苏教版高中数学必修2第1章 立体几何初步点、线、面之间的位置关系练习3
苏教版高中数学必修二秋第1章1.2点、线、面之间的位置关系1.2.3直线与平面的位置关系1.2.4平面与平面的位置

高中数学学习材料(灿若寒星精心整理制作)1.2点、线、面之间的位置关系1.2.3直线与平面的位置关系1.2.4平面与平面的位置关系建议用时实际用时满分实际得分45分钟100分一、填空题(每小题5分,共50分)1.给出下列命题:①若直线a∥直线b,且直线a∥平面α,则直线b与平面α的位置关系是平行或直线b在平面α内;②直线a∥平面α,平面α内有n条直线交于一点,那么这n条直线中与直线a平行的直线有且只有一条;③a∥α,b、cα,a∥b,b⊥c,则有a⊥c;④过平面外一点只能引一条直线与这个平面平行.其中正确的是.2.a,b,c为三条不重合的直线,,,为三个不重合的平面,现给出四个命题:①∥c,∥c⇒∥;②∥,∥⇒∥;③∥c,∥c⇒∥;④∥,∥⇒∥.其中正确的命题是 .3.设直线a,b分别是长方体相邻两个平面的对角线所在的直线,则a与b的位置关系是.4.如图,是棱长为a的正方体,M,N分别是下底面的棱,的中点,P是上底面的棱AD上一点,AP= ,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ= .5. 已知a、b、l表示三条不同的直线,α、β、γ表示三个不同的平面,有下列四个命题:①若α∩β=a,β∩γ=b且a∥b,则α∥γ;②若a、b相交,且都在α、β外,a∥α,a∥β,b∥α,b∥β,则α∥β;③若α⊥β,α∩β=a,b⊂β,a⊥b,则b⊥α;④若a⊂α,b⊂α,l⊥a,l⊥b,则l⊥α.其中正确的是.6. 已知平面α∥β,△ABC,△分别在平面α,β内,线段,,共点于O,O在α,β之间,若AB=2,AC=1,BC= ,△的面积是,则= .7.设O为平行四边形ABCD对角线的交点,P为平面AC外一点且有P A=PC,PB=PD,则PO与平面ABCD的位置关系是.8.设X,Y,Z是空间不同的直线或平面,对下面四种情形,使“X⊥Z且Y⊥Z⇒X∥Y”正确的是____________(填序号).①X,Y,Z是直线;②X,Y是直线,Z是平面;③Z是直线,X,Y是平面;④X,Y,Z是平面.9.若三个平面两两垂直,则它们的交线.10.下面三个结论:①三条共点的直线两两互相垂直,分别由每两条直线所确定的平面也两两互相垂直;②分别与两条互相垂直的直线垂直的平面互相垂直;③分别经过两条互相垂直的直线的两个平面互相垂直.其中正确结论的序号是.二、解答题(共50分)11.(12分)如图,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点.求证:SA∥平面MDB12.(12分)如图,在长方体中,试作出过AC且与直线平行的截面,并说明理由.13.(13分)如图,已知正三棱柱的底面边长为2,侧棱长为32,点E 在侧棱上,点F在侧棱上,且AE = 22,BF =2.(1)求证:CF⊥;(2)求二面角的大小.14.(13分)如图,在棱长为a的正方体中,M,N分别是,的中点,过D,M,N三点的平面与正方体的下底面相交于直线l.(1)画出l的位置;(2)设l∩=P,求的长.第14题图一、填空题1.①③2.②解析:②正确,①错在与可能相交,③④错在可能在内.3.可能相交,也可能是异面直线解析:如图所示,a与b相交;a与b′异面.第3题答图4.a解析:如图所示,连接AC,易知MN∥平面ABCD,∴MN∥PQ.又∵MN∥AC,∴PQ∥AC.又∵AP= ,∴ = = = ,∴PQ= AC= a.5. ②③解析:可通过公理、定理判定命题正确,通过特例、反例说明命题错误.①如图,在正方体-ABCD中,平面D∩平面=CD,平面∩平面,且CD∥,但平面D与平面不平行,①错误.②因为a、b相交,可设其确定的平面为,根据∥,∥,可得∥,同理可得∥,因此∥,②正确.③根据平面与平面垂直的判定定理:两平面垂直,在一个平面内垂直于交线的直线和另一个平面垂直,③正确.④当直线a∥b,垂直于平面内的两条不相交直线时,得不出l⊥,④错误.6. 解析:因为平面∥,平面∩平面=AB,平面∩平面,所以AB∥.同理AC∥,BC∥,可得两三角形相似.因为AB=2,AC=1,BC=5,所以,所以= ×2×1=1.所以== ,所以= .7.垂直解析:因为PA=PC,O为AC的中点,所以PO⊥AC,同理PO⊥BD,所以PO⊥平面ABCD.8.②③解析:因为垂直于同一条直线的两条直线平行、相交、异面都可以,所以①错误.根据线面垂直的性质②③正确.垂直于同一个平面的两个平面可能相交、平行和垂直,所以④错误,故正确的有②③.9.互相垂直解析:如图,设∩=AB,∩=AC,在内取点P,过P作PM⊥AB于点M,PN⊥AC于点N.∵⊥,∴PM⊥.又∵∩=,∴PM⊥.同理可得PN⊥,∴⊥,∴⊥AB,⊥AC.同理可证AB与AC垂直.10.①②解析:分别经过两条互相垂直的直线的平面有无数个,但不一定互相垂直,所以③错误.二.解答题11. 证明:如图,连接AC交BD于N,连接MN.因为四边形ABCD是平行四边形,所以点N是AC的中点.又因为点M是SC的中点,所以MN∥SA.因为MN⊂平面MDB,SA平面MDB,所以SA∥平面MDB.12. 解:如图,连接DB交AC于点O,取的中点M,连接MA,MC,MO,则截面MAC即为所求作的截面.因为MO为△的中位线,所以∥MO.因为⊄平面MAC,MO⊂平面MAC,所以∥平面MAC,则截面MAC为过AC且与直线平行的截面.13.(1)证明:由已知可得,,== 6, = 6,于是有,所以⊥EF,⊥CE.又EF∩CE=E,所以⊥平面CEF.又CF⊂平面CEF,故CF⊥.(2)解:在△CEF中,由(1)可得EF=CF=6,CE=23,于是有,所以CF⊥EF.又由(1)知CF⊥,且EF∩=E,所以CF⊥平面.又⊂平面,故CF⊥.于是∠即为二面角的平面角.由(1)知△是等腰直角三角形,所以∠=45°,即所求二面角的大小为45°.14.解:(1)如图,QN即为所求作的直线l.第14题答图(2)设QN∩=P,∵△≌△MAD,∴,∴是的中点.又∥,∴===.∴=a-=。
苏教版数学高一苏教版必修2第一章第1、2点线面的位置关系(寻找异面直线所成的角)

寻找异面直线所成的角
我们知道,求异面直线所成的角的关键是在图形中作出平行线,把异面直线所成的角转化为相交直线所成的角来处理,本文介绍平移直线的方法,供同学们参考.
方法一:沿着第三条直线的方向平移
在图形中,若两条异面直线都与第三条直线相交,可将异面直线中的一条沿着第三条直线的方向平移,直到与异面直线中的另一条相交.也可将两条异面直线同时沿着第三条直线的方向平移,直到相交即可.
例1 在棱长是a 的正方体1111ABCD A B C D -中,请作出直线1AB 与1BC 所成的角. 作法:如图1,由于1AB 、1BC 都与AB 相交,可将1BC 沿AB
平移至1AD ,连结11B D ,则在11AB D △中,11B DA ∠就是直线1AB 与
1BC 所成的角.
方法二:利用平行平面的性质作平行线
若图形中存在两个平行平面,两条异面直线至少有一条在其中的平面内,可在平行平面内作平行线.
例2 在正方体1111ABCD A B C D -中,点E F G ,,分别是11A D 、11A B 、BC 的中点,请作出直线EF 与AG 所成的角.
作法:如图2,在平面AC 内取CD 的中点H ,连结GH ,则
GH EF ∥,连结AH ,所以在AGH △中,AGH ∠就是直线EF 与
AG 所成的角.
例 3 在正方体1111ABCD A B C D -中,点E F G H ,,,分别是
11A D 、11A B 、1CC 、CD 的中点,请作出直线EF 与GH 所成的角.
作法:如图3,取BC 的中点K ,连结HK 、KG ,则HK EF ∥,所以在GHK △中,GHK ∠就是直线EF 与GH 所成的角.。
高中数学第1章立体几何初步1.2点、线、面之间的位置关系1.2.3第二课时直线与平面垂直课时作业苏

2018-2019学年高中数学第1章立体几何初步1.2 点、线、面之间的位置关系1.2.3 第二课时直线与平面垂直课时作业苏教版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第1章立体几何初步1.2 点、线、面之间的位置关系1.2.3 第二课时直线与平面垂直课时作业苏教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第1章立体几何初步1.2 点、线、面之间的位置关系1.2.3 第二课时直线与平面垂直课时作业苏教版必修2的全部内容。
1。
2。
3 第二课时直线与平面垂直[学业水平训练]1.下列说法:①平面的斜线与平面所成的角的取值范围是(0°,90°);②直线与平面所成的角的取值范围是(0°,90°];③若两条直线与一个平面所成的角相等,则这两条直线互相平行;④若两条直线互相平行,则这两条直线与一个平面所成的角相等.其中正确的是________(填序号).解析:②应为[0°,90°];③中这两条直线可能平行,也可能相交或异面.答案:①④2.垂直于梯形两腰的直线与梯形两底所在的平面的位置关系是________.解析:梯形的两腰所在的直线是相交的直线,故直线垂直于梯形所在平面内的两条相交直线,所以直线与平面垂直.答案:垂直3.在正方体ABCD-A1B1C1D1中,它的六个面中与棱AA1垂直的有________个.解析:面A1B1C1D1与面ABCD都与棱AA1垂直.答案:24.如果不在平面α内的一条直线l与平面α的一条垂线垂直,那么直线l与平面α的位置关系为________.解析:设平面α的垂线为a,过a上一点作l′∥l,设l′与a所确定的平面交α于b,则a ⊥b,而a⊥l′,∴l′∥b,∴l∥b,即可得l∥α。
近年高中数学第1章立体几何初步第二节点、直线、面的位置关系3直线与平面平行的判定习题苏教版必修2(

2018高中数学第1章立体几何初步第二节点、直线、面的位置关系3 直线与平面平行的判定习题苏教版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高中数学第1章立体几何初步第二节点、直线、面的位置关系3 直线与平面平行的判定习题苏教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高中数学第1章立体几何初步第二节点、直线、面的位置关系3 直线与平面平行的判定习题苏教版必修2的全部内容。
直线与平面平行的判定(答题时间:40分钟)*1. 若直线a不平行于平面α,且a α,则下列结论成立的是( )A. α内的所有直线与a异面 B。
α内的直线与a都相交C. α内存在唯一的直线与a平行D. α内不存在与a平行的直线*2. 长方体ABCD-A1B1C1D1中,E为AA1的中点,F为BB1的中点,与EF平行的长方体的面有________个。
**3. (天津二模)如图所示,四棱锥P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD =2AB,PA⊥底面ABCD,E为PC的中点,则BE与平面PAD的位置关系是________。
**4。
(泰州检测)在正方体ABCD-A1B1C111BD1与过点A、C、E的平面的位置关系是________。
**5. 如图,在正四棱柱ABCD-A1B1C1D1中,E、F、G、H分别是棱C1C、C1D1、D1D、DC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1,其中N是BC的中点。
(填上一个正确的条件即可,不必考虑全部可能的情况)*6. 如图,长方体ABCD-A1B1C1D1中,与BC平行的平面是________;与BC1平行的平面是________;与平面A1C1和平面A1B都平行的棱是________。
必修2 第一章 立体几何初步 1.2点、线、面之间的位置关系专题训练

必修2 第一章 立体几何初步 1.2点、线、面之间的位置关系专题训练 学校:___________姓名:___________班级:___________考号:___________一、选择题1.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A.异面B.相交C.平行D.不能确定2.已知平面α⊥平面β,l αβ⋂=,点A A l α∈∉,,直线//AB l ,直线AC l ⊥,直线////m m αβ,,则下列四种位置关系中,不一定成立的是( )A.//AB mB.AC m ⊥C.//AB βD.AC β⊥3.如图,在斜三棱柱111ABC A B C -中,90BAC ∠=︒,1BC AC ⊥,过点1C 作平面ABC 的垂线,则垂足H 必在( )A.直线AB 上B.直线BC 上C.直线CA 上D.ABC △内部4.已知,m n 表示两条不同的直线, ,,αβγ表示三个不同的平面,下列命题中正确的个数是( ) ①若,m n αγβγ⋂=⋂=,且//m n ,则//αβ;②若,m n 相交且都在,αβ外, //,//,//m m n αβα;③若//,//m n αβ,且//m n ,则//αβ.A.1B.2C.3D.05.设平面//α平面,,,A B C βαβ∈∈是AB 的中点,当,?A B 分别在,αβ内运动时,所有的动点 C ( )A.不共面B.当且仅当,?A B 在两条相交直线上移动时才共面C.当且仅当,?A B 在两条给定的平行直线上移动时才共面D.共面6.异面直线是指( )A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线7.若直线1l 与2l 是异面直线, 1l 在平面α内, 2l 在平面β内, l 是平面α与β平面的交线,则下列命题正确的是( )A. l 至少与12,l l 中的一条相交B. l 与12,l l 都相交C. l 至多与12,l l 中的一条相交D. l 与12,l l 都不相交8.如图,点A α∈,点B α∈,点P ,PB α⊥, C 是α内异于A 和B 的动点,且PC AC ⊥,则动点 C 在平面α内的轨迹是( )A.—条线段,但要去掉两个点B.—个圆,但要去掉两个点C.两条平行直线D.半圆,但要去掉两个点9.已知 m 和n 是两条不同的直线, α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m β⊥的是( )A. //αβ,且m α⊂B. //m n ,且n β⊥C. m n ⊥,且n β⊂D. m n ⊥,且//n β10.若111AOB AO B ∠=∠,且11//OA O A,射线11,OA O A ,的方向相同,则下列结论中正确的是( ) A. 11//OB O B ,且射线11,OB O B 的方向相同B. 11//OB O BC. OB 与11O B 不平行D. OB 与11O B 不一定平行二、填空题11.如图,边长为a 的正三角形ABC 的边,AB AC 的中点分别为,E F , 将AEF ∆沿EF 折起至A EF ∆'位置,使平面'A EF ⊥平面BEFC ,则 'A B =__________.12.如图, P 为所在平面外一点, E 为AD 的中点, F 为PC 上一点,若//PA 平面EBF ,则PF FC =__________.13.三个平面两两垂直,它们的交线交于一点O ,且点P 到三个平面的距离分别为3,4,5,则OP 的长为__________.14.α、β、γ是三个两两平行的平面,且α与β之间的距离为3,α与γ之间的距离为4,则β与γ之间的距离为__________.15.如下图所示, P 是ABC ∆所在平面外一点, ,,E F G 分别是,,AB BC PC 的中点,则图中与过,,E F G 的截面平行的线段是__________.三、解答题16.如图, ABC ∆为正三角形, EC ⊥平面ABC ,//BD CE ,且2CE CA BD ==,M 是EA 的中点.1.求证: DE DA =;2.求证:平面BDM ⊥平面ECA ;3.求证:平面DEA ⊥平面ECA .17.如图所示,△ABC 和△A B C '''的对应顶点的连线',','AA BB CC 交于同一点 O ,且23AO BO CO OA OB OC =''=='.。
高中数学 第一章 立体几何初步 1.2 点、线、面之间的位置关系 两条直线平行教案 苏教版必修2(2

高中数学第一章立体几何初步1.2 点、线、面之间的位置关系两条直线平行教案苏教版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章立体几何初步1.2 点、线、面之间的位置关系两条直线平行教案苏教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章立体几何初步1.2 点、线、面之间的位置关系两条直线平行教案苏教版必修2的全部内容。
1。
2 点、线、面之间的位置关系 两条直线平行教学目标掌握用斜率判断两条直线平行的方法,感受用代数方法研究几何图形性质的思想,运用分类讨论、数形结合等数学思想培养学生思维的严谨性、辩证性.重点难点两直线平行的判断.引入新课 1.解下列各题(1)直线()00126≠=--a y ax ,在x 轴上的截距是它在y 轴上的截距的3倍,则=a ______________(2)已知点()12,1--m P 在经过()()4,3,1,2--N M 两点的直线上,则m 的值是_____2.(1)当两条不重合的直线21,l l 的斜率都存在时,若它们相互平行,则它们的斜率______, 反之,若它们的斜率相等,那么它们互相___________,即1l //⇔2l ____________. 当两条直线21,l l 的斜率都不存在时,那么它们都与x 轴_________,故21_____l l . 3.练习:分别判断下列直线AB 与CD 是否平行: (1))1,1()1,3(--B A ,,)1,5()5,3(D C ,-; (2))4,3()4,2(---B A ,,)1,4()1,0(D C ,.例题剖析已知两直线052074221=+-=+-y x l y x l :,: ,求证:1l //2l .求证:顺次连结)4,4()3,2()27,5()3,2(---D C B A ,,,所得的四边形是梯形.例1 例2 ABC D-42 53-3xy例3 求过点)3,2(-A ,且与直线052=-+y x 平行的直线的方程.求与直线0143=++y x 平行,且在两坐标轴上的截距之和为37的直线l 的方程.巩固练习1.如果直线022=++y ax 与直线023=--y x 平行,则=a ____________________.2.过点)2,1(-且与直线01=--y x 平行的直线方程是____________________________. 3.两直线)(02R k k y x ∈=+-和0563=+-y x 的位置关系是___________________. 4.已知直线1l 与经过点)6,3(P 与)3,6(Q 的直线平行,若直线1l 在y 轴上的截距为2, 则直线1l 的方程是_____________________________.5.已知)27,31()5,5()1,1()2,4(----D C B A ,,,,求证:四边形ABCD 是梯形.课堂小结1l //2l ⇔⎩⎨⎧≠=2121b b k k 或1l //2l ⇔斜率不存在且横截距不相等,即如果21k k =,那么一定有1l //2l ,反之不一定成立.课后训练班级:高一( )班 姓名:____________一 基础题1.下列所给直线中,与直线012=--y x 平行的是( )A .0224=-+y xB .0224=--y xC .0124=-+y xD .0124=+-y x2.经过点)3,2(-C ,且平行于过两点)2,1(M 和)5,1(--N 的直线的方程是____________. 3.将直线032=++y x 沿x 轴负方向平移2个单位,则所得的直线方程为____________. 4.若直线012=-+y ax 与直线0)1(2=+-+a y a x 平行,则=a _________________. 二 提高题5.已知直线l 与与直线m :0532=-+y x 平行,且在两坐标轴上的截距之和为1, 求直线l 的方程.例46.当a 为何值时,直线012=-+ay x 和直线01)13(=---ay x a 平行.三 能力题 7.(1)已知直线1l :0=++C By Ax ,且直线1l //2l ,求证:直线2l 的方程总可以写成)(011C C C By Ax ≠=++;(2)直线1l 和2l 的方程分别是0111=++C y B x A 和0222=++C y B x A ,其中1A ,1B 不全为0,22,B A 也不全为0,试探求:当1l //2l 时,直线方程中的系数应满足什么关系?8.已知平行于直线0152=-+y x 的直线l 与两坐标轴围成的三角形的面积为5, 求直线l 的方程.。
高中数学 第1章 点、直线、面的位置关系7 点到面的距离和线面角学案 苏教版必修2

点到面的距离和线面角知识点课标要求题型说明点到面的距离和线面角1. 理解斜线在平面内的射影及与平面所成角的概念,会求简单的线面角;2. 理解点到平面的距离的概念,会求简单的点面距离选择题填空题解答题求点到面的距离和斜线与平面所成的角其实质是垂直关系的应用,其中寻找一个点在平面内的射影是解决问题的难点。
二、重难点提示重点:掌握点到面的距离和线面角的解法。
难点:如何寻找点在平面内的射影。
考点一:点到平面的距离1. 点到平面的距离从平面外一点引平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离。
2. 直线和平面的距离一条直线和一个平面平行,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离。
【要点诠释】直线到平面的距离常常转化为点到平面的距离求解。
【规律总结】求点面距离的常用方法①直接过点作面的垂线,求垂线段的长,通常要借助于某个直角三角形。
②转移法:借助线面平行将点转移到直线上某一特殊点到平面的距离求解。
③体积法:利用三棱锥的特征转化位置来求解。
(后面章节)考点二:直线和平面所成的角1. 斜线一条直线与一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线与平面的交点叫做斜足,斜线上一点与斜足间的线段叫做这个点到平面的斜线段。
2. 正投影过平面α外一点P向平面α引斜线和垂线,那么过斜足Q和垂足P1的直线就是斜线在平面内的正投影(简称射影),线段P1Q就是斜线段PQ在平面α内的射影,如图所示。
3. 直线和平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线与这个平面所成的角。
特别地:如果直线和平面垂直,那么就说这条直线与平面所成的角是直角;如果直线与平面平行或在平面内,则它们所成的角是0°的角。
(2)范围:设直线与平面所成的角为θ,则0°≤θ≤90°。
(3)画法:如图所示,斜线AP与平面α所成的角是∠PAO。
【核心归纳】求解斜线和平面所成的角的一般步骤是:①确定斜线与平面的交点即斜足;②经过斜足上除斜足外任一点作平面的垂线,确定垂足,进而确定斜线在平面内的射影;③求解由垂线、斜线及其射影构成的直角三角形。
高中数学(苏教版,必修二) 第一章立体几何初步 1.2.3第3课时 课时作业(含答案)

第3课时直线与平面垂直的判定【课时目标】1.理解直线与平面垂直的定义.2.掌握直线与平面垂直的判定定理并能灵活应用.1.如果直线a与平面α内的__________________,我们就说直线a与平面α互相垂直,记作:________.图形如图所示.2.从平面外一点引平面的垂线,这个点和________间的距离,叫做这个点到这个平面的距离.3.直线与平面垂直的判定定理:如果一条直线和一个平面内的两条________直线垂直,那么这条直线______于这个平面.图形表示:用符号表示为:______________________________________________________________.一、选择题1.下列命题中正确的是________(填序号).①如果直线l与平面α内的无数条直线垂直,则l⊥α;②如果直线l与平面α内的一条直线垂直,则l⊥α;③如果直线l不垂直于α,则α内没有与l垂直的直线;④如果直线l不垂直于α,则α内也可以有无数条直线与l垂直.2.直线a⊥直线b,b⊥平面β,则a与β的关系是________.3.若a、b、c表示直线,α表示平面,下列条件中能使a⊥α为________.(填序号)①a⊥b,b⊥c,b⊂α,c⊂α;②a⊥b,b∥α;③a∩b=A,b⊂α,a⊥b;④a∥b,b⊥α.4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B 的动点,且PC⊥AC,则△ABC的形状为__________三角形.5.如图①所示,在正方形SG1G2G3中,E、F分别是边G1G2、G2G3的中点,D是EF的中点,现沿SE、SF及EF把这个正方形折成一个几何体(如图②使G1、G2、G3三点重合于一点G),则下列结论中成立的有________(填序号).①SG⊥面EFG;②SD⊥面EFG;③GF⊥面SEF;④GD⊥面SEF.6.△ABC的三条边长分别是5、12、13,点P到三点的距离都等于7,那么P到平面ABC 的距离为__________________________________________________________________.7.如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为________.8.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件______时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).9.如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN 是直角,则∠C1MN=________.二、解答题10.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.11.如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F 分别是AB,PC的中点,PA=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.能力提升12.如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证B1O⊥平面PAC.13.如图所示,△ABC中,∠ABC=90°,SA⊥平面ABC,过点A向SC和SB引垂线,垂足分别是P、Q,求证:(1)AQ⊥平面SBC;(2)PQ⊥SC.1.直线和平面垂直的判定方法 (1)利用线面垂直的定义. (2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a ∥b ,a ⊥α,则b ⊥α;②若α∥β,a ⊥α,则a ⊥β.2.在线面垂直的问题中,通过直线与直线垂直,可以证明直线与平面垂直;直线与平面垂直后,直线和平面内的任何直线都垂直.这样,就形成了线线垂直与线面垂直连环使用的思维形式,它对解题方法、策略乃至人们的思维,无疑都是一种提示.第3课时 直线与平面垂直的判定 答案知识梳理1.任意一条直线都垂直 a ⊥α 2.垂足3.相交 垂直 m ,n ⊂α,m ∩n =O ,l ⊥m ,l ⊥n ⇒l ⊥α 作业设计1.④ 2.a ⊂β或a ∥β 3.④ 4.直角解析 易证AC ⊥面PBC ,所以AC ⊥BC . 5.① 6.323解析 由P 到三个顶点距离相等.可知,P 为△ABC 的外心,又△ABC 为直角三角形,∴P 到平面ABC 的距离为h =PD =72-⎝⎛⎭⎫1322=323.7.4解析⎭⎪⎬⎪⎫PA ⊥平面ABC BC ⊂平面ABC ⇒⎭⎪⎬⎪⎫PA ⊥BC AC ⊥BC ⇒BC ⊥平面PAC ⇒BC ⊥PC , ∴直角三角形有△PAB 、△PAC 、△ABC 、△PBC . 8.∠A 1C 1B 1=90° 解析如图所示,连结B 1C ,由BC =CC 1,可得BC 1⊥B 1C ,因此,要证AB 1⊥BC 1,则只要证明BC 1⊥平面AB 1C ,即只要证AC ⊥BC 1即可,由直三棱柱可知,只要证AC ⊥BC 即可. 因为A 1C 1∥AC ,B 1C 1∥BC ,故只要证A 1C 1⊥B 1C 1即可.(或者能推出A 1C 1⊥B 1C 1的条件,如∠A 1C 1B 1=90°等) 9.90°解析 ∵B 1C 1⊥面ABB 1A 1, ∴B 1C 1⊥MN . 又∵MN ⊥B 1M , ∴MN ⊥面C 1B 1M , ∴MN ⊥C 1M . ∴∠C 1MN =90°.10.证明 在平面B 1BCC 1中, ∵E 、F 分别是B 1C 1、B 1B 的中点, ∴△BB 1E ≌△CBF , ∴∠B 1BE =∠BCF , ∴∠BCF +∠EBC =90°,∴CF ⊥BE ,又AB ⊥平面B 1BCC 1,CF ⊂平面B 1BCC 1, ∴AB ⊥CF ,AB ∩BE =B ,∴CF ⊥平面EAB . 11.证明 (1)∵PA ⊥底面ABCD , ∴CD ⊥PA .又矩形ABCD 中,CD ⊥AD ,且AD ∩PA =A , ∴CD ⊥平面PAD , ∴CD ⊥PD .(2)取PD 的中点G ,连结AG ,FG .又∵G 、F 分别是PD ,PC 的中点,∴GF 綊12CD ,∴GF 綊AE ,∴四边形AEFG 是平行四边形,∴AG ∥EF . ∵PA =AD ,G 是PD 的中点, ∴AG ⊥PD ,∴EF ⊥PD ,∵CD ⊥平面PAD ,AG ⊂平面PAD . ∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD .12.证明 连结AB 1,CB 1,设AB =1. ∴AB 1=CB 1=2,∵AO =CO ,∴B 1O ⊥AC . 连结PB 1.∵OB 21=OB 2+BB 21=32, PB 21=PD 21+B 1D 21=94,OP 2=PD 2+DO 2=34,∴OB 21+OP 2=PB 21. ∴B 1O ⊥PO ,又∵PO ∩AC =O , ∴B 1O ⊥平面PAC .13.证明 (1)∵SA ⊥平面ABC ,BC ⊂平面ABC , ∴SA ⊥BC .又∵BC ⊥AB ,SA ∩AB =A , ∴BC ⊥平面SAB . 又∵AQ ⊂平面SAB ,∴BC ⊥AQ .又∵AQ ⊥SB ,BC ∩SB =B , ∴AQ ⊥平面SBC .(2)∵AQ ⊥平面SBC ,SC ⊂平面SBC , ∴AQ ⊥SC .又∵AP ⊥SC ,AQ ∩AP =A , ∴SC ⊥平面APQ .∵PQ ⊂平面APQ ,∴PQ ⊥SC .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修2 2.2平面与平面平行的判定练习
学号姓名
主要知识:
一、选择题;
1.设直线l,m,平面α,β,下列条件能得出α∥β的有( )
①l⊂α,m⊂α,且l∥β,m∥β;②l⊂α,m⊂α,且l∥m;③l∥α,m∥β,且l∥m
A 1个
B 2个
C 3个
D 0个
2.已知:命题:P:α内存在着不共线的三点到平面β的距离均相等;命题:Q:α∥β,则下面成立的是()
A P⇒Q ,P⇐Q
B P⇐Q,P⇒Q
C P⇔Q,
D P⇒Q,P⇐Q 3.下列命题中,可以判断平面α∥β的是()
①α,β分别过两条平行直线;②a,b为异面直线,α过a平行b,β过b平行a;
A ①
B ②
C ①②
D 无
4.下列命题中为真命题的是()
A 平行于同一条直线的两个平面平行
B 垂直于同一条直线的两个平面平行
C 若—个平面内至少有三个不共线的点到另—个平面的距离相等,则这两个平面平行.
D若三条直线a、b、c两两平行,则过直线a的平面中,有且只有—个平面与b,c都平行.
5.下列命题中正确的是( )
①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;
③垂直于同一直线的两个平面平行;④与同一直线成等角的两个平面平行
A ①②
B ②③
C ③④
D ②③④
二、填空题;
6.下列命题中正确的是(填序号);
①一个平面内两条直线都平行于另一个平面,那么这两个平面平行;
②如果一个平面内任何一条直线都平行于另一个平面,那么这两个平面平行;
③平行于同一直线的两个平面一定相互平行;
④如果一个平面内的无数多条直线都平行于另一个平面,那么这两个平面平行;
7.若夹在两个平面间的三条平行线段相等,那么这两个平面的位置关系是;8.如右图,点P是光源,将投影片放在平面α内,问投影幕所在平面β与平面α______时,投影图象的形状不发生变化.
三、解答题;
9.平面α∥平面β,AB,CD是异面直线,M,N分别是AB,CD的中点,且A1∈α,BD∈β,求
证:MN∥α.
10.已知四面体ABCD中,M,N分别是△ABC和△ACD的重心,P为AC上一点,且AP:PC=2:1,求证:(1)BD∥面CMN;(2)平面MNP//平面BCD.
11.在棱长为a的正方体ABCD—A1B1C1D1中,求证:平面A1BD∥平面CB1D1;
参考答案:一、
DBBB
二、
6. 2
7. 平行,相交
8. 平行
三、
9. 略
10. 略
11. 略。