离散数学---谓词公式与解释

合集下载

《离散数学》谓词逻辑

《离散数学》谓词逻辑

§3.5 前束范式
§3.6 谓词逻辑的推理
4
谓词与量词
个体词(individual)是一个命题里表示思维
对象的词,表示独立存在的具体或抽象的客体
具体的、确定的个体词称为个体常项,一般用
a, b, c 表示
抽象的、不确定的个体词称为个体变项,一般
用 x, y, z 表示
个体变项的取值范围称作个体域或论域
那么在解释2下该命题是真命题。

24
谓词公式及分类
类似于命题逻辑,也可以对谓词逻辑
公式进行分类:
设 A 为一个谓词公式,若 A 在任何解
释下真值均为真,则称 A 为普遍有效
的公式或逻辑有效式(logically valid
formula)

(x)
(P(x)∨P(x))
(x) P(x) P(y)
第三章 谓词逻辑
《离散数学及应用》
第三章 谓词逻辑
苏格拉底三段论:
凡是人都是要死的。
苏格拉底是人。
所以苏格拉底是要死的。
p∧q r
重言式?正确的推理?
2
第三章 谓词逻辑
为了克服命题逻辑的局限性,引入了
3
谓词和量词对原子命题和命题间的相
互关系做进一步的剖析,从而产生了
为谓词。这是一元(目)谓词,以
P(x), Q(x), …表示。

Human
(Socrates)
Mortal (Socrates)
7
谓词与量词
如果在命题里的个体词多于一个,那
么表示这几个个体词间的关系的词称
作谓词。这是多元(目)谓词,有 n
个个体的谓词 P(x1, …, xn) 称 n 元(目)

离散数学的谓词逻辑详解

离散数学的谓词逻辑详解
两种量词: 全称量词和存在量词.
全称量词:
1.全称量词 : (任意,所有) x: “对一切x”,“对所有的x”, “对任一x”
如: x P(x) ┐ x P(x) x ┐ P(x)
“对一切x,P(x)是真” “并非对一切x,P(x)是真” “对一切x, ┐ P(x) 是真”
如: “ 所有人都是要死的”
于是令 M(x):x是人。 (1) x(M(x)→D(x)) (2) x (M(x)∧ ┐G(x))
命题符号化(翻译):
将汉语(或其他自然语言)语句翻译成逻辑表 达式,这在数学、逻辑编程、人工智能、软 件工程以及许多其他学科中都是一项重要的 任务。翻译的目的是生成简单而有用的逻辑 表达式。
命题符号化:
1.谓词与个体词
将简单命题分解成个体与谓词这样两个组成部分。谓词,通 常是用来描述个体的性质或特征,或者个体之间的关系。谓 词逻辑,是命题逻辑的扩充与发展 。
例1:下面两个命题 1. 张华是学生 2. 李明是学生
a: 张华 b:李明 H:是学生 ,则 H(x):x是学生
1,2可分别表示成 H(a) ,H(b). 这样表示就揭示了两命题间有相同的谓语这一特征。
变元的约束
例1 : 令 P(x, y):“ x<y ”, Q(x):x是有理数; F(x):x可以表示为分数。
判断下列式子那些是命题函数,那些是命题?
P(x, y)
P(x, y)∧Q(x)
Q(x) → F(x) x(Q(x)→ F(x)) x Q(x)→ F(x)
自由变元与约束变元
[定义] 紧接于量词之后最小的子公式称为量词的辖 域.(量词的辖域是紧接其后的公式,除非辖域是个 原子公式,否则应在公式的两侧插入圆括号。)

2015离散数学谓词量词、变元的约束、翻译

2015离散数学谓词量词、变元的约束、翻译

(1)
2 是无理数 .
(2) x是有理数. (3) 小王与小李同岁. (4) x 与y具有同学关系.
(1) 凡人都呼吸 . (2) 所有的人都长着黑头发. (3) 兔子比乌龟跑得快. (4) ቤተ መጻሕፍቲ ባይዱ美国留学的学生未必都是亚洲人.
Universal Quantifier
The universal quantification of P(x) is the statement
定义1:约束变元 谓词公式中 , ,后面所跟的 x ,称为相应 量词的指导变元或作用变元或约束变元。 定义2:量词作用域(量词辖域)
给 定 谓 词 公 式 中 , 形 式 为 (x)P(x) , (x) P(x)中的P(x)称为相应量词的作用域(辖域)。
定义3:自由变元 在谓词公式中,除去约束变元以外所出现的 变元,称作自由变元。
with a certain property. Such statements are expressed using existential quantification. With existential quantification, we form a proposition that is true if and only if P(x) is true for at least one value of x in the domain.
Truth value?
We read ∀xP(x) as “for all xP(x)” or “for every xP(x).”An
element for which P(x) is false is called a counterexample of ∀xP(x).

离散数学第2章 谓词逻辑

离散数学第2章 谓词逻辑
命题“凡人要死。”符号化为:(x)F (x) ⑵ 令G(x):x是研究生。 命题“有的人是研究生。”符号化为:(x)G(x)
在命题函数前加上量词(x)和(x)分别叫做个体变元x 被全称量化和存在量化。一般地说,命题函数不是命题, 如果对命题函数中所有命题变元进行全称量化或存在量化, 该函数就变成了命题。这一结论在例2.3中得到验证。
为假。 ⑵ 如果5大于3,则2大于6。 解:设G(x,y): x大于y a:5,b:3,c:2,d:6 该命题符号化为:G(a,b)→G(c,d) G(a,b)表示5大于3,它是真命题。G(c,d)表示2大于6,
ห้องสมุดไป่ตู้这是个假命题。所以G(a,b)→G(c,d)为假。
(3) 2 是无理数, 而 3 是有理数 解 :设F(x): x是无理数, G(x): x是有理数 符号化为 F( 2) G( 3) 真值为 0 (4) 如果2>3,则3<4 解:设 F(x,y): x>y, G(x,y): x<y, 符号化为 F(2,3)G(3,4) 真值为1
谓词:刻划个体性质或个体之间相互关系的模式叫做谓词。谓 词常用大写英文字母表示,叫做谓词标识符。
例如可以用F,G,H表示上面三个命题中谓词: F:„是优秀共产党员。 G:„比„高。 H:„坐在„和„的中间。
第2章 谓词逻辑
一元谓词:与一个个体相关联的谓词。如上例中的F。 二元谓词:与两个个体相关联的谓词。如上例中的G。 三元谓词:与三个个体相关联的谓词。如上例中的H。
返回章目录
第2章 谓词逻辑
课外作业
• 教材P59-60页: 练习题(需要做在练习本上) (1) (2) a)、c) 、d)、e)、 f)、i)、k)、l)
返回章目录

离散数学 谓词逻辑

离散数学 谓词逻辑

例1 给定解释I1如下:
(1)个体域为自然数集合N; (2)N中的特定元素a=0; (3)F(x,y):x大于或等于y. 在解释I1下,求下列各式的真值: (1)(∀x)F(x,a);(2)(∀x∃y)F(x,y) 解 在解释I1下,公式分别解释为: (1)任何自然数都大于或等于零, 为真命题.
(2)对任一自然数x,都存在一自然数y使得x≥y, 为真命题.
4
例子
[例2-1.1] 张明是位大学生。 解:设S(x):x是大学生,c:张明, 一元谓词:表 则原句的谓词形式为S(c)。 示客体性质 [例2-1.2]我坐在张三和李四中间。 解:设S(x,y,z):x坐在y和z之间,i:我,z:张 三,l:李四, 多元谓词:表 示客体间关系 则原句的谓词形式为S(i,z,l)。
★从以上两命题的符号化可以看出,同一命题在不同个体域下 符号化的形式可能不同。
11
这里,M(x)称为特性谓词。应该注意 的是,全称量词和存在量词符号化时,引入 特性谓词时的形式是不同的。 用全称量词 符号化时,特性谓词作为条 件式的前件; 用存在量词符号化时则作为合取式的一 项。
12
对于任一给定的实数x,都存在着一个实数y,使得 x+y=0。 如果取个体域为实数集合 ∀ x ∃ y H(x, y ) 然而 ∃ y ∀ x H(x, y ): 存在着一个少数y,对于任一实数x,使得x+y=0
3
谓词的表示
客体词有两种:客体常元和客体变元。客体常 元表示具体的或特定的客体,一般用小写字母 a、b、c等表示;表示抽象的或泛指的客体的 词称为客体变元,常用小写字母x、y、z等表 示。 谓词,通常用大写的字母A、B、C等表示。
谓词填式:单独一个谓词不是完整的命题, 把谓词字母后填以客体所得的式子。

离散数学第2章 谓词逻辑

离散数学第2章 谓词逻辑
例4:某些人对某些食物过敏。 设F(x,y):x对y过敏。 M(x):x是人。 G(y):y是食物。 (x) (y) (M(x) ∧ G(y) ∧ F(x,y))
33
§3 谓词公式与翻译
例5:凡是实数不是大于0,就是等于0或者小于0。 设R(x):x是实数。 P(x,0):x大于0。 Q(x,0):x等于0。 S(x,0):x小于0。 (x) (R(x) → ( P(x,0) Q(x,0) S(x,0) ) )
例:所有的人都是会死的。
设M(x):x是人。S(x):x是会死的。
个体域约定为{人类}:(x) (S(x))
全总个体域:
(x) ( M(x) → S(x) )
例:有一些人是不怕死的。
设M(x):x是人。F(x):x是不怕死的。
个体域约定为{人类}:(x) (F(x))
全总个体域:
(x) ( M(x) ∧ F(x) )
定义:在反映判断的句子中,用以刻划客体的性质或 关系的即是谓词。
5
§1 谓词的概念与表示法
客体,是指可以独立存在的事物,它可以是具体 的,也可以是抽象的,如张明,计算机,精神等。
表示特定的个体,称为客体常元,以a,b,c… 或带下标的ai,bi,ci…表示;
表示不确定的个体,称为客体变元,以x,y, z…或xi,yi,zi…表示。
4. 谓词中通常只写客体变元,因此不是命题,仅当 所有客体变元做出具体指定时,谓词才成为命题, 才有真值。
12
第二章 谓词逻辑
§1 谓词的概念与表示法 §2 命题函数与量词 §3 谓词公式与翻译 §4 变元的约束 §5 谓词演算的等价式与蕴含式 §6 前束范式 §7 谓词演算的推理理论
13
§2 命题函数与量词

离散数学(2.3谓词公式与翻译)

离散数学(Discrete Mathematics)
1
第二章 谓词逻辑(Predicate Logic)
2.1谓词的概念与表示(Predicate and its expression) 2.2命题函数与量词(Propositional functions & Quantifiers) 2.3谓词公式与翻译(Predicate formulae) 2.4变元的约束(Bound of variable) 2.5谓词演算的等价式与蕴含式(Equivalences &
implications of predicate calculus)
2.6前束范式(Prenex normal form)
2.7谓词演算的推理理论(Inference theory of predicate calculus)
2
第二章 谓词逻辑(Predicate Logic)
2.3谓词公式与翻译(Predicate formulae)
5
第二章 谓词逻辑(Predicate Logic)
2.2命题函数与量词(Propositional functions &
Quantifiers)
• 例2:在谓词逻辑中将下列命题符号化. (1)所有运动员都钦佩某些教练. (2)有些运动员不钦佩教练. 设:L(x):x是运动员 J(y):y是教练 A(x,y):x钦佩y (1) (x)(L(x) (y)(J(y)∧A(x,y)))
(Q(δ,0)∧(Q(δ , x a)Q(ε,
f ( x) f ()a ) ). ))
8
第二章 谓词逻辑(Predicate Logic)
2.2命题函数与量词(Propositional functions &

离散数学-谓词逻辑


2-2.6 命题的符号化
在谓词演算中,命题的符号化比较复杂,命题的 符号表达式与论域有关系。例如 1.每个自然数都是整数。 (1).如果论域是自然数集合 N,令 I(x):x 是整数,则命题的表达式为 xI(x) (2).如果论域扩大为全总个体域时,上述表达式xI(x)表示“所有客体都是整数”,显然这是假的命题,此 表达式已经不能表达原命题了。因此需要添加谓词 N(x):x 是自然数,用于表明 x 的特性,于是命题的符 号表达式为: x(N(x)→I(x)) 4
则 E(a)∈{T,F}。
• 2-2.2 原子谓词公式
定义:称 n 元谓词 P(x1,x2,...,xn)为原子谓词公式。例如 P、Q(x) 、 A(x,f(x))、B(x,y,a) 都是原子谓词 公式。
2-2.3 谓词合式公式 (WFF)(Well Formed Formulas)
定义:谓词合式公式递归定义如下: 1.原子谓词公式是合式公式。 2.如果 A 是合式公式,则A 也是合式公式。 3.如果 A、B 是合式公式,则(A∧B)、(A∨B)、(A→B)、(AB)都是合式公式。 4.如果 A 是合式公式,x 是A中的任何客体变元,则xA和xA也是合式公式。 5.只有有限次地按规则(1)至(4)求得的公式才是合式公式。 谓词合式公式也叫谓词公式,简称公式。 下面都是合式公式: P、(P→Q)、(Q(x)∧P)、x(A(x)→B(x))、xC(x) 而下面都不是合式公式: xyP(x) 、P(x)∧Q(x)x • • 为了方便,最外层括号可以省略,但是若量词后边有括号,则此括号不能省。 注意:公式x(A(x)→B(x))中x 后边的括号不是最外层括号,所以不可以省略。
2-2.4 量词的作用域(辖域)
定义:在谓词公式中,量词的作用范围称为量词的作用域,也叫量词的辖域。 • • 例如 xA(x)中x 的辖域为 A(x). x((P(x)∧Q(x))→yR(x,y))中 x 的辖域是((P(x)∧Q(x))→yR(x,y)) y 的辖域为 R(x,y)。 • 一般地, • • • 如果量词后边只是一个原子谓词公式时,该量词的辖域就是此原子谓词公式。 如果量词后边是括号,则此括号所表示的区域就是该量词的辖域。 如果多个量词紧挨着出现,则后边的量词及其辖域就是前边量词的辖域。 xyz(A(x,y)→B(x,y,z))∧C(t)

离散数学第五章__谓词逻辑详述


5.2.2 约束变元与自由变元
定义2.3.1 给定一个谓词公式A,其中有一部 分公式形如(x)B(x)或(x)B(x),则称它为A的 x约束部分,称B(x)为相应量词的作用域或辖 域。在辖域中,x的所有出现称为约束出现,x 称为约束变元; B(x)中不是约束出现的其它个 体变元的出现称为自由出现,这些个体变元称 为自由变元。
5.1 个体、谓词和量词
在命题逻辑中,命题是具有真假意义的陈 述句。从语法上分析,一个陈述句由主语和 谓语两部分组成。在谓词逻辑中,为揭示命 题内部结构及其不同命题的内部结构关系, 就按照这两部分对命题进行分析,并且把主 语称为个体或客体,把谓语称为谓词。
1.个体、谓词和命题的谓词形式
定义5.1.1 在原子命题中,所描述的对象称为个 体;用以描述个体的性质或个体间关系的部分, 称为谓词。
称为谓词逻辑的翻译或符号化;反之亦然。 一般说来,符号化的步骤如下: ①正确理解给定命题。必要时把命题改叙,使其
中每个原子命题、原子命题之间的关系能明显表 达出来。
②把每个原子命题分解成个体、谓词和量词; 在全总论域讨论时,要给出特性谓词。
③找出恰当量词。应注意全称量词(x)后跟条 件式,存在量词(x)后跟合取式。
对于给定的命题,当用表示其个体的小写 字母和表示其谓词的大写字母来表示时,规定 把小写字母写在大写字母右侧的圆括号( )内。
例如,在命题“张明是位大学生”中, “张明”是个体,“是位大学生”是谓词,它 刻划了“张明”的性质。设S:是位大学生,c: 张明,则“张明是位大学生”可表示为
S(c),
或者写成
通常,把一个n元谓词中的每个个体的论域综合在一 起作为它的论域,称为n元谓词的全总论域。定义了全总 论域,为深入研究命题提供了方便。

离散数学及应用 第3版 第2章 谓词逻辑


2.1个体词、谓词与量词
(3)∃x∀yP(x,y),其中D = {1,2,3},谓词P(x,y) : x = y 解:∃x∀yP(x,y)=∀yP(1,y)∨∀yP(2,y)∨∀yP(3,y)
=(P(1,1)∧P(1,2)∧P(1,3))∨(P(2,1)∧P(2,2)∧P(2,3)) ∨(P(3,1)∧P(3,2)∧P(3,3)) =(1∧0∧0)∨(0∧1∧0)∨(0∧0∧1) =0
2.1个体词、谓词与量词
存在量词: 表示存在, 有的, 至少有一个等 x 表示在个体域中存在x 设P (x)是以D为个体域的一元谓词, xP(x) = 0 :对任意的x ∈ D,P(x)取值0 xP(x) = 1 :存在a ∈ D,P(a)取值1
➢ 设D = {a1,···,an}是有限个体域, ∃xP(x) = P(a1)∨P(a2)∨···∨P(an)
所以,∃x∀yP(x,y)与∀y∃xP(x,y)值不相同。
2.1个体词、谓词与量词
例2.3 在谓词逻辑中将下列命题符号化 (1) 人人都爱美; (2) 有人用左手写字 分别取二个不同的个体域 (a) D为人类集合, (b) D为全总个体域 .
(a) (1) 设G(x): x爱美, 符号化为 x G(x) (2) 设T(x): x用左手写字, 符号化为 xT(x)
(b) 设F(x): x为人,G(x): x爱美 T(x): x用左手写字 (1) x (F(x)G(x)) (2) x (F(x)T(x))
这是两个基本公式, 注意它们的使用
2.1个体词、谓词与量词
例2.4 在谓词逻辑中将下列命题符号化
(1) 正数都大于负数
(2) 有的无理数大于有的有理数
注意: 题目中没给个体域, 使用全总个体域
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

否则应在所辖公式的两侧插入圆括号。
量词辖域举例
西 华
例如:x F(x)G(x,y)
大 学
解:x的辖域仅F(x),x是指导变元,变
元x第一次出现是约束出现,第二次出
现是自由出现,y的出现是自由出现。
所以第一个x是约束变元,第二个x是
自由变元,本质上这两个x的含义是不
同的;而y仅是自由变元。
换名规则
பைடு நூலகம்
西华设A0是含命题变元p1, p2, …, pn的命题逻辑公式,
大 学
A1,
A2,
…,
An是一阶逻辑公式,用Ai(1
i

n)
替换A0中的pi的处处出现所得到的一阶逻辑公式
A称为命题逻辑公式A0的替换实例。
定理:命题逻辑中的永真式的任意替换实例在一
阶逻辑中都是永真式;命题逻辑中的矛盾式的任
意替换实例在一阶逻辑中都是矛盾式 。
§2.2 一阶逻辑合式公式及解释
• 符号体系:
1. 西华2.
个体常元符号:a,b,c,……a1,a2,a3,…… 个体变元:x,y,z,……,x1,x2,x3,……
大3. 学
4.
函数符号:f,g,h,……f1,f2,f3,…… 谓词符号:F,G,H,……
5. 量词符号: 6. 联结词: ∧∨ →
公式类型举例
西 判断下列公式的类型:

大 学
1)
x
F(x)

(x

yG(x,y)


x
F(x)
)
2) x F(x) x F(x)
3) x y F(x,y) y x F(x,y)
1) x F(x) (x yG(x,y) x F(x) )
西 华
解:显然该公式是:P (Q P ) 的
例如公式:x F(x,a)∧x G(f(x),a)
三、谓词公式的赋值(解释)
一个解释由4部分组成:
(1) 非空个体域D;
西 华
(2)D中特定元素;
大 (3)D上特定函数; 学 (4)D上特定谓词。
公式x F(x,a)∧x G(f(x),a)
指定:D=实数集合;a=0;f(x):3x;F(x,y):x≥y; G(x,y):x=y。
2、 代替规则:对自由变元进行代入。
整个谓词公式中同一个字母的自由变元是指同一个个体 名词。因此可以用整个公式中没有的变元符号来代替, 且要求整个公式中该变元同时用同一个符号代替。
换名规则举例
西x F(x,y)∧x G(x,y) 华大改为:x F(x,y)∧u G(u,y) 学或者为: z F(z,y)∧x G(x,y)
• 项的定义
1. 个体变元、个体常元是项;
2. 若 f (x1, x2 , , xn ) 是任意n元函数,t1,t2,…,tn 是项,
则 f (t1, t2 , , tn ) 是项; 3. 有限次的应用1,2得到项。
一、合式公式的定义:
原子公式: f (x1, x2 , , xn ) 为n元谓词符号,t1,t2,…,tn 是
可知,公式是非永真的可满足式。
思考题:
1、F(a) x F(x)
西 华
2、F(a) x F(x)

学 解:1、F(a) x F(x)是非永真的可满足式;
①设D={2},a=2,F(x):x=2,显然此时为 真;
②设D=R,a=2,F(x):x=2,显然此时为假;
2、F(a) x F(x)是永真式。
项,则 f (t1, t2 , , tn ) 是原子公式;
西 合式公式的归纳定义:
华 大
1、任意的原子公式是公式
学 2、若A是公式,则xA、xA是公式;
3、若A、B是公式,则 A、A∧ B、A∨B、A → B、A B是 公式;
有限次地应用前三条,得到公式。
判断下列符号串是否为合式公式: 1. x(P(x) ∧ Q(x)) 2. xy(P(x) Q(y)) 3. yx∧ P(x) 4. x f(x) → x(g(x,y) ∨f(x) )
则x (x ≥0) ∧x (3x=0) 假命题。
解释举例1
给定解释I如下:
西 华 大 学
x(F(x) ∧ G(x,2))
(F(2) ∧ G(2,2)) ∧ (F(3) ∧ G(3,2))
y L(2,y) ∧ y L(3,y)
0∧ 11
(L(2,2)∨L(2,3)) ∧(L(3,2) ∨ L(3,3)) ( 1 ∨0 ) ∧(0 ∨ 1) 1
解释的说明
(1) 一个谓词公式如果不含自由变元,则在一个解释下, 可以得到确定的真值,不同的解释下可能得到不同的 真值。
(2) 公式的解释并不对变元进行指定,如果公式中含有自 由变元,即使对公式进行了一个指派,也得不到确定的 真值,其仅是个命题函数,但约束变元不受此限制。
3)有公式的解释定义可以看出,公式的解释有许多的解 释,当D为无限集时,公式有无限多个解释,根本不可能 将其一一列出,因而谓词逻辑的公式不可能有真值表 可列。
学 x F(x)为真;
2) x F(x) 为假,x F(x) x F(x)为真。
从而,在蕴涵式的前件x F(x) 为1或0的情况, 蕴涵式都为真。
又由解释I的任意性,知公式x F(x) x F(x)永真。
3) x y F(x,y) y x F(x,y)
西 1)取解释I1为:D=R,F(x,y):x>y
华 大
则公式为: x y (x>y) y x(x>y)
学 =10=0,从而公式不是永真式;
2) 取解释I2为:D=R,F(x,y):x.y=0 则公式为:xy(x•y=0)yx(x•y=0) =11=1从而公式不是永假式;
二、约束部分
在谓词公式中,形如xP(x)或xP(x)以及
xP(x,y)的部分中x称为指导变元,在辖
西 域中,x的所有出现称为约束变元(约束出
华 大
现);y是自由变元(自由出现)。
学 量词的辖域
(x)P(x)或(x)P(x)中的公式P(x),通
称为量词的辖域。换言之,量词的辖域是
邻接其后的公式,除非辖域是原子公式,
解释举例2
例2:已知指定一个解释N如下: (1)个体域为自然数集合DN (2)指定常项a=0 (3)DN上的指定函数f(x,y)=x+y,g(x,y)=x*y (4)指定谓词F(x,y)为x=y 在以上指定的解释N下,说明下列公式的真值
(1)xF(g(x,a),x) 即x(x*0=x)该命题假的
可以看出,在谓词公式中一个变元可能既是约束出现,同
时又有自由出现,则该变元既是自由变元又是约束变元,
西 本质上这两种出现,用的是一个符号,实质上是不同的
华 大 学
含义。为避免混淆,需要改名。改名要采用以下规则, 使谓词公式的含义不改变。
1、 换名规则:对约束变元进行换名。
将量词辖域内出现的某个约束变元及其相应量词中的指 导变元,可以换成一个其他变元,改变元不能与本辖 域内的其他变元同名,公式中的其他部分不改变。
大 学
替换实例。容易知道P (Q P )
是永真式,从而x F(x) (x
yG(x,y) x F(x) )是永真式。
2) x F(x) x F(x)
设在任意的解释I下,
西 1) x F(x) 为真,则 a,使得 F(a)为真,使
华 大
得 x F(x)为真, 在这种情况下,x F(x)
(2)xy(F(f(x,a),y)F(f(y,a),x)) 在解释N下此公式:xy(x+0=yy+0=x)此命题为真 (3)F(f(x,y),f(y,z))在解释N下该公式x+y=y+z 此时,x,y,z均为自由变元,解释不对自由变元进行指定。因而该 公式是命题函数,不是命题,真值不能确定。
对x (F(x,y)∧y G(x,y)) F(x,y) 改为: x (F(x,t)∧y G(x,y)) F(s,t) 或者为:t (F(t,y)∧y G(t,y)) F(x,y)
谓词公式的解释
西 谓词逻辑中的解释(赋值)

大 在命题逻辑对每个命题符号作个真值指定可以得一个

公式的一个指派,又称赋值,又称解释。如公式中共出 现n个不同的命题符号,则共有2n个解释,因而可以列 出公式的真值表。而谓词逻辑中公式的赋值解释是 怎样的呢?
1、永真式和永假式的代入实例是永真、永假式;
2. 对于某些简单的公式,特别对于简单的闭式,
西 华
可在假定给定任意解释的前提下该公式的真值
大 学
都为真(或者为假)来证明该公式是永真式
(或矛盾式)。
3. 要证明一个公式是可满足式,只要找到一个 解释,使得该公式的真值为真即可。同时为了 证明它不是永真式,只要找一个解释,使得该 公式的真值为假即可。
四、谓词公式的类型
西
设A是公式。如果A在任何的解释下都

大 是真的,则A是永真式;如果A在任何的
学 解释下都是假的,则A是永假式;如果A
在一些解释下为假,一些解释下为真,
则A是非永真的可满足式。
例如: x A(x) x A(x)是永真式; x A(x)∧x A(x)是永假式。
代换实例
相关文档
最新文档