁内角互补.
3
4 2
a b
所以∠2+∠4 =
180°.
总结 性质3:两条平行线被第三条直线所截,同旁内角
互补.
简单说成:两直线平行,同旁内角互补.
c 1
3 42
a
b
请尝试转化 成几何语言.
人教版七年级下册数学教学课件 第五章 相交线与平行线 命题、定理、证明

课程讲授
2 真命题与假命题
归纳: 1.要判断一个命题为真命题,可以用演绎推理加以
论证; 2.要判断一个命题为假命题,只要举出一个例子,
说明该命题不成立.
课程讲授
3 定理与证明
定义:数学中这些命题的正确性是人们在长期实践中
总结出来的,并把它们作为判断其他命题真假的原始 依据,即出发点.这样的真命题视为基本事实.我们也 称它为公理.
理才能作出判断,这个推理过程叫作证明.
证明几何命题的一般步骤:
1.明确命题中的_已__知___和__求__证__; 2.根据题意,_画__出__图__形__,并用数学符号表示已知和求证; 3.经过分析,找出由已知推出_要__证__的__结__论_的途径,写出证明过程.
课程讲授
3 定理与证明
例 已知直线b∥c, a⊥b .求证:
a⊥c.
b
c
证明:∵ a ⊥b(已知), ∴ ∠1=90°(垂直的定义).
1
2
a
∵ b ∥ c(已知),
∴∠1=∠2(两直线平行,同位角相等),
∴ ∠2=∠1=90°(等量代换), ∴ a ⊥ c(垂直的定义).
课程讲授
3 定理与证明
练一练:求证:内错角相等,两直线平行.
已知:如图,直线l3分别与l1,l2交于点A,点B,且∠1=∠2.
求证:l1∥l2. 证明:∵ ∠1=∠2 (已知),
∠3=∠2 (对顶角相等),
l3
1(
)3 B
l2
)2 A
l1
∴ ∠1=∠3 (等量代换).
∴ l1∥l2 (同位角相等,两直线平行).
随堂练习
1.下列句子中,哪些是命题?哪些不是命题? ⑴对顶角相等; 是 ⑵画一个角等于已知角; 不是 ⑶两直线平行,同位角相等; 是 ⑷a,b两条直线平行吗?不是 ⑸温柔的李明明; 不是 ⑹玫瑰花是动物; 是 ⑺若a2=4,求a的值; 不是 ⑻若a2= b2,则a=b. 是
人教版七年级数学下册《相交线》相交线与平行线PPT精品教学课件

1
因为∠1+∠2=180°(邻补角定义);
所以∠2=180°-∠1=140°;
C
又因为∠2=∠4(对顶角相等);
所以∠4=140°
2
D
3 O
4
B
两条直线相交,最多有 三条直线相交,最多有 四条直线相交,最多有 ……
1
1+2 1+2+3
个交点; 个交点; 个交点;
n条直线相交,最多有
若两角互为邻补角,则这两角相加等于180°(互补)。
证明:因为∠1与∠2互为邻补角,
A
所以∠1+∠2=180°
1
同理得:∠2+∠3=180°
∠3+∠4=180° C
∠1+∠4=180°
2
3 O4
D B
下列各图中,∠1 、∠2是邻补角吗?
1 2
12
12
12
12
观察图中的∠1和∠3。
∠1与∠3的顶点所在的位置有什么特点?
邻补角的定义:∠1和∠2有一条公共边OA,它们的另一边互为反 向延长线(∠1与∠2互补),具有这种关系的两个角,互为邻补角。
图中还有哪些邻补角?
∠1与∠4 ∠2与∠3 ∠3与∠4
A
2
D
1
3
O4
C
B
刚才我们一起探究了∠1与∠2 的位置关系,那么∠1与∠2有怎样的数
量关系呢?
A
2
D
1
O
C
B
∠1+∠2=180°
对顶角; ……
n条直线相交于一点,有
n(n-1) ÷2
种组合方式,
产生 n(n-1) 组对顶角;
那么交点重合是否对对顶角的组数产生影响? 不影响
因为∠1+∠2=180°(邻补角定义);
所以∠2=180°-∠1=140°;
C
又因为∠2=∠4(对顶角相等);
所以∠4=140°
2
D
3 O
4
B
两条直线相交,最多有 三条直线相交,最多有 四条直线相交,最多有 ……
1
1+2 1+2+3
个交点; 个交点; 个交点;
n条直线相交,最多有
若两角互为邻补角,则这两角相加等于180°(互补)。
证明:因为∠1与∠2互为邻补角,
A
所以∠1+∠2=180°
1
同理得:∠2+∠3=180°
∠3+∠4=180° C
∠1+∠4=180°
2
3 O4
D B
下列各图中,∠1 、∠2是邻补角吗?
1 2
12
12
12
12
观察图中的∠1和∠3。
∠1与∠3的顶点所在的位置有什么特点?
邻补角的定义:∠1和∠2有一条公共边OA,它们的另一边互为反 向延长线(∠1与∠2互补),具有这种关系的两个角,互为邻补角。
图中还有哪些邻补角?
∠1与∠4 ∠2与∠3 ∠3与∠4
A
2
D
1
3
O4
C
B
刚才我们一起探究了∠1与∠2 的位置关系,那么∠1与∠2有怎样的数
量关系呢?
A
2
D
1
O
C
B
∠1+∠2=180°
对顶角; ……
n条直线相交于一点,有
n(n-1) ÷2
种组合方式,
产生 n(n-1) 组对顶角;
那么交点重合是否对对顶角的组数产生影响? 不影响
人教版初一数学7年级下册 第5章(相交线与平行线)相交线 课件(共20张PPT)

⑷ 研究⑴~⑶小题中直线条数与对顶角的对数之间的
关系,猜测:若有n条直线相交于一点,则可形成
n(n-1)对对顶角;
⑸ 若有10条直线相交于一点,则可形成 90 对对顶角.
如图,若∠1:∠2=2:7 ,求各角的度数。
解:设∠1=2x°,则∠2=7x °
根据邻补角的定义,得
a
2x+7x=180 x=20
如图,直线AB、CD、EF相交,若∠1 +∠5=180°, 找出图中与∠1 相等的角.
解:∵ ∠1= ∠3(对顶角相等)
∠5+∠8=180 °且∠1 +∠5=180°
∴∠8= ∠1 ∵ ∠8= ∠6(对顶角相等)A
∴∠6= ∠1.
C
2 13
4 56
87
F
如图,直线AB,CD相交于点O, ∠EOC=70°, OA平分∠EOC,求∠BOD的度数.
(1)两条直线相交,形成了几个角?
A
D
O
C
B
(2)将这些角两两配对,共能组成几对角,
各对角存在怎样的位置关系?根据这种位置关系
将它们分类.
邻补角
A
2
D
1
3
O4
C
B
如图,∠1与∠2有一条公共边OA,它们
的另一边互为反向延长线,具有这种关系的两
个角,互为邻补角.
一、邻补角的概念 邻补角:如果两个角有一条公共边,它们的另 一边互为_反__向__延__长__线___,那么这两个角互为邻 补角.图中∠1的邻补角有__∠__2_,_∠__3___.
解:∵OA平分∠EOC,
E
D
∴∠AOC= Leabharlann ∠EOC=35°,2A
关系,猜测:若有n条直线相交于一点,则可形成
n(n-1)对对顶角;
⑸ 若有10条直线相交于一点,则可形成 90 对对顶角.
如图,若∠1:∠2=2:7 ,求各角的度数。
解:设∠1=2x°,则∠2=7x °
根据邻补角的定义,得
a
2x+7x=180 x=20
如图,直线AB、CD、EF相交,若∠1 +∠5=180°, 找出图中与∠1 相等的角.
解:∵ ∠1= ∠3(对顶角相等)
∠5+∠8=180 °且∠1 +∠5=180°
∴∠8= ∠1 ∵ ∠8= ∠6(对顶角相等)A
∴∠6= ∠1.
C
2 13
4 56
87
F
如图,直线AB,CD相交于点O, ∠EOC=70°, OA平分∠EOC,求∠BOD的度数.
(1)两条直线相交,形成了几个角?
A
D
O
C
B
(2)将这些角两两配对,共能组成几对角,
各对角存在怎样的位置关系?根据这种位置关系
将它们分类.
邻补角
A
2
D
1
3
O4
C
B
如图,∠1与∠2有一条公共边OA,它们
的另一边互为反向延长线,具有这种关系的两
个角,互为邻补角.
一、邻补角的概念 邻补角:如果两个角有一条公共边,它们的另 一边互为_反__向__延__长__线___,那么这两个角互为邻 补角.图中∠1的邻补角有__∠__2_,_∠__3___.
解:∵OA平分∠EOC,
E
D
∴∠AOC= Leabharlann ∠EOC=35°,2A
人教版初一数学7年级下册 第5章(相交线与平行线)平行线 课件(共15张PPT)

如图:三条直线AB、CD、EF。如果AB//EF ,CD//EF, 那么直线AB与CD可能相交吗?假设AB与CD相交, A NhomakorabeaB
设AB与CD相交于P
C
P D
E
F
因为AB//EF,CD//EF
于是过点P就有两条直线AB
CD都与EF平行。
根据平行公理,这是不可能的
也就是说,AB与CD不能相交,
只能平行。
五、平行公理的推论
A、B、C三点 在同一直线上 ;
( 经过直线外一点,有且只有一条直线与这条直线平行)
A··B C·
D
E
随堂即练
(2)如图,因为AB // CD,CD // EF(已知), 所以___A_B____ // ____E_F____.
( 如果两条直线都和第三条直线平行,那么这两条直 线也互相平行)
A
B
C
1、下列说法正确的个数是( B ) (1)两条直线不相交就平行。 (2)在同一平面内,两条平行的直线有且只有一个交点 (3)过一点有且只有一条直线与已知直线平行 (4)平行于同一直线的两条直线互相平行 (5)两直线的位置关系只有相交与平行
A、0 B、1 C、2 D、4
2、下列推理正确的是( C )
(如果两条直线都与第三条直线平行,那么这 两条直线互相平行).
因为 c∥d,所以 a ∥d
(如果两条直线都与第三条直线平行,那么这两 条直线互相平行).
本节课你的收获是什么?
(1) 平行线的定义; (2)平行线的表示方法; (3)平行线的画法。 (4)平行线公理 (5)平行线公理的推论。
温故而知新
如果两条直线都和第三条直线平行, 那么这两条直线也互相平行.
初中数学人教版七年级下册第五章 相交线与平行线5.1.1相交课件(共25张PPT)

1.如图,直线AB,CD相交于点O,∠1+∠2=120°,∠3=
125°,则∠2的度数是(
D )
(第3题)
A.37.5°
B.75°
C.50°
D.65°
【点拨】
因为∠3=125°,所以∠1=180°-125°=55°,因为∠1
+∠2=120°,所以∠2=120°-55°=65°,故选D.
2.如图,已知直线AB,CD相交于点O,且OE平分∠BOC.
6.下列说法正确的是(
B )
A.相等的角是对顶角
B.邻补角一定互补
C.互补的两个角一定是邻补角
D.两个角不是对顶角,则这两个角不相等
利用邻补角的定义求角度
9.[母题:教材P8习题T2]如图,O是直线AB上一点,OD平分
∠AOC,OE平分∠BOC.
(1)图中∠BOD的邻补角为 ∠AOD
∠AOE的邻补角为 ∠BOE
【点拨】
因为∠AOD=∠1=80°,所以∠AOE=
∠AOD-∠2=80°-30°=50°.
故选B.
(第6题)
5.如图,直线AB,CD相交于点O,OE是∠BOD内的一条射线.
(1)∠DOE的邻补角是 ∠COE
的邻补角是 ∠BOD和∠AOC
,∠AOD
;
(2)写出图中的对顶角.
【解】对顶角有∠AOD和∠BOC,∠AOC和∠BOD.
于点O.
(1)写出∠COE的邻补角;
【解】∠COE的邻补角为∠COF和∠EOD.
(2)分别写出∠COE和∠BOE的对顶角;
【解】∠COE和∠BOE的对顶角分别为
∠DOF和∠AOF.
(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度
人教版七年级数学下册 5.1.1相交线 课件(共18张PPT)
变式2:若∠2是∠1的3倍,求∠3的度数? 解:设∠1=x°,则∠2=3x°
根据邻补角的定义,得 x+3x=180 所以 x=45 则∠1=45°
根据对顶角相等,可得 ∠3=∠1=45°
今天我们学了什么?
邻补角、对顶角概念 邻补角、对顶角性质
今天我们学了什么?
两直线相交
C
2
B
1
3
4
A
D
位置 特征
1、两直线相交,形成小于平角的角有哪几个?
2、以∠1和∠2为例分析这两个角存在怎样的
位置关系和大小关系?像这样的角还有哪些?
3、以∠1和∠3为例分析这两个角存在怎样的
位置关系?像这样的角还有哪些?
C
2
B
1 o3
4
A
D
动手画出两条相交直线
1、两条直线相交,形成的小于平角的角
有哪几个?
C
2
B
1
o3
4
A
1 2
(1)不是
1 2
(2) 是
1 2
(3) 不是
1
2
(4) 不是
2 1
(5)是
7、你能得到对顶角∠1和∠3的大小关系吗?
C
2
B
动动手:(1)、用量角器测
1
o3
量对顶角∠1和∠3,比较他们
4
的大小
A
D
(2)将对顶角∠1和∠3
进行翻折,比较它们的大小?
4、你能得到对顶角∠1和∠3的大小关系吗?
猜猜看:若直线CD绕点O转 C
例、如图,直线a、b相交,∠1=40°,求
∠2、∠3、∠4的度数。
b
解:由邻补角的定义可知 ∠2=180°-∠1
平行线的性质 课件 2022-2023学年人教版七年级数学下册
b
2
总结归纳
性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
符号语言:
∵a∥b,(已知)
∴∠2=∠3.
a
1
3
b
2
(两直线平行,内错角相等)
c
三、平行线的基本性质3
思考:类似地,已知两直线平行,能否得到同旁内角
之间的数量关系? 如图,已知a//b,那么2与4有什么关系呢?为什么?
a
1
4
b
2
(两直线平行,同旁内角互补) c
平行线的性质
讨论平行线三个性质的条件是什么?结论是什么?它与
判定有什么区别?
两直线的 位置关系 (平行)
性质 判定
角的 数量 关系
同位角相等 内错角相等 同旁内角互补
性质:已知平行的关系得角的关系.知平行,用性质. 判定:已知角的关系得平行的关系.证平行,用判定.
2
D
F
探究新知
思考在上一节中,我们利用“同位角相等,两直线平行
线”推出了“内错角相等,两直线平行线”,类似地,已知两
直线平行,同位角相等, 能否得到内错角之间的数量关系?
如图,由a//b,可得出1=2吗?
c
∵ a//b(已知),
a
∴ 2=3(两直线平行,同位角相等)
3 1
∵ 1=3(对顶角相等) ∴1=2.
A.48°
B.66°
C.72°
D.78°
C1
D1
E AD
36°
B
C
当堂练习
1.如图,已知平行线AB、CD被直线AE所截.
(1)从 ∠1=110o可以知道∠2 是多少度吗?为什么?
人教版七年级数学下册 (命题、定理、证明)相交线与平行线教学课件
题设:在同一平面内,一条直线垂直于两条平行线中的一条;
结论:这条直线也垂直于两条平行线中的另一条.
思考 定理在同一平面内,如果一条直线垂直于两条平行线中的一条, 那么它也垂直于另一条. (4)你能结合图形用几何语言表述命题的题设和结论吗?
已知:b∥c, a⊥b .求证:a⊥c.
证明:∵ a⊥b(已知), ∴ ∠1=90º (垂直的定义). 又 ∵ b∥c(已知), ∴ ∠1=∠2(两直线平行,同位角相等).
可以举出如下反例: 如图,OC 是∠AOB 的平分线, ∠1=∠2,但它们不是对顶角.
练习
1. 在下面的括号内,填上推理的根据. 如图,∠A+∠B=180°,求证∠C +∠D =180°. 证明:∵ ∠A+∠B =180°, ∴ AD∥BC(__________________________). ∴ ∠C +∠D =180°(________________________).
第五章 相交线与平行线
命题、定理、证明
教学目标 了解命题的概念以及命题的构成 ( 如果……那么……的形式 ) . 知道什么是真命题和假命题. 理解什么是定理和证明. 知道如何判断一个命题的真假.
教学重点 对命题结构的认识. 理解证明要步步有据.
教学难点 表述推理过程.
比较两组语句的区别
A组
1.对顶角相等; 2.两直线平行,同位角相等; 3.玫瑰花是动物; 4.若a²=b²,则 a=b.
复习巩固
4. 如图,a∥b,c,d 是截线,∠1=80°,∠5=70°. ∠2,∠3, ∠4各是多少度?为什么?
复习巩固
5. 如图,一条公路的两侧铺设了两条平行管道,如果公路一侧 铺设的管道与纵向联通管道的角度为120°,那么,为了使管道 对接,另一侧应以什么角度铺设纵向联通管道?为什么?
结论:这条直线也垂直于两条平行线中的另一条.
思考 定理在同一平面内,如果一条直线垂直于两条平行线中的一条, 那么它也垂直于另一条. (4)你能结合图形用几何语言表述命题的题设和结论吗?
已知:b∥c, a⊥b .求证:a⊥c.
证明:∵ a⊥b(已知), ∴ ∠1=90º (垂直的定义). 又 ∵ b∥c(已知), ∴ ∠1=∠2(两直线平行,同位角相等).
可以举出如下反例: 如图,OC 是∠AOB 的平分线, ∠1=∠2,但它们不是对顶角.
练习
1. 在下面的括号内,填上推理的根据. 如图,∠A+∠B=180°,求证∠C +∠D =180°. 证明:∵ ∠A+∠B =180°, ∴ AD∥BC(__________________________). ∴ ∠C +∠D =180°(________________________).
第五章 相交线与平行线
命题、定理、证明
教学目标 了解命题的概念以及命题的构成 ( 如果……那么……的形式 ) . 知道什么是真命题和假命题. 理解什么是定理和证明. 知道如何判断一个命题的真假.
教学重点 对命题结构的认识. 理解证明要步步有据.
教学难点 表述推理过程.
比较两组语句的区别
A组
1.对顶角相等; 2.两直线平行,同位角相等; 3.玫瑰花是动物; 4.若a²=b²,则 a=b.
复习巩固
4. 如图,a∥b,c,d 是截线,∠1=80°,∠5=70°. ∠2,∠3, ∠4各是多少度?为什么?
复习巩固
5. 如图,一条公路的两侧铺设了两条平行管道,如果公路一侧 铺设的管道与纵向联通管道的角度为120°,那么,为了使管道 对接,另一侧应以什么角度铺设纵向联通管道?为什么?
人教版初一数学7年级下册 第5章(相交线与平行线)平行线 课件(共42张ppt)
③百米直跑道的两边.
A.3个
B.2个
C.1个
D.0个
2 下列说法中,正确的有( B ) ①在同一平面内不相交的两条线段必平行; ②在同一平面内不相交的两条直线必平行; ③在同一平面内不平行的两条线段必相交; ④在同一平面内不平行的两条直线必相交. A.1个 B.2个 C.3个 D.4个
3 a,b,c是平面内任意三条直线,交点可以有 ( B) A.1个或2个或3个 B.0个或1个或2个或3个 C.1个或2个 D.以上都不对
例6 如图,P是三角形ABC内部的任意一点. (1)过P点向左画射线PM∥BC交AB于点M,过 P点向右画射线PN∥BC交AC于点N; (2)在(1)中画出的图形中,∠MPN的度数一定等 于180°,你能说明其中的道理吗?
导引:在(1)中,按照过直线外一点画已知直线的平行线 的方法画图即可.在(2)中,要说明∠MPN=180°, 可转化为说明点M, P, N在同一条直线上.
(来自《教材》)
解:(1)如图(1)所示. (2)如图(2)所示. (1)
(来自《教材》)
(2)
2 在如图所示的各图形中,过点M画PQ∥AB. 解:略.
知识点 3 平行线的基本事实1:确定性
(1) 经过点C可以画几条直 a
线与直线AB平行? A
(2) 过点D画一条直线与
AB平行.
b
C
B D
(3) 通过画图,你发
解:与棱AD平行的棱有A′D′,B′C′,BC, 记作AD∥A′D′,AD∥B′C′,AD∥BC. 与棱D′C′平行的棱有DC,AB,A′B′, 记作D′C′∥DC, D′C′∥AB, D′C′∥A′B′.
总结
找平行线要注意两点: (1)在同一平面内; (2)不相交(无限延伸).