初三数学:圆
初三数学圆知识点总结

初三数学圆知识点总结要点总结:一、圆的定义与相关概念:圆是平面内到定点的距离等于定长的点的集合,定点为圆心,定长为半径。
圆心角、弧、弦、弦心距之间有一定关系。
弦是圆上任意两点的线段,直径是经过圆心的弦,直径等于半径的2倍。
圆弧分为优弧和劣弧,圆心角是圆心所对的角。
二、过三点的圆和垂径定理:不在同一条直线上的三点可以确定一个圆。
三角形的外接圆圆心是三边垂直平分线的交点。
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
三、与圆相关的角:圆心角、圆周角、弦切角是与圆相关的角。
圆心角的度数等于它所对的弦的度数,圆周角等于所对弦角的一半。
同弧或等弧所对的圆周角相等,半圆所对的圆周角相等。
弦切角等于它所夹的弧所对的圆周角,两个弦切角所夹的弧相等,那么这两个弦切角也相等。
四、点与圆的位置关系。
文章改写:圆是平面内到定点的距离等于定长的点的集合,其中定点为圆心,定长为半径。
圆的位置由圆心确定,大小由半径确定,半径相等的两个圆为等圆。
圆可以通过线段OA绕圆心O旋转一周,另一个端点A随之旋转所形成的图形来定义。
另外,圆的相关概念包括弦、直径、圆弧、圆心角等。
弦是圆上任意两点的线段,直径是经过圆心的弦,直径等于半径的2倍。
圆弧分为优弧和劣弧,圆心角是圆心所对的角。
圆心角、弧、弦、弦心距之间有一定关系,其中定理是:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。
推论是:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
通过不在同一条直线上的三点可以确定一个圆,三角形的外接圆圆心是三边垂直平分线的交点。
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
与圆相关的角包括圆心角、圆周角、弦切角,它们有一些性质,例如圆心角的度数等于它所对的弦的度数,圆周角等于所对弦角的一半,同弧或等弧所对的圆周角相等,半圆所对的圆周角相等,弦切角等于它所夹的弧所对的圆周角,两个弦切角所夹的弧相等,那么这两个弦切角也相等。
初三数学上圆的知识点归纳总结

初三数学上圆的知识点归纳总结初三数学上圆的知识点归纳总结圆是数学中的一个重要几何图形,它在初中数学中的学习中起着极为重要的作用。
掌握好圆的知识点,不仅可以帮助我们解决实际问题,还能够培养我们的逻辑思维和几何直观能力。
下面就让我们来总结一下初三数学上圆的知识点。
一、圆的基本概念1. 圆的定义:平面上到一个确定点距离相等的点的集合叫做圆。
2. 圆的元素:圆心和半径。
圆心是确定圆位置的点,用字母O表示;半径是圆心到圆上任意一点的距离,用字母r表示。
二、圆的性质1. 圆上任意两点的距离等于半径的长度。
2. 圆的半径相等。
3. 圆的直径是通过圆心的由圆上一点到另一点的线段,它的长度等于半径的两倍。
4. 圆的周长等于2πr,其中π≈3.14,r是圆的半径。
5. 圆的面积等于πr²。
6. 同余圆:圆心和半径均相等的两个圆。
7. 相似圆:两个圆半径成正比的情况。
三、圆的位置关系1. 同心圆:具有同一圆心但半径不同的若干圆。
2. 相交圆:具有交叉部分的两个圆。
3. 内切圆:一个圆与一个三角形的内切圆相切,内切圆的圆心和三角形的内心重合。
4. 外切圆:一个圆与一个三角形的外接圆相切,外接圆的圆心和三角形的外心重合。
四、圆的识别和绘制1. 判断圆的方法:根据给定的条件,判断是否符合圆的定义。
2. 绘制圆的方法:知道圆心和半径后,可以利用直尺和圆规等工具绘制圆。
五、圆的运算1. 加减圆:将两个圆的面积相加或相减。
2. 圆的比较:比较两个圆的面积大小。
六、圆的直观应用1. 圆的三等分:将一个圆等分成三等分,可以通过先画一个正三角形,再通过圆心作为顶点连接正三角形的另外两个顶点,这样就可以将圆等分为三等分。
2. 圆的乘方:当我们需要求解一个圆的面积时,可以利用圆的半径进行计算。
3. 圆的弧长:如果我们需要计算圆上某一个弧的长度,可以利用圆的半径和圆心角的大小进行计算。
以上就是初三数学上圆的知识点的归纳总结,掌握好这些知识点,能够帮助我们解决很多实际问题,并在数学学习中取得好的成绩。
初三数学圆的总复习

两个圆有且仅有一个公共点,且该点在两个圆的内部时,称 这两个圆内切。
圆与圆的相交
相交
两个圆有两个不同的公共点时,称这两个圆相交。此时两个公共点连成的线段叫 做两圆的公共弦。
特殊相交
当两个圆的半径相等且相交于两点时,这两点连成的线段既是两圆的公共弦也是 两圆的直径。
05 圆的综合应用
圆的面积与周长计算
01
02
03
圆的面积公式
$S = pi r^{2}$,其中 $r$ 是圆的半径。这个公 式用于计算圆的面积。
圆的周长公式
$C = 2pi r$ 或 $C = pi d$,其中 $r$ 是圆的半径, $d$ 是圆的直径。这两个 公式用于计算圆的周长。
扇形面积公式
$S_{扇形} = frac{npi r^{2}}{360}$,其中 $n$ 是扇形的圆心角,$r$ 是 圆的半径。这个公式用于 计算扇形的面积。
线的性质。
圆的拓展应用问题
圆锥曲线问题
圆锥曲线包括椭圆、双曲线和抛物线。在解决这类问题时,需要掌握圆锥曲线的定义、标 准方程和性质等知识点。
极坐标与参数方程问题
极坐标是一种用距离和角度来描述平面上点的方法,参数方程则是用参数来描述曲线上点 的坐标的方法。在解决这类问题时,需要掌握极坐标与直角坐标的互化以及参数方程与普 通方程的互化等知识点。
通过一般方程,可以计算出圆心坐标$left( frac{D}{2},-frac{E}{2} right)$和半径 $r=frac{sqrt{D^{2}+E^{2}-4F}}{2}$。
方程变形
通过配方等方法,可以将一般方程转化为标准方 程。
圆的图形与方程的关系
图形与方程对应
01
初三上册数学圆的知识点归纳总结

初三上册数学圆的知识点归纳总结数学中的圆是一种重要的几何图形,在初中数学的学习中也占据着重要的地位。
下面对初三上册数学中关于圆的知识点进行归纳总结,以帮助同学们更好地理解和掌握相关内容。
一、圆的定义和性质1. 定义:圆是一个平面上与一个固定点距离相等的点的集合。
2. 元素:圆心、半径、弦、弧、切线等。
3. 性质:(1) 圆上所有点到圆心的距离相等。
(2) 圆上的弦的垂直平分线通过圆心。
(3) 圆上的任意一条弧都小于或等于圆周长的一半。
二、圆的线段关系1. 半径与弦:如果一个线段的两个端点都在圆上,且其中一个是圆心,那么这个线段就是半径;如果这个线段的两个端点都在圆上但不是圆心,那么这个线段就是弦。
2. 弦的性质:(1) 通过圆心的弦是直径,直径是圆上最长的弦。
(2) 在同一个圆或等圆中,等长的弦所对的圆心角相等。
(3) 如果一个弦与另一个弦交于圆内的一点,那么两个弦所对的弧相等。
三、圆的圆周角和弧度制1. 圆周角的定义:以圆心为顶点的角,角的两边是圆上的两条弧。
圆周角的度数等于所对的圆弧的度数。
2. 弧度制:将圆的一周等分为360份,每份称为一度,每度又等分为60分,每分又等分为60秒。
弧度是用弧长等于半径的圆周长所对应的角中的弧所对应的角。
3. 弧度制与角度的换算:(1) 1度= π/180弧度(2) 1弧度≈ 57.3度四、切线与切线定理1. 切线定义:如果一条直线与圆相交于圆上的一点,且在该点处的切线与这条直线垂直,那么这条直线就是圆的切线。
2. 切线定理:切线与半径垂直。
(1) 如果一条直线与圆相交于圆上的一点,并且通过圆心,那么这条直线就是切线。
(2) 反之,如果一条直线与圆相交于圆上的一点,并且与通过圆心的切线垂直,那么这条直线就通过圆心,也是切线。
五、圆的面积和周长1. 圆的周长公式:C = 2πr,其中C表示圆的周长,r表示半径。
2. 圆的面积公式:A = πr²,其中A表示圆的面积,r表示半径。
初三数学圆

初三数学圆知识点总结一、本章知识框架二、本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有:(1)d>r点P在⊙O 外;(2)d=r点P在⊙O 上;(3)d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R的弧长.圆心角为n°,半径为R,弧长为l的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl全面积为:.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.【经典例题精讲】例1 如图23-2,已知AB为⊙O直径,C为上一点,CD⊥AB于D,∠OCD的平分线CP交⊙O于P,试判断P点位置是否随C点位置改变而改变?分析:要确定P点位置,我们可采用尝试的办法,在上再取几个符合条件的点试一试,观察P点位置的变化,然后从中观察规律.解:连结OP,P点为中点.小结:此题运用垂径定理进行推断.例2下列命题正确的是( )A.相等的圆周角对的弧相等B.等弧所对的弦相等C.三点确定一个圆 D.平分弦的直径垂直于弦例3 四边形ABCD内接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D.分析:圆内接四边形对角之和相等,圆外切四边形对边之和相等.解:设∠A=x,∠B=2x,∠C=3x,则∠D=∠A+∠C-∠B=2x.x+2x+3x+2x=360°,x=45°.∴∠D=90°.小结:此题可变形为:四边形ABCD外切于⊙O,周长为20,且AB︰BC︰CD=1︰2︰3,求AD的长.例5已知相交于A、B两点,的半径是10,的半径是17,公共弦AB=16,求两圆的圆心距.解:分两种情况讨论:(1)若位于AB的两侧(如图23-8),设与AB交于C,连结,则垂直平分AB,∴.又∵AB=16 ∴AC=8.在中,.在中,.故.(2)若位于AB的同侧(如图23-9),设的延长线与AB交于C,连结.∵垂直平分AB,∴.又∵AB=16,∴AC=8.在中,注意:在圆中若要解两不等平行弦的距离、两圆相切、两圆相离、一个点到圆上各点的最大距离和最小距离、相交两圆圆心距等问题时,要注意双解或多解问题.三、相关定理:1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。
圆的知识点初三

圆的知识点初三圆是初中数学中重要的几何图形之一,它具有许多独特的性质和特点。
本文将从圆的定义、圆的元素、圆的性质和圆的应用等方面进行探讨。
一、圆的定义和元素圆是平面上的一个几何图形,它由平面上距离某一点固定距离的所有点组成。
这个固定距离叫做圆的半径,记作r。
圆心是到圆上任意一点的距离都等于半径的点。
圆的元素有圆心、半径、直径和弧长等。
圆心是圆的中心点,通常用字母O表示。
半径是圆心到圆上任意一点的距离,用字母r表示。
直径是通过圆心的一条线段,它的两个端点在圆上,直径的长度等于半径的两倍,即d=2r。
弧长是圆上两点之间的弧所对应的弧长,用字母l表示。
二、圆的性质1. 圆的任意两点之间的距离都等于半径的长度,即圆上任意两点之间的距离是固定的。
2. 圆的直径是圆的特殊性质之一,它等于半径的两倍。
直径是圆的最长的线段,且通过圆心。
3. 圆的弧长是圆的另一个重要性质,弧长与圆心角的大小成正比。
当圆心角为360度时,弧长等于圆的周长。
4. 圆的周长是圆上所有点到圆心的距离之和,也称为圆的周长。
周长的计算公式为C=2πr,其中π≈3.14。
5. 圆的面积是圆所包围的平面区域的大小,面积的计算公式为A=πr^2,其中^2表示半径的平方。
三、圆的应用圆在生活中有着广泛的应用。
以下列举几个常见的例子:1. 圆形的轮胎和车轮:汽车、自行车等的轮胎和车轮都是圆形的,这是因为圆形的轮胎和车轮能更好地保证车辆的稳定性和平衡性。
2. 圆形的钟表和计时器:钟表和计时器通常都是圆形的,因为圆形的刻度能更直观地显示时间的流逝。
3. 圆形的光学器件:如镜片和透镜等,它们的表面通常是圆形的,这是因为圆形的表面能更好地聚焦光线。
4. 圆形的篮球场和足球场:篮球场和足球场的形状通常是圆形的,这是为了保证比赛的公平性和平衡性,使运动员能够更好地进行比赛。
圆是初中数学中的重要知识点之一。
通过对圆的定义、元素、性质和应用的了解,我们可以更好地理解和应用圆的相关概念,为日常生活和学习中的问题提供解决方案。
初三数学 圆
初三数学圆1、圆的概念:①在同一平面内,线段OP绕它固定的一个端点O旋转一周,另一端点P所经过的封闭曲线叫做圆,固定的端点O叫做圆心,线段OP(不论转到什么位置)叫做圆的半径.以点O为圆心的圆,记做“⊙O”,读作“圆O”.②以O为圆心,r为半径的圆,可以看成所有到定点O的距离等于定长r的点组成的集合.确定圆的条件是圆心和半径两个因素.注意:以已知点O为圆心,可以画无数个圆,以已知线段R为半径画圆可以画无数个,以已知点O为圆心,已知线段R为半径画圆,可以画且只能画一个圆.2、与圆有关的概念弦:连接圆上任意两点的线段BC叫做弦,经过圆心的弦AB叫做直径.直径等于半径的2倍.弧:圆上任意两点间的部分叫做圆弧,简称弧.圆的任一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.小于半圆的弧叫做劣弧.以B、C为端点的弧记作,读作弧BC;大于半圆的弧叫做优弧,半圆和优弧用符号“”和三个字母表示(弧两端的字母和弧中间的字母),如图中以B、C为端点的优弧记作,读作“弧BAC”.等圆:能够重合的两个圆或半径相等的两个圆叫做等圆.等弧:同圆或等圆中,能够互相重合的弧叫做等弧.3、点与圆的位置关系:一般地,若⊙O的半径为r,点P到圆心O的距离OP=d,则有.4、圆的确定(1)经过已知点A可以作无数个圆;经过两个已知点A、B可以作无数个圆,它们的圆心在线段AB的垂直平分线上;经过不在同一直线上的三个点确定一个圆.(2)三角形的外接圆:经过三角形三个顶点的圆叫做三角形的外接圆,这个三角形叫做圆的内接三角形.三角形外接圆的圆心是三角形三条边垂直平分线的交点,这个交点叫做这个三角形的外心.作三角形的外接圆关键在于确定圆的圆心即三角形的外心,只需作三角形两边垂直平分线即可.(3)三角形外心的性质①三角形外心到三个顶点的距离相等;②锐角三角形的外心在三角形内部,直角三角形的外心在斜边的中点上,钝角三角形的外心在三角形的外部;③三角形的外心与一边中点的连线必垂直于这条边;④经过三角形的外心与一边垂直的直线必平分这条边.例1、填空题(1)平面上有两点A、B,若线段AB的长为3cm,则以A为圆心,经过点B的圆的面积为________.(2)如图,已知AB是⊙O的直径,点C在⊙O上,点D是BC的中点,若AC=10cm,则OD=________cm.例2、选择题(1)下列说法正确的有( )A.1个 B.2个C.3个 D.4个①直径不是弦;②直径是圆中最长的弦;③圆心是圆中任意一条直径的中点;④半圆不是弧.(2)下列判断中,正确的个数是( )A.2个 B.3个C.4个 D.5个①正方形的四个顶点在同一圆上②菱形的四个顶点在同一圆上③菱形四边中点在同一圆上④矩形的四个顶点在同一圆上⑤矩形四边中点在同一圆上.一、圆心角:我们把顶点在圆心的角叫做圆心角.二、圆的特性:①圆是中心对称图形,对称中心是圆心;②把圆绕着它的圆心旋转一个任意角度,都与原来的图形重合,这说明圆具有旋转不变性的特性;利用以上特性,可以得到以下定理三、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.四、推论:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,则它们所对应的其余各组量也相等例1、如图,已知D、E两点分别为⊙O的半径OA、OB的中点,C为的中点.求证:CD=CE.1、如下左图,点C在以AB为直径的半圆上,O是圆心,连接OC,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定2、小明不慎把家里的圆形玻璃打碎了,其中四块碎片如上中图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块3、有一个矩形ABCD的长为4cm,宽为3cm,以D点为圆心作圆,使A、B、C三点其中有两点在圆内,一点在圆外,则⊙D的半径r的取值范围为()A.3<r<4 B.3<r<5C.4<r<5 D.4≤r≤54、如上右图,点A、D、G、M在半圆O上,四边形ABOC,DEOF,HMNO为矩形,设BC=a,EF=b,NH=c,则下列各式正确的是()A.a>b>c B.a=b=cC.c>a>b D.b>c>a5、如下图,在半径为2cm的⊙O内有长为的弦AB,则此弦所对的圆心角∠AOB为( ) A.60° B.90° C.120° D.150°6、如上中图,在⊙O中,,则下列结论正确的是( )A.AB>2CD B.AB=2CDC.AB<2CD D.以上都不正确7、AD是⊙O的直径,弦AB、AC交于A点,且AD平分∠BOC,则下列结论不一定成立的是( ) A.AB=AC B.C.AD⊥BC D.AB=BC8、如上右图,点A是半圆上一个三等分点,点B是的中点,P是直径MN上的一动点,⊙O的半径为1,则PA+PB的最小值为( )9、如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线相交于点E,已知AB=2DE,∠E=18°,试求∠AOC的度数.10、如图所示,要把残破的轮片复制完整,已知弧上的三点A、B、C.用尺规作图法找出所在圆的圆心(保留作图痕迹,不写作法).11、如图,在⊙O中,弦AB、CD相交于点P,且AB=CD,求证:AC=BD.12、如图,以⊙O的直径BC为一边作等边△ABC,AB、AC交⊙O于D、E,求证:BD=DE=EC.。
数学初三圆的知识点总结
数学初三圆的知识点总结一、圆的概念1.1 圆的定义圆是平面上所有与一个给定点的距离相等的点的集合。
这个距离称为圆的半径,而给定的那个点叫做圆心。
1.2 相关术语(1)圆心:圆的中心点。
(2)半径:圆心到圆上任一点的距离。
(3)直径:通过圆心并且两端点在圆上的线段叫做圆的直径。
(4)弧长:圆上一部分的长度。
(5)圆周:圆的边界。
(6)扇形:由圆心和圆上两点组成的区域。
(7)弦:圆上连接两点的线段。
(8)切线:与圆相切的直线。
1.3 圆的元素圆的位置和形状是由圆心和半径共同决定的,而圆的面积则是与圆的半径有关。
二、圆的性质2.1 圆周率圆周率是圆的重要常数,通常用π表示。
它的值是一个无理数,约等于3.14159。
圆周率在数学中有广泛的应用,涉及到圆的面积、周长和体积等问题。
2.2 圆的面积和周长(1)圆的周长圆的周长公式为:C = 2πr,其中C表示圆的周长,r表示圆的半径,π表示圆周率。
(2)圆的面积圆的面积公式为:S = πr²,其中S表示圆的面积,r表示圆的半径,π表示圆周率。
2.3 圆的关系(1)直径与半径的关系圆的直径是圆的半径的两倍,即d = 2r。
(2)弧长与圆周角的关系弧长l与半径r和所对的圆周角θ之间有一个简单的关系:l = rθ。
(3)圆心角与圆周角的关系圆心角和它所对的圆周角是成等比关系的,即θ = 2α。
(4)弦的性质圆上的两条弦若相交,则交点至两条弦的两端的交点距离相等。
2.4 圆与直线的关系(1)切线定理切线定理指的是,若直线与圆相切,则该直线与圆心的连线和切点的连线是垂直的。
(2)弦切定理弦切定理是指,若一个直线既是弦又是切线,则该直线与圆心的连线和切点的连线也是垂直的。
三、圆的相关定理3.1 圆的基本定理(1)切线定理定理表明,切线与半径的夹角是直角,即触点与圆心与切点的连线共线。
(2)弦长定理定理表明,与直径垂直的弦,把弦分成的两段乘积等于圆的半径的平方。
数学九年级下册圆的知识点
数学九年级下册圆的知识点圆是数学几何中的一个重要概念,广泛应用于各个领域。
在九年级的数学学习中,我们将更加深入地学习圆的相关知识。
本文将围绕圆的定义、性质、公式和应用等方面展开详细介绍。
一、圆的定义在数学中,圆是由平面上到一个固定点距离相等的所有点组成的图形。
其中,距离固定点最远的点称为圆的半径,固定点称为圆心。
圆心与圆上任意一点之间的线段称为半径。
二、圆的性质1. 圆的半径相等性质:圆上任意两点间的线段都是半径,且长度相等。
2. 圆的直径性质:圆的直径是圆上任意两点的连线,且长度是半径的两倍。
3. 圆的弦性质:圆上的弦分为等弦和不等弦两种。
等弦对应的弦长相等,而不等弦对应的弦长不相等。
4. 圆的切线性质:过圆上一点可以作无数条切线,这些切线与以该点为顶点的两条切线相等,且相互垂直。
三、圆的公式1. 圆的周长公式:圆的周长称为圆周长,通常用C表示,公式为C = 2πr,其中r为圆的半径,π取近似值3.14。
2. 圆的面积公式:圆的面积称为圆面积,通常用A表示,公式为A = πr²,其中r为圆的半径,π取近似值3.14。
四、圆的应用1. 圆的运动学应用:在物理学中,圆的运动学应用非常广泛,例如机械运动中的回转运动、行星围绕太阳的椭圆轨道等。
2. 圆的建筑应用:在建筑学中,圆被广泛应用于设计和构建中,例如建筑物中的圆形窗户、圆形拱门等。
3. 圆的电子应用:在电子工程中,圆被广泛应用于电路板设计、天线设计等领域。
4. 圆的地理应用:在地理学中,圆被用于表示地球的形状,地球是近似于一个球体。
总结:在数学九年级下册中,我们系统学习了圆的定义、性质、公式和应用等知识点。
掌握了这些知识,我们能够更好地理解圆的特性,应用于各种实际问题中。
通过灵活运用圆的相关知识,我们可以提高解决问题的能力和思维能力,为今后的数学学习打下坚实的基础。
初三数学圆知识点总结
初三数学圆知识点总结圆是初中数学中非常重要的一个概念,几乎涵盖了整个数学知识体系中的各个方面。
圆的性质和应用广泛,不仅在数学中有着重要的地位,而且在生活和实际应用中也有着广泛的应用。
本文将对初三数学圆的知识进行总结和归纳。
一、基本概念和性质1. 圆的定义:圆是由平面上离定点(圆心)的距离相等于定长(半径)的所有点的轨迹构成。
圆的边界称为圆周,圆周上的任意两点与圆心的线段称为弦,通过圆心的连线称为直径。
2. 圆的要素:圆心、半径、直径、圆周等是圆的基本要素。
圆心用字母O表示,半径用字母r表示,直径用字母d表示,圆周用字母C表示。
3. 圆的性质:圆周上的任意一点到圆心的距离相等;圆的直径是圆周的一种特殊的弦,它的长度等于半径的两倍;圆的任意弦都可以作为其两点连线的中垂线。
二、圆的要素之间的关系1. 圆心角和弧度:圆心角是指以圆心为顶点,两条弦为腰的角。
它的大小是圆周上这两个点所对的弧所夹的角度。
弧度是用来度量圆心角大小的单位,1弧度等于圆心角所对的弧长与半径的比值。
2. 弧长和扇形面积:弧长是指圆周上的一段弧的长度,它等于圆心角的大小乘以半径的长度。
扇形是以圆心角为顶角,圆的一部分为底边的图形。
扇形的面积等于圆心角所对的弧长与圆周长的比值乘以圆的面积。
3. 弦长和正弦定理:弦长是指圆上任意两点所确定的线段的长度。
正弦定理是指在一个圆内,三角形的三个边与其对角的正弦值之间的关系。
三、圆的重要定理和公式1. 切线定理和割线定理:切线定理是指从同一外点向圆引切线,切线上的切点到引线点距离的平方等于切点到圆心距离的平方。
割线定理是指从同一外点向圆引割线,割线上的切点到引线点的两部分距离的乘积等于引线点到圆心距离的平方减去割线长的平方。
2. 求圆内切多边形的边长和面积:对于正多边形,可以利用正多边形内接圆与外接圆之间的关系来求解多边形的边长和面积。
3. 余弦定理和正弦定理:余弦定理是它描述了一个三角形的边与角之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。
包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。
这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。
二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。
解法较多,属于较难题,得分率较低。
【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。
2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。
【解题思路】1.把向量用OA ,OB ,OC 表示出来。
2.把求最值问题转化为三角函数的最值求解。
【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。
【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。
【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。
2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。
【解题思路】1.设出点的坐标,列出方程。
2.利用韦达定理,设而不求,简化运算过程。
3.根据圆的性质,巧用点到直线的距离公式求解。
【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。
即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。
题型分值完全一样。
选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。
3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。
四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。