苏教版高中数学必修一练习题

合集下载

苏教版必修1高一数学《对数函数》习题及答案

苏教版必修1高一数学《对数函数》习题及答案

高中学生学科素质训练—对数与对数函数一、选择题: 1.3log 9log 28的值是 ( )A .32 B .1 C .23 D .22.若log 2)](log [log log )](log [log log )](log [log 55153313221z y x ===0,则x 、y 、z 的大小关系是( )A .z <x <yB .x <y <zC .y <z <xD .z <y <x 3.已知x =2+1,则lo g 4(x 3-x -6)等于( )A.23 B.45 C.0D.214.已知lg2=a ,lg3=b ,则15lg 12lg 等于( )A .ba ba +++12B .ba ba +++12C .ba ba +-+12D .ba ba +-+125.已知2 lg(x -2y )=lg x +lg y ,则y x 的值为( )A .1B .4C .1或4D .4 或 6.函数y =)12(log 21-x 的定义域为( )A .(21,+∞) B .[1,+∞)C .(21,1] D .(-∞,1)7.已知函数y =log 21 (ax 2+2x +1)的值域为R ,则实数a 的取值范围是 ( )A .a > 1B .0≤a < 1C .0<a <1D .0≤a ≤18.已知f (e x)=x ,则f (5)等于 ( )A .e 5B .5eC .ln5D .log 5e9.若1()log (01),(2)1,()a f x x a a f f x -=>≠<且且则的图像是 ( )A B C D10.若22log ()y x ax a =---在区间(,1-∞上是增函数,则a 的取值范围是( )A .[2-B .)22⎡-⎣C .(22⎤-⎦D .()22-11.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( )A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或12.函数),1(,11ln+∞∈-+=x x x y 的反函数为( )A .),0(,11+∞∈+-=x e e y xx B .),0(,11+∞∈-+=x e e y xx C .)0,(,11-∞∈+-=x e e y xx D .)0,(,11-∞∈-+=x e e y xx 二、填空题:13.计算:log 2.56.25+lg1001+ln e +3log 122+= . 14.函数y =log 4(x -1)2(x <1=的反函数为___ _______. 15.已知m >1,试比较(lg m )0.9与(lg m )0.8的大小 . 16.函数y =(log 41x )2-log 41x 2+5 在 2≤x ≤4时的值域为_____ _ .三、解答题:17.已知y =log a (2-ax )在区间{0,1}上是x 的减函数,求a 的取值范围.18.已知函数f (x )=lg[(a 2-1)x 2+(a +1)x +1],若f (x )的定义域为R ,求实数a 的取值范围.19.已知f(x)=x2+(lg a+2)x+lg b,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?20.设0<x<1,a>0且a≠1,试比较|log a(1-x)|与|log a(1+x)|的大小.21.已知函数f(x)=log a(a-a x)且a>1,(1)求函数的定义域和值域;(2)讨论f(x)在其定义域上的单调性;(3)证明函数图象关于y=x对称.22.在对数函数y=log2x的图象上(如图),有A、B、C三点,它们的横坐标依次为a、a+1、a+2,其中a≥1,求△ABC面积的最大值.参考答案一、选择题: ADBCB CDCBA AB 二、填空题:13.213,14.y =1-2x (x ∈R ), 15. (lg m )0.9≤(lg m )0.8,16.8425≤≤y 三、解答题:17.解析:先求函数定义域:由2-ax >0,得ax <2又a 是对数的底数,∴a >0且a ≠1,∴x <a2 由递减区间[0,1]应在定义域内可得a2>1,∴a <2 又2-ax 在x ∈[0,1]是减函数∴y =log a (2-ax )在区间[0,1]也是减函数,由复合函数单调性可知:a >1 ∴1<a <218、解:依题意(a 2-1)x 2+(a +1)x +1>0对一切x ∈R 恒成立.当a 2-1≠0时,其充要条件是:⎪⎩⎪⎨⎧<--+=∆>-0)1(4)1(01222a a a 解得a <-1或a >35 又a =-1,f (x )=0满足题意,a =1,不合题意. 所以a 的取值范围是:(-∞,-1]∪(35,+∞) 19、解析:由f (-1)=-2 ,得:f (-1)=1-(lg a +2)+lg b =-2,解之lg a -lg b =1,∴ba=10,a =10b . 又由x ∈R ,f (x )≥2x 恒成立.知:x 2+(lg a +2)x +lg b ≥2x ,即x 2+x lg a +lg b ≥0,对x ∈R 恒成立,由Δ=lg 2a -4lg b ≤0,整理得(1+lg b )2-4lg b ≤0 即(lg b -1)2≤0,只有lg b =1,不等式成立. 即b =10,∴a =100.∴f (x )=x 2+4x +1=(2+x )2-3 当x =-2时,f (x ) min =-3. 20.解法一:作差法|log a (1-x )|-|log a (1+x )|=|a x lg )1lg(- |-|a x lg )1lg(+|=|lg |1a (|lg(1-x )|-|lg(1+x )|) ∵0<x <1,∴0<1-x <1<1+x ∴上式=-|lg |1a [(lg(1-x )+lg(1+x )]=-|lg |1a ·lg(1-x 2)由0<x <1,得,lg(1-x 2)<0,∴-|lg |1a ·lg(1-x 2)>0, ∴|log a (1-x )|>|log a (1+x )| 解法二:作商法|)1(log ||)1(log |x x a a -+=|log (1-x )(1+x )|∵0<x <1,∴0<1-x <1+x ,∴|log (1-x )(1+x )|=-log (1-x )(1+x )=log (1-x )x+11 由0<x <1,∴1+x >1,0<1-x 2<1 ∴0<(1-x )(1+x )<1,∴x+11>1-x >0 ∴0<log (1-x )x+11<log (1-x )(1-x )=1 ∴|log a (1-x )|>|log a (1+x )| 解法三:平方后比较大小∵log a 2(1-x )-log a 2(1+x )=[log a (1-x )+log a (1+x )][log a (1-x )-log a (1+x )] =log a (1-x 2)·log ax x +-11=|lg |12a ·lg(1-x 2)·lg x x +-11 ∵0<x <1,∴0<1-x 2<1,0<xx +-11<1 ∴lg(1-x 2)<0,lgxx+-11<0 ∴log a 2(1-x )>log a 2(1+x ),即|log a (1-x )|>|log a (1+x )| 解法四:分类讨论去掉绝对值当a >1时,|log a (1-x )|-|log a (1+x )|=-log a (1-x )-log a (1+x )=-log a (1-x 2) ∵0<1-x <1<1+x ,∴0<1-x 2<1 ∴log a (1-x 2)<0,∴-log a (1-x 2)>0当0<a <1时,由0<x <1,则有log a (1-x )>0,log a (1+x )<0 ∴|log a (1-x )|-|log a (1+x )|=|log a (1-x )+log a (1+x )|=log a (1-x 2)>0 ∴当a >0且a ≠1时,总有|log a (1-x )|>|log a (1+x )| 21.解析:(1)定义域为(-∞,1),值域为(-∞,1)(2)设1>x 2>x 1∵a >1,∴12x x a a>,于是a -2x a <a -1x a则log a (a -a 2x a )<log a (a -1xa ) 即f (x 2)<f (x 1)∴f (x )在定义域(-∞,1)上是减函数(3)证明:令y =log a (a -a x )(x <1),则a -a x =a y ,x =log a (a -a y ) ∴f -1(x )=log a (a -a x )(x <1)故f (x )的反函数是其自身,得函数f (x )=log a (a -a x )(x <1=图象关于y =x 对称. 22.解析:根据已知条件,A 、B 、C 三点坐标分别为(a ,log 2a ),(a +1,log 2(a +1)),(a +2,log 2(a +2)),则△ABC 的面积S=)]2(log [log 2)]2(log )1([log 2)]1(log [log 222222++-++++++a a a a a a222)]2([)1)(2(log 21+++=a a a a a )2()1(log 2122++=a a a aa a a 212log 21222+++=)211(log 2122a a ++= 因为1≥a ,所以34log 21)311(log 2122max =+=S友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!。

最新高中数学苏教版必修一第1章1.1课堂同步练习题含答案(同步练习).doc

最新高中数学苏教版必修一第1章1.1课堂同步练习题含答案(同步练习).doc

1.判断题(对的打“√”,错的打“×”)(1)“全体著名的文学家”构成一个集合.( )(2)小于8但不小于-2的偶数集合是{0,2,4,6}.( )(3)集合{0}中不含元素.( )(4){0,1},{1,0}是两个不同的集合.( )解析:(1)标准不明确,研究的对象不具备确定性,故不可以构成集合.(2)小于8但不小于-2的偶数集合应为{-2,0,2,4,6}.(3)集合{0}中含有一个元素为0.(4)由集合中元素的无序性可知{0,1}与{1,0}是相同的集合.答案:(1)×(2)×(3)×(4)×2.给出下列关系:①12∈R;②2∉Q;③|-5|∉N*;④|-3|∈Q.其中正确的是________.(填序号)解析:|-5|=5∈N*,故③不正确;|-3|=3∉Q,故④不正确;其他两个均正确.答案:①②3.集合A={x|x=|a|a+|b|b,a,b为非零实数}的元素个数为________.解析:若a>0,b>0,则x=2;若a<0,b<0,则x=-2;若a,b异号,则x=0.故A={-2,0,2}.答案:34.如果集合{x|x2-2x+a=0}=∅,则实数a的取值范围是________.解析:Δ=4-4a<0得a>1.答案:a>15.用描述法表示下列集合:(1){0,1,2,3,4}=___________________________________________________ _____________________;(2){13,24,35,46,57}=___________________________________________________ _____________________;(3)不等式2x-4<3在自然数集合中的元构成的集合是___________________________________________________ _____________________.解析:(1)抓住这几个元素的特征:都是自然数,且都不大于4,故可表示为{x|x=n,n∈N且n≤4}.(2)这5个分数都为真分数,分子比分母小2,且分子都在1到5之间,都为正整数.故可表示为{x|x=nn+2,1≤n≤5且n∈N}.(3)抓住元素的特征:为自然数,故可表示为{x|2x-4<3,x ∈N}.答案:(1){x|x=n,n∈N且n≤4}(2){x|x =nn +2,1≤n ≤5且n ∈N}(3){x|2x -4<3,x ∈N}[A 级 基础达标]1.(2012·江阴市一中高一期中试题)若1∈{x ,x 2},则x =________.解析:由1∈{x ,x 2},则x =1或x 2=1,∴x =±1,当x =1时,x =x 2=1,不符合元素的互异性,∴x =-1. 答案:-12.用符号“∈”或“∉”填空:π________Q ,13________Q ,0________∅,2________R ,0________N *,32________{0,1,2},-2________Z. 答案:∉ ∈ ∉ ∈ ∉ ∉ ∈3.集合A ={x 2,3x +2,5y 3-x},B ={周长等于20cm 的三角形},C ={x|x -3<2,x ∈R},D ={(x ,y)|y =x 2-x -1},其中用描述法表示集合的有________.解析:集合A 是用列举法描述的.答案:B 、C 、D4.如图,是用Venn 图表示的集合,用列举法表示为________;用描述法表示为________.解析:其中元素为-2,-1,0,1,2,3.答案:{-2,-1,0,1,2,3} {x|-3<x<4,x ∈Z} 5.若集合{1,a ,b}与{-1,-b ,1}是同一个集合,则a 与b 分别为________.解析:由题意得⎩⎪⎨⎪⎧a =-1b =-b 或⎩⎪⎨⎪⎧a =-b ,b =-1.解得⎩⎪⎨⎪⎧a =-1b =0或⎩⎪⎨⎪⎧a =1,b =-1.当a =1,b =-1时,集合中有重复元素舍去.故a =-1,b =0.答案:-1,06.已知p ∈R ,且集合A ={x|x 2-px -52=0},集合B ={x|x 2-92x -p =0},若12∈A ,求集合B 中的所有元素. 解:由12∈A ,得12为方程x 2-px -52=0的一个根,代入得p =-92,从而B ={x|x 2-92x +92=0}={32,3},即集合B 中的元素为32和3. 7.已知集合A ={x|x ∈N ,126-x ∈N},用列举法表示集合A. 解:∵126-x ∈N ,x ∈N ,∴6-x =1,2,3,4,6,得x =5,4,3,2,0.∴集合A ={0,2,3,4,5}.[B 级 能力提升]8.(2012·黄桥中学州市高一期中试题)已知集合M ={x 2-5x-5,1},则实数x的取值范围为________.解析:∵x2-5x-5≠1,∴x2-5x-6≠0,∴(x+1)(x-6)≠0,∴x≠-1且x≠6.故x的取值范围为{x|x∈R,x≠-1且x≠6}.答案:{x|x∈R,x≠-1且x≠6}9.已知集合A={a,b,c},若a,b,c为△ABC的三边长,那么△ABC一定不是________.(填序号)①等腰三角形;②直角三角形;③锐角三角形;④钝角三角形;⑤等边三角形.解析:由集合中元素的互异性可知a,b,c互不相等,故应填①⑤.答案:①⑤10.用适当的方法表示下列集合,并指出它是有限集还是无限集.(1)由所有小于10的既是奇数又是质数的自然数组成的集合;(2)由平面直角坐标系中所有第三象限内的点组成的集合;(3)由方程x2+x+1=0的实数根组成的集合;(4)由所有周长等于10cm的三角形组成的集合.解:(1)满足条件的数为3,5,7,所以所求集合为B={3,5,7}.集合B是有限集.(2)所求集合可表示为C={(x,y)|x<0且y<0}.集合C是无限集.(3)因为方程x2+x+1=0的判别式Δ<0,故无实根,所以由方程x2+x+1=0的实数根组成的集合是空集.(4)由所有周长等于10cm的三角形组成的集合可表示为P={x|x是周长等于10cm的三角形}.P为无限集.11.(创新题)已知集合A={x|x=a+2b,a∈Z,b∈Z},试判断下列元素x与集合A间的关系:(1)x=0;(2)x=12+1;(3)x=x1+x2,其中x1∈A,x2∈A;(4)x=x1·x2,其中x1∈A,x2∈A.解:(1)∵x=0=0+0×2,取a=b=0,0∈Z,∴x∈A;(2)∵x=12+1=2-1=(-1)+1×2,-1∈Z,1∈Z.∴x∈A;(3)∵x1∈A,x2∈A.∴有a1,a2,b1,b2∈Z,使得x1=a1+2b1,x2=a2+2b2,则x=x1+x2=(a1+a2)+2(b1+b2),而a1+a2∈Z,b1+b2∈Z,∴x∈A;(4)由(3),x=x1·x2=(a1+2b1)(a2+2b2) =(a1a2+2b1b2)+2(a1b2+a2b1),而a1a2+2b1b2∈Z,a1b2+a2b1∈Z,故x∈A.。

高一数学高中数学苏教版试题

高一数学高中数学苏教版试题

高一数学高中数学苏教版试题1.已知程序框图如图所示,如果上述程序运行的结果为S=132,那么判断框中应填入A.k<11?B.k<12?C.k<13?D.k<14?【答案】A【解析】由题,输出,根据循环体中语句的顺序,知输出时,故满足条件为.故本题答案选.点睛:本题主要考查程序框图中的循环结构.循环结构中都有一个累计变量和计数变量,累计变量用于输出结果,计算变量用于记录循环次数,累计变量用于输出结果,计数变量和累计变量一般是同步执行的,累加一次计数一次,哪一步终止循环或不能准确地识别表示累计的变量,都会出现错误.计算程序框图的有关的问题要注意判断框中的条件,同时要注意循环结构中的处理框的位置的先后顺序,顺序不一样,输出的结果一般不会相同.2.从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是()A.A与C互斥B.B与C互斥C.任两个均互斥D.任两个均不互斥【答案】B【解析】事件C包括三种情况,一是有两个次品一个正品,二是有一个次品两个正品,三是三件都是正品,即不全是次品,把事件C同另外的两个事件进行比较,看清两个事件能否同时发生,得到结果.解:由题意知事件C包括三种情况,一是有两个次品一个正品,二是有一个次品两个正品,三是三件都是正品,∴事件C中不包含B事件,事件C和事件B不能同时发生,∴B与C互斥,故选B.点评:本题考查互斥事件和对立事件,是一个概念辨析问题,注意这种问题一般需要写出事件所包含的所有的结果,把几个事件进行比较,得到结论.3.某人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.两次都不中靶D.只有一次中靶【答案】C【解析】事件“至少有一次中靶”包含两次都中靶和两次中有一次中靶,它的互斥事件是两次都不中靶,实际上它的对立事件也是两次都不中靶.解:∵事件“至少有一次中靶”包含两次都中靶和两次中有一次中靶,它的互斥事件是两次都不中靶,故选C.点评:本题考查互斥事件和对立事件,对立事件是指同一次试验中,不会同时发生的事件,遇到求用至少来表述的事件的概率时,往往先求它的对立事件的概率.4.两个事件互斥是这两个事件对立的条件()A.充分非必要B.必要非充分C.充分必要D.既不充分又不必要【答案】B【解析】两个事件是互斥事件,这两个事件不一定对立,但如果是对立事件,一定是互斥事件.前者不一定推出后者,后者一定可以推出前者.解:互斥、对立事件的定义,对立一定互斥而互斥不一定对立.故选B.点评:是对立事件一定是互斥的,但是互斥事件不一定是对立的,分清互斥事件和对立事件之间的关系,互斥事件是不可能同时发生的事件,对立事件是指一个不发生,另一个一定发生的事件.5.下列说法中正确的是()A.事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大B.事件A,B同时发生的概率一定比事件A,B恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件不一定是互斥事件D.互斥事件不一定是对立事件,对立事件一定是互斥事件【答案】D【解析】互斥事件是不可能同时发生的事件,而对立事件是A不发生B就一定发生的事件,他两个的概率之和是1.解:由互斥事件和对立事件的概念知互斥事件是不可能同时发生的事件对立事件是A不发生B就一定发生的事件,故选D点评:对立事件包含于互斥事件,是对立事件一定是互斥事件,但是互斥事件不一定是对立事件,认识两个事件的关系,是解题的关键.6.从装有红球、黑球和白球的口袋中摸出一个球,若摸出的球是红球的概率是0.4,摸出的球是黑球的概率是0.25,那么摸出的球是白球的概率是()A.0.35B.0.65C.0.1D.不能确定【答案】A【解析】判断这三件事件是彼此互斥事件,再根据互斥事件的概率加法公式求出结果.解:从装有红球、黑球和白球的口袋中摸出一个球,设事件A 为:“摸出的球是红球”;事件B为:“摸出的球是黑球”;事件C为:“摸出的球是白球”.则事件A、事件B、事件C是彼此互斥的事件,故P(C)=1﹣P(A)﹣P(B)=1﹣0.4﹣0.25=0.35.故选A.点评:本题主要考查互斥事件的概率加法公式,判断这三件事件是彼此互斥事件,是解题的关键,属于基础题.7.下列各项中不能组成集合的是()A.所有正三角形B.《数学》教材中所有的习题C.所有数学难题D.所有无理数【解析】根据集合的三要素:确定性、互异性、无序性得到选项.解:集合中的元素满足三要素:确定性、互异性、无序性“数学难题”是不确定的元素故所有数学难题不能组成集合故选C点评:本题考查集合中元素满足的三要素:确定性、互异性、无序性.8.已知2a∈A,a2﹣a∈A,若A含2个元素,则下列说法中正确的是()A.a取全体实数B.a取除去0以外的所有实数C.a取除去3以外的所有实数D.a取除去0和3以外的所有实数【解析】根据集合A的元素的性质知,2a与a2﹣a都在集合A中,根据A含2个元素,得2a≠a2﹣a进行求解即得.解:已知2a∈A,a2﹣a∈A,若A含2个元素,则2a≠a2﹣a∴a≠0且a≠3.故选D.点评:本题考查了元素与集合的关系,主要根据集合元素的特征进行求解,对于存在型的问题,需要先假设存在有条件列出不等式进行求解说明,考查了逻辑思维能力.9.给出下列命题:(i)N中最小的元素是1;(ii)若a∈N,则﹣a∉N;(iii)若a∈N,b∈N,则a+b的最小值是2其中所有正确命题的个数为()A.0B.1C.2D.3【解析】根据N表示自然数集,包括0和正整数,判断①②③的正确性.解:∵集合N中含0,∴①×;∵N表示自然数集,0∈N,﹣0=0∈N,∴②×;∵0∈N,1∈N,则a+b的最小值是1,∴③×;故选A.点评:本题借助考查命题的真假判断,考查了自然数集的表示及集合中元素的性质,集合中元素性质:无序性、确定性、互异性.10.坐标轴上的点的集合可表示为()A.{(x,y)|x=0,y=0;或x≠0,y=0}B.{(x,y)|x2+y2=0}C.{(x,y)|xy=0}D.{(x,y)|x2+y2≠0}【解析】根据坐标轴上的点的集合是由x轴和y轴上的点的集合的并集,因此分别求出由x轴和y轴上的点的集合,再求并集即可.解:∵直角坐标系中,x轴上的点的集合{(x,y)|y=0},直角坐标系中,y轴上的点的集合{(x,y)|x=0},∴坐标轴上的点的集合可表示为{(x,y)|y=0}∪{(x,y)|x=0}={(x,y)|xy=0}.故选C.点评:此题是个基础题.本题考查描述法表示集合,抓住描述法的特征表示即可.。

2020-2021学年苏教版高中数学必修一全册课时同步练习及解析

2020-2021学年苏教版高中数学必修一全册课时同步练习及解析

(新课标)最新苏教版高中数学必修一§1.1 集合的含义及其表示(1)课后训练【感受理解】1.给出下列命题(其中N 为自然数集) :①N 中最小的元素是1 ②若a ∈N 则-a ∉N ③ 若a ∈N,b ∈N ,则a+b 的最小值是2(4)x x 212=+的解可表示为}1,1{, 其中正确的命题个数为 . 2.用列举法表示下列集合.①小于12的质数构成的集合;②平方等于本身的数组成的集合;③由||||(,)a b a b R a b+∈所确定的实数的集合; ④抛物线221y x x =-+ (x 为小于5的自然数)上的点组成的集合.3. 若方程x 2-5x+6=0和方程x 2-x-2=0的解为元素的集合为M ,则M 中元素的个数为4.由2,2,4a a -组成一个集合A ,A 中含有3个元素,则a 的取值可以是【思考应用】5.由实数332,,,x x x x --所组成的集合里最多有 个元素.6. 由“,x xy ”组成的集合与由“0,||,x y ”组成的集合是同一个集合,则实数,x y 的值是否确定的?若确定,请求出来,若不确定,说明理由.7.定义集合运算:},),({B y A x y x xy z z B A ∈∈+==Θ,设集合}3,2{},1,0{==B A ,求集合B A Θ.8.关于x 的方程20(0)ax bx c a ++=≠,当,,a b c 分别满足什么条件时,解集为空集、含一个元素、含两个元素?9. 已知集合{,}A x x m m Z N Z ==+∈∈.(1)证明:任何整数都是A 的元素;(2)设12,,x x A ∈求证:12,x x A ⋅∈【拓展提高】9.设S 是满足下列两个条件的实数所构成的集合: ①1S ∉,②若a S ∈,则11S a ∈-, 请解答下列问题:(1)若2S ∈,则S 中必有另外两个数,求出这两个数;(2)求证:若a S ∈,则11S a-∈ (3)在集合S 中元素能否只有一个?请说明理由;(4)求证:集合S 中至少有三个不同的元素.§1.1集合的含义及其表示(2)课后训练1. 设a ,b ,c 均为非零实数,则x=||||||||a b c abc a b c abc+++的所有值为元素组成集合是________2. 集合}9,7,5,3,1{用描述法表示为 .3. 下列语句中,正确的是 .(填序号)(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,1,2};(3)方程0)2()1(22=--x x 的所有解的集合可表示为{1,1,2,2} (4)集合}54{<<x x 可以用列举法表示.4.所有被3整除的数用集合表示为 .5.下列集合中表示同一集合的是` (填序号)(1)M={3,2},N={2,3} (2)M={(3,2)},N={(2,3)}(3)M={(,)1},{(,)1}x y x y N y x x y +==+= (4) M={1,2},N={(1,2)}6.下列可以作为方程组⎩⎨⎧-=-=+13y x y x 的解集的是 (填序号) (1){1,2},x y ==(2){1,2}(3){(1,2)} (4){(,)12}(5){(,)12}x y x y x y x y ====且或(6)}0)2()1(),{(22=-+-y x y x7.用另一种方法表示下列集合.(1){绝对值不大于2的整数} (2){能被3整除,且小于10的正数}(3)}5,{Z x x x x x ∈<=且 (4)*},*,6),{(N y N x y x y x ∈∈=+(5){5,3,1,1,3--}8.已知{}{}0|,0|22=+-==++=q px x x B q px x x A .当{}2=A 时,求集合B9.用描述法表示图中阴影部分(含边界)的点的坐标集合.10.对于*,N b a ∈,现规定:⎩⎨⎧⨯+=)()(*的奇偶性不同与的奇偶性相同与b a b a b a b a b a ,集合{(,)*36,,*}M a b a b a b N ==∈ (1) 用列举法表示b a ,奇偶性不同时的集合M.(2) 当b a ,奇偶性相同时的集合M 中共有多少个元素?【拓展提高】11 设元素为正整数的集合A 满足“若x A ∈,则10x A -∈”.(1)试写出只有一个元素的集合A ;(2)试写出只有两个元素的集合A ;(3)这样的集合A 至多有多少个元素?(4)满足条件的集合A 共有多少个?§1.2 子集·全集·补集(1)课后训练【感受理解】1. 设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 2.下列各式中,正确的个数是 ①0={0};②0∈{0};③{1}∈{1,2,3};④{1,2}⊆{1,2,3};⑤{a ,b}⊆{a ,b}.3.设{|12}A x x =<< ,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x},B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 . 5.设集合M ={(x,y)|x+y<0,xy>0}和N ={(x,y)|x<0,y<0},那么M 与N 的关系为______________.6.集合A ={x|x=a 2-4a+5,a ∈R},B ={y|y=4b 2+4b+3,b ∈R} 则集合A 与集合B 的关系是________.【思考应用】7.设x ,y ∈R ,B={(x,y)|y-3=x-2},A={(x,y)|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a .10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a},C={x 2+(a+1)x-3,1}. 求(1)当A={2,3,4}时,求x 的值;(2)使2∈B ,BA ,求x a ,的值; (3)使B= C 的x a ,的值.【拓展提高】12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.(变式)已知集合{}{}|25,|121,A x x B x m x m =-<<=+<<-满足,A B ⊆求实数m 的取值范围.⊂ ≠§1.2 子集·全集·补集(2)课后训练【感受理解】1.设集合{}{},,3|,,4|22R b b y y B R a a x x A ∈+-==∈+-==则A ,B 间的关系为 . 2若U={x|x 是三角形},P={x|x 是直角三角形}则U C P = . 3已知全集+=R U ,集合{}|015,,A x x x R =<-≤∈则_______.U C A = 4.已知全集}{非零整数=U ,集合}},42{U x x x A ∈>+=,则=A C U .5.设},61{},,5{N x x x B N x x x A ∈<<=∈≤=,则=B C A .【思考应用】6.设全集U={1,2,3,4,5},M={1,4},则U C M 的所有子集的个数是 .7.已知全集},21{*N n x x U n ∈==,集合}*,21{2N n x x A n ∈==,则=A C U .8.已知A A y ax y x A Z a ∉-∈≤-=∈)4,1(,)1,2(}3),{(,且,则满足条件a 的值为 .9.设U=R ,}1{},31{+≤≤=≥≤=m x m x B x x x P 或,记所有满足P C B U ⊆的m 组成的集合为M ,求M C U .10.(1)设全集{}{},1|,1|,+>=≤==a x x B x x A R U 且U C A B ⊆,求a 的范围.(2)已知全集{}{}{}22,3,23,2,,5,U U a a A b C A =+-==求实数b a 和的值.【拓展提高】10.已知全集}5{的自然数不大于=U ,集合}1,0{=A ,}1{<∈=x A x x B 且,}1{U x A x x C ∈∉-=且.(1)求U B ð,U C ð.(2)若}{A x x D ∈=,说明D B A ,,的关系.§1.3 交集·并集(1)课后训练【感受理解】1.设全集{1,2,3,4,5},{1,3,5},{2,4,5}U A B ===,则()()U U C A C B =I .2.设集合{|5,},{|1,}A x x x N B x x x N =≤∈=>∈,那么A B =I .3.若集合22{|21,},{|21,}P y y x x x N Q y y x x x N ==+-∈==-+-∈,则下列各式中正确的是 .(1);(2){0};(3){1};(4)P Q P Q P Q P Q N =∅==-=I I I I4.已知集合A={x|-5<x<5},B={x|-7<x<a},C={x|b<x<2},且A ∩B=C ,则 a ,b 的值分别为 .【思考应用】5.设全集U={1,2,3,4},A 与B 是U 的子集,若A ∩B ={1,3 },则称(A,B)为一个“理想配集”.(若A =B ,规定(A,B)=(B, A);若A ≠B ,规定(A,B)与(B, A)是两个不同的“理想配集”).那么符合此条件的“理想配集”的个数是 .6.记{}{},361T ,的三角形,至少有一内角为至少有一边为等腰三角形。

第1章-1.3-交集、并集高中数学必修第一册苏教版

第1章-1.3-交集、并集高中数学必修第一册苏教版

例1-3 (2024·北京市清华附中期中)已知集合 = {−1,0,8}, = {| − 1 < < 1},
则 ∩ =( B
A.{−1}
)
B.{0}
C.{−1,0}
D.{−1,0,1}
知识点2 并集
例2-4 [教材改编P14例1](2024·浙江省学业考试)已知集合 = {0,1,2},集合
∴ 2 − 1 = 9或2 = 9,即 = 5或 = ±3.
当 = 5时, = {−4,9,25}, = {0,−4,9},
则 ∩ = {−4,9},不满足题意,∴ ≠ 5.
当 = 3时, − 5 = 1 − = −2,不满足集合中元素的互异性,∴ ≠ 3.
当 = −3时, = {−4,−7,9}, = {−8,4,9},则 ∩ = {9},符合题意.
知, ∩ = {|3 ≤ < 7}, ∪ = {|2 < < 10},∁ = {| < 3或 ≥ 7},
∁ = {| ≤ 2或 ≥ 10},
则∁ ∪ = {| ≤ 2或 ≥ 10},
∁ ∩ = {| < 3或 ≥ 7},
2.(2024·山东省青岛市期末)如图1.3-14所示的Venn图中,若 = {|0 ≤ ≤ 2},
= {| > 1},则阴影部分表示的集合为( D
)
A.{|0 < < 2}
B.{|1 < ≤ 2}
C.{|0 ≤ ≤ 1或 ≥ 2}
D.{|0 ≤ ≤ 1或 > 2}
5或−
1 − ,9},若9 ∈ ∩ ,则实数的值为_______.
【解析】∵ 9 ∈ ∩ ,∴ 9 ∈ 且9 ∈ ,

苏教版高中数学必修第一册第1——8章阶段测试卷测试卷

苏教版高中数学必修第一册第1——8章阶段测试卷测试卷

苏教版高中数学必修第一册第1——8章阶段测试卷(满分150分,时间120分钟)班级姓名评价一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x∈N|0≤x≤5},B={1, 3, 5},则∁A B等于()A.{0, 2, 4}B.{2, 4}C.{0, 1, 3}D.{2, 3, 4}2.命题“∃x∈Z,使x2+2x+m≤0”的否定是()A.∀x∈Z,都有x2+2x+m≤0B.∃x∈Z,使x2+2x+m>0C.∀x∈Z,都有x2+2x+m>0D.不存在x∈Z,使x2+2x+m>03.在△ABC中,若sin A·cos B·tan C<0,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形4.函数y=x cos x+sin x在区间[-π,π]上的图象大致为()A. B. C.D.5.已知不等式(x+y)(1x +ay)≥9对任意正实数x,y恒成立,则正实数a的最小值为()A. 2B. 4C. 6D. 86.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(参考数据:ln2≈0.69) ()A. 1.2天B. 1.8天C. 2.5天D. 3.5天7. 已知函数f (x )是定义在R 上的奇函数,且满足f (x +6)=f (x ),当x ∈(-3, 0]时,f (x )=x -sin π2x ,则f (2024)等于 ( )A . -2B . 2C . -4D . 48. 已知函数f (x )=√x -2,若f (2a 2-5a +4)<f (a 2+a +4),则实数a 的取值范围是 ( ) A. (-∞,12)∪(2, +∞)B. [2, 6)C. (0,12]∪[2, 6)D. (0, 6)二、 多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9. 已知集合A =[2, 5),B =(a , +∞).若A ⊆B ,则实数a 的值可能是 ( )A . -3B . 1C . 2D . 510. 已知函数f (x )=(log 2x )2-log 2x 2-3,则 ( )A . f (4)=-3B . 函数y =f (x )的图象与x 轴有两个交点C . 函数y =f (x )的最小值为-4D . 函数y =f (x )的最大值为411. 已知函数f (x )=tan x ,对任意的x 1, x 2∈(-π2,π2)(x 1≠x 2),给出下列说法,正确的有( )A . f (x 1+π)=f (x 1)B . f (-x 1)=f (x 1)C .f (x 1)-f (x 2)x 1-x 2>0D . f (x 1+x 22)>f (x 1)+f (x 2)2(x 1x 2>0) 12. 若定义域为[0, 1]的函数f (x )同时满足:①对任意的x ∈[0, 1],总有f (x )≥0,②f (1)=1,③若x 1≥0, x 2≥0, x 1+x 2≤1,则有f (x 1+x 2)≥f (x 1)+f (x 2),就称f (x )为“A 函数”.下列定义在[0, 1]的函数中,是“A 函数”的有( )A . f (x )=lo g 12(x +1) B . f (x )=log 2(x +1)C . f (x )=xD . f (x )=2x-1三、 填空题:本题共4小题,每小题5分,共20分.其中第15题第一个空2分,第二个空3分.13. 若函数f (x )=a xa 2-12+b (a , b ∈R )是幂函数,则f (4)= .14. 方程(12)x=4-x 2的实根个数为 .15. 已知[x ]表示不超过x 的最大整数,如[-1.2]=-2, [1.5]=1, [3]=3.若f (x )=2x,g (x )=f (x -[x ]),则g (32)= ,函数g (x )的值域为 .16. 已知函数f (x )=log 2x , g (x )=2x +a ,若存在x 1, x 2∈[12,2],使得f (x 1)=g (x 2),则实数a 的取值范围是 .四、 解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤. 17. (10分)设全集为U ,函数f (x )=ln (x 2-x -12)的定义域为集合A ,且集合B ={x|8x+2>1}.请写出一个不等式,使它的解集为(∁U A )∩B ,并说明理由.18. (12分)已知指数函数f (x )的图象经过点P (3, 8). (1) 求函数f (x )的解析式;(2) 若f (2x 2-3x +1)>f (x 2+2x -5),求x 的取值范围.19. (12分)某公司生产某种产品的速度为x kg/h ,每小时可获得的利润为(15x +1-4x )元,其中x ∈[1, 10].(1) 要使生产该产品每小时获得的利润为60元,每小时应生产多少千克产品? (2) 要使生产400kg 该产品获得的利润最大,每小时应生产多少千克产品?并求出最大利润.20. (12分)某同学用“五点法”画函数f (x )=A sin (ωx +φ)(ω>0, |φ|<π2)在某一个周期内的图象时,列表如下:x π12π3 7π125π6 13π12ωx +φ 0 π2π 3π22π A sin (ωx +φ)4-4(1) 请根据表中数据写出函数f (x )的解析式,并求出f (0), f (π);(2) 若函数f (x )的值域为A ,集合C ={x |m -6≤x ≤m +3},且A ∪C =C ,求实数m 的取值范围.21. (12分)在平面直角坐标系xOy 中,记函数f (x )=log 3(8-2x)的图象为曲线C 1,函数g (x )=√x -3的图象为曲线C 2.(1) 比较f (2)和1的大小,并说明理由;(2) 当曲线C 1在直线y =1的下方时,求x 的取值范围; (3) 证明:曲线C 1和C 2没有交点. 22. (12分)已知函数f (x )=3x +a3x +b (a , b ∈R ). (1) 当a =3, b =-1时,求方程f (x )=3x的解.(2) 若函数f (x )是定义在R 上的奇函数,存在t ∈[-1, 2],使得不等式f (2t -1)>f (t -k )成立,求实数k 的取值范围.参考答案1. A2. C3. B4. A5. B6. B 提示 由R 0=1+rT ,得3.28=1+6r ,解得r =0.38,所以I (t )=e 0.38t .当I (t )=2,即e 0.38t =2时,有0.38t =ln2,所以t ≈0.690.38≈1.8 7. B 提示 f (x )是以6为周期的周期函数,f (2024)=(337×6+2)=f (2).而f (-2)=-2-sin (-π)=-2,所以f (2)=-f (-2)=2 8. C 提示 易知f (x )是[2, +∞)上的增函数,则{2a 2-5a +4<a 2+a +4,2a 2-5a +4≥2,解得2≤a <6或0<a ≤12 9. AB 10. ABC 提示f (x )=(log 2x )2-2log 2x -3=(log 2x -1)2-4 11. AC 提示 对于A ,由于f (x )=tan x 的最小正周期为π,所以A正确;对于B ,函数f (x )=tan x 为奇函数,所以B 不正确;对于C ,f (x 1)-f (x 2)x 1-x 2>0表明函数为增函数,而f (x )=tan x 在区间(-π2,π2)上单调递增,所以C 正确;对于D ,结合图象易知,函数在区间(-π2,0)上有f (x 1+x 22)>f (x 1)+f (x 2)2,同理,在区间(0,π2)上有f (x 1+x 22)<f (x 1)+f (x 2)2,所以D 不正确 12. CD 提示 对于A , f (1)=-1,不满足②;对于B ,取x 1=x 2=12, f (x 1+x 2)=f (1)=1, f (x 1)+f (x 2)=2log 2(12+1)=log 294>1,不满足③;易验证C 正确;对于D ,易知①②正确,若x 1≥0, x 2≥0, x 1+x 2≤1,则f (x 1+x 2)-f (x 1)-f (x 2)=2x 1+x 2-2x 1-2x 2+1=(2x 1-1)(2x 2-1)≥0,故D 正确 13. 2 14. 2 提示 转化成函数y =(12)x 与y =4-x 2的图象的交点个数 15. √2 [1, 2) 提示 g (32)=f (32-[32])=f (32-1)=√2.因为[x ]∈(x -1, x ],所以x -[x ]∈[0, 1),故g (x )∈[1, 2) 16. [-5, 0] 提示 当12≤x ≤2时,-1≤f (x )≤1, 1+a ≤g (x )≤4+a.由题意有[-1, 1]∩[1+a ,4+a ]≠⌀.若[-1, 1]∩[1+a , 4+a ]=⌀,则1+a >1或4+a <-1,解得a >0或a <-5,故-5≤a ≤0 17. 由x 2-x -12>0,得x >4或x <-3,所以A =(-∞, -3)∪(4, +∞).由8x+2>1,得-2<x <6,所以B =(-2, 6).故(∁U A )∩B =(-2, 4].不妨取不等式为x -4x+2≤0(答案不唯一) 18. (1) 设指数函数f (x )=a x .由题意得f (3)=a 3=8,即a =2,故函数f (x )的解析式为f (x )=2x(2) 由(1)知f (x )=2x,所以f (x )在R 上为增函数.若f (2x 2-3x +1)>f (x 2+2x -5),则2x 2-3x +1>x 2+2x -5,整理得x 2-5x +6>0,解得x >3或x <2,故x 的取值范围为{x |x >3或x <2} 19. (1) 当每小时可获得的利润为60元时,15x +1-4x =60,即15x 2-59x -4=0,解得x 1=4, x 2=-115.又1≤x ≤10,所以x =4,故每小时生产4kg 产品,利润为60元 (2) 设生产400kg 该产品获得的利润为y 元,则y =400x 15x +1-4x=-1600x 2+400x +6000=-1600(1x -18)2+6025,当1x =18,即x =8时,y max =6025,故要使生产400kg 该产品获得的利润最大,每小时应生产8kg 产品,获得的最大利润为6025元 20. (1) 根据表中数据得A =4, ω=2,即f (x )=4sin (2x +φ).当x =π3时,f (π3)=4sin (2×π3+φ)=4,解得φ=-π6,故f (x )=4sin (2x -π6).所以f (0)=4sin (-π6)=-2, f (π)=4sin (2π-π6)=4sin (-π6)=-2 (2) 由(1)得f (x )=4sin (2x -π6)∈[-4, 4],所以A =[-4, 4].又A ∪C =C ,所以A ⊆C ,故{m -6≤-4,m +3≥4,解得1≤m ≤2,所以实数m 的取值范围是[1, 2] 21. (1)因为函数y =log 3x 是(0, +∞)上的增函数,所以f (2)=log 34>log 33=1 (2) “曲线C 1在直线y =1的下方”等价于“f (x )<1”,即log 3(8-2x)<1.又函数y =log 3x 是(0, +∞)上的增函数,所以0<8-2x<3,解得log 25<x <3,所以x 的取值范围是(log 25, 3) (3) 由8-2x >0,得x <3,所以f (x )的定义域为D 1=(-∞, 3).由x -3≥0,得x ≥3,所以g (x )的定义域为D 2=[3, +∞).因为D 1∩D 2=⌀,所以曲线C 1和C 2没有交点 22. (1) 因为a =3,b =-1,所以3x +33x -1=3x ,化简得(3x )2-2·3x -3=0,解得3x =-1(舍去)或3x=3,所以x =1 (2) 因为f (x )是奇函数,所以f (x )+f (-x )=0,即3x +a 3x +b +3-x +a3-x +b =0,化简变形得(a +b )(3x +3-x )+2ab +2=0,要使上式对任意x 恒成立,则a +b =0且ab +1=0,解得{a =1,b =-1或{a =-1,b =1.因为f (x )的定义域是R ,所以a =-1,b =1,故f (x )=3x -13x +1=1-23x +1.对任意x 1, x 2∈R ,且x 1<x 2, f (x 1)-f (x 2)=23x 2+1-23x 1+1=2(3x 1-3x 2)(3x 1+1)(3x 2+1).因为x 1<x 2,所以3x 1-3x 2<0,故f (x 1)<f (x 2),因此f (x )在R上单调递增.因为当t ∈[-1, 2]时,f (2t -1)>f (t -k ),所以2t -1>t -k ,即k >-t +1,而(-t +1)min =-1,所以k >-1,即k 的取值范围是{k |k >-1}。

2023年苏教版新教材高中数学选择性必修第一册4.1数列 同步练习题含答案解析

2023年苏教版新教材高中数学选择性必修第一册4.1数列 同步练习题含答案解析

4.1 数列一、单选题1.已知数列{}n a 的前n 项和22n S n n m =-++,且对任意*1,0n n n a a +∈-<N ,则实数m 的取值范围是( ) A .()2,-+∞ B .(),2-∞- C .()2,+∞ D .(),2-∞【答案】A【分析】根据数列为递减数列,结合n a 与n S 的关系即可求解. 【详解】因为10n n a a +-<,所以数列{}n a 为递减数列,当2n ≥时,()2212(1)2123n n n a S S n n m n n m n -⎡⎤=-=-++---+-+=-+⎣⎦,故可知当2n ≥时,{}n a 单调递减, 故{}n a 为递减数列,只需满足21a a <, 因为1211,1a a S m =-==+, 所以11m -<+,解得2m >-,2.已知数列{}n a 的前n 项和2n S n n =+,那么它的通项公式n a =( ) A .n B .2nC .2n +1D .n +1【答案】B【分析】根据111,1,2n n n a S n a S S n -==⎧⎨=-≥⎩即可求n a .【详解】11112a S ==+=,()()()()221112,2n n n a S S n n n n n n -⎡⎤=-=+--+-=≥⎣⎦,当1n =时,122n a ==, 2n a n ∴=.3.已知数列{}n a 满足111n n a a ++=,若502a =,则1a =( ) A .1- B .12C .32D .24.在数列{}n a 中,12a =,11n n a a -=-(2n ≥,N n +∈),则2023a =( )A .12 B .1C .1-D .25.已知数列n 满足17n n +,则2( ) A .1- B .12C .2D .526.已知数列{}n a 满足*1120222022,,N 20232023nn a a n +⎛⎫==∈ ⎪⎝⎭,则下列结论成立的是( ) A .202120222020a a a << B .202220212020a a a << C .202120202022a a a << D .202020212022a a a <<【答案】A【分析】根据指数函数的性质判断1342a a a a <<<,即可猜想数列{}n a 的奇数项递增,偶数项递减,且奇数项小于偶数项,再证明即可,从而可得答案.7.已知数列n a 满足12111,3,N ,2n n n a a a a a n n *-+===+∈≥,则2022a =( )A .2-B .1C .4043D .4044【答案】A【分析】由递推式得到21n n a a +-=-,从而得到6n n a a +=,由此再结合11n n n a a a -+=+即可求得2022a 的值.【详解】由11n n n a a a -+=+得12n n n a a a ++=+, 两式相加得21n n a a +-=-,即3n n a a +=-,故6n n a a +=, 所以20226321()2a a a a a ==-=--=-.8.已知数列{}n a 的前n 项和221n S n =-+,则这个数列的通项公式为( ) A .42n a n =-+B .32n a n =-+C .1,1,4 2.2n n a n n -=⎧=⎨-+≥⎩D .1,1,32,2n n a n n -=⎧=⎨+≥⎩【答案】C【分析】已知和求通项公式:11,1,2n n n S n a S S n -=⎧=⎨-≥⎩进行计算.【详解】当1n =时,11211;a S ==-+=-当2n ≥时,()2212121142;n n n a S S n n n -=-=-++--=-+ 二、多选题9.已知数列{}n a 的通项公式为31,22,n n n a n n +⎧=⎨-⎩为奇数为偶数,则下列正确的是( )A .619a =B .76a a >C .522S =D .68S S >【答案】BC【分析】根据通项公式即可作出判断.【详解】对于A ,6是偶数,则621210a =-=-,A 错误; 对于B ,7622a a =>,B 正确;对于C ,54(2)10(6)1622S =+-++-+=,C 正确;对于D ,56612S S a =+=,86781222(14)20S S a a =++=++-=,68S S <,D 错误.10.下列数列{}n a 是单调递增数列的有( ) A .231n a n n =-+ B .12nn a ⎛⎫=- ⎪⎝⎭C .2n a n n=+D .ln1n n a n =+55,89,144,233,⋯,在现代生物及化学等领域有着广泛的应用,它可以表述为数列{}n a 满足()12211,n n n a a a a a n +++===+∈N .若此数列各项被3除后的余数构成一个新数列{}n b ,记{}n b 的前n 项和为n S ,则以下结论正确的是( ) A .910n n b b ++-= B .1029n n S S ++=+ C .20222b = D .20222696S =【答案】ABC【分析】根据数列{}n a 可得出数列{}n b 是以8为周期的周期数列,依次分析即可判断. 【详解】数列{}n a 为1,1,2,3,5,8,13,21,34,55,89,144,233,…, 被3除后的余数构成一个新数列{}n b ,∴数列{}n b 为1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,…,观察可得数列{}n b 是以8为周期的周期数列,故910n n b b ++-=,A 正确;。

(苏教版)高中数学必修一(全册)课时同步练习全汇总

(苏教版)高中数学必修一(全册)课时同步练习全汇总

(苏教版)高中数学必修一(全册)课时同步练习汇总第1章集合1.1 集合的含义及其表示A级基础巩固1.下列关系正确的是()①0∈N;②2∈Q;③12∉R;④-2∉Z.A.③④B.①③C.②④D.①解析:①正确,因为0是自然数,所以0∈N;②不正确,因为2是无理数,所以2∉Q;③不正确,因为12是实数,所以12∈R;④不正确,因为-2是整数,所以-2∈Z.答案:D2.若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:根据集合中元素的互异性可知,一定不是等腰三角形.答案:D3.集合M={(x,y)|xy<0,x∈R,y∈R}是()A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、第四象限内的点集解析:集合M 为点集,且横、纵坐标异号,故是第二、第四象限内的点集.答案:D4.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,则a 为( )A .2B .2或4C .4D .0解析:若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∉A .答案:B5.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( ) A .{x =1,y =1}B .{1}C .{(1,1)}D .(1,1)解析:方程组的解集中元素应是有序数对形式,排除A 、B ,而D 不是集合的形式,排除D.答案:C6.下列集合中为空集的是( )A .{x ∈N|x 2≤0}B .{x ∈R|x 2-1=0}C .{x ∈R|x 2+x +1=0}D .{0}答案:C7.设集合A ={2,1-a ,a 2-a +2},若4∈A ,则a 的值是( )A .-3或-1或2B .-3或-1C .-3或2D .-1或2解析:当1-a =4时,a =-3,A ={2,4,14}.当a 2-a +2=4时,得a=-1或a=2.当a=-1时,A={2,2,4},不满足互异性;当a=2时,A={2,4,-1}.所以a=-3或a=2.答案:C8.下列各组集合中,表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={(3,2)},N={3,2}解析:A中集合M,N表示的都是点集,由于横、纵坐标不同,所以表示不同的集合;B中根据集合元素的互异性知表示同一集合;C中集合M表示直线x+y=1上的点,而集合N表示直线x+y=1上点的纵坐标,所以是不同集合;D中的集合M表示点集,N表示数集,所以是不同集合.答案:B9.集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},M={x|x =4k+1,k∈Z},若a∈P,b∈Q,则有()A.a+b∈PB.a+b∈QC.a+b∈MD.a+b不属于P,Q,M中任意一个解析:因为a∈P,b∈Q,所以a=2k1,k1∈Z,b=2k2+1,k2∈Z.所以a+b=2(k1+k2)+1,k1,k2∈Z.所以a+b∈Q.答案:B10.方程x2-2x-3=0的解集与集合A相等,若集合A中的元素是a,b,则a+b=________.解析:方程x2-2x-3=0的两根分别是-1和3.由题意可知,a+b=2.答案:211.已知集合A中含有两个元素1和a2,则a的取值范围是________________.解析:由集合元素的互异性,可知a2≠1,所以a≠±1.答案:a∈R且a≠±112.点(2,11)与集合{(x,y)|y=x+9}之间的关系为__________________.解析:因为11=2+9,所以(2,11)∈{(x,y)|y=x+9}.答案:(2,11)∈{(x,y)|y=x+9}13.已知集合A={(x,y)|y=2x+1},B={(x,y)|y=x+3},a∈A,且a∈B,则a为________.解析:集合A,B都表示直线上点的集合,a∈A表示a是直线y =2x+1上的点,a∈B表示a是直线y=x+3上的点,所以a是直线y=2x+1与y=x+3的交点,即a为(2,5).答案:(2,5)14.下列命题中正确的是________(填序号).①0与{0}表示同一集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|2<x<5}可以用列举法表示.解析:对于①,0表示元素与{0}不同;对于③,不满足集合中元素的互异性,故不正确;对于④,无法用列举法表示,只有②满足集合中元素的无序性,是正确的.答案:②B 级 能力提升15.下面三个集合:A ={x |y =x 2+1};B ={y |y =x 2+1};C ={(x ,y )|y =x 2+1}.问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?解:(1)在A ,B ,C 三个集合中,虽然代表元素满足的表达式一致,但代表元素互不相同,所以它们是互不相同的集合.(2)集合A 的代表元素是x ,满足y =x 2+1,故A ={x |y =x 2+1}=R.集合B 的代表元素是y ,满足y =x 2+1的y ≥1,故B ={y |y =x 2+1}={y |y ≥1}.集合C 的代表元素是(x ,y ),满足条y =x 2+1,表示满足y =x 2+1的实数对(x ,y );即满足条件y =x 2+1的坐标平面上的点.因此,C ={(x ,y )|y =x 2+1}={(x ,y )|点(x ,y )是抛物线y =x 2+1上的点}.16.若集合A =⎩⎨⎧⎭⎬⎫a ,b a ,1又可表示为{a 2,a +b ,0},求a 2 016+b 2 017的值.解:由题知a ≠0,故b a=0,所以b =0.所以a 2=1, 所以a =±1.又a ≠1,故a =-1.所以a 2 016+b 2 017=(-1)2 016+02 017=1.17.设A为实数集,且满足条件:若a∈A,则11-a∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.证明:(1)若a∈A,则11-a∈A.又因为2∈A,所以11-2=-1∈A.因为-1∈A,所以11-(-1)=12∈A.因为12∈A,所以11-12=2∈A.所以A中另外两个元素为-1,12.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.所以集合A不可能是单元素集合.第1章集合1.2 子集、全集、补集A级基础巩固1.下列集合中,不是集合{0,1}的真子集的是()A.∅B.{0} C.{1} D.{0,1}解析:任何一个集合是它本身的子集,但不是它本身的真子集.答案:D2.(2014·浙江卷)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2} C.{5} D.{2,5}解析:因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.答案:B3.若集合A={a,b,c},则满足B⊆A的集合B的个数是() A.1 B.2 C.7 D.8解析:把集合A的子集依次列出,可知共有8个.答案:D4.(2014·湖北卷)已知全集U={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:因为U={1,2,3,4,5,6,7},A={1,3,5,6},所以∁U A={2,4,7}.答案:C5.已知M={-1,0,1},N={x|x2+x=0},则能表示M,N 之间关系的Venn图是()解析:M={-1,0,1},N={0,-1},所以N M.答案:C6.已知集合A={x|-1<x<4},B={x|x<a},若A B,则实数a满足()A.a<4 B.a≤4 C.a>4 D.a≥4解析:由A B,结合数轴,得a≥4.答案:D7.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________________.解析:集合A和B的数轴表示如图所示.由数轴可知:∁A B={x|0≤x<2或x=5}.答案:{x|0≤x<2或x=5}8.设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则实数a的值为________.解析:由A⊇B,得a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a=1,结合集合元素的互异性,可确定a=-1或a=2.答案:-1或29.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B 的包含关系是________.解析:因为∁U A={x|x<0},∁U B={y|y<1}={x|x<1},所以∁U A∁U B.答案:∁U A∁U B10.集合A={x|-3<x≤5},B={x|a+1≤x<4a+1},若B A,则实数a的取值范围是________.解析:分B=∅和B≠∅两种情况.答案:{a|a≤1}11.已知∅{x|x2-x+a=0},则实数a的取值范围是________.解析:因为∅{x|x2-x+a=0},所以方程x2-x+a=0有实根.则Δ=1-4a ≥0,所以a ≤14. 答案:a ≤1412.已知集合A ={-2},B ={x |ax +1=0,a ∈R},B ⊆A ,求a 的值.解:因为B ⊆A ,A ≠∅,所以B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,B =⎩⎨⎧⎭⎬⎫-1a , 所以-1a ∈A ,即有-1a =-2,得a =12. 综上所述,a =0或a =12. B 级 能力提升13.已知集合A ={x |x 2-3x +2=0},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 有( )A .1个B .2个C .3个D .4个解析:因为A ={1,2},B ={1,2,3,4},所以C 中必须含有1,2,即求{3,4}的子集的个数,为22=4.答案:D14.已知:A ={1,2,3},B ={1,2},定义某种运算:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中最大的元素是________,集合A *B 的所有子集的个数为________.解析:A *B ={2,3,4,5},故最大元素为5,其子集个数为24=16.答案:5 1615.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0}.若全集U =R ,且A ⊆(∁U B ),则a 的取值范围是________.解析:因为A ={x |-4≤x ≤-2},B ={x |x ≥a },U =R , 所以∁U B ={x |x <a }.要使A ⊆∁U B ,只需a >-2(如图所示).答案:{a |a >-2}16.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.解:①若B =∅,则应有m +1>2m -1,即m <2.②若B ≠∅,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,⇒2≤m ≤3.综上即得m 的取值范围是{m |m ≤3}.17.已知集合A ={x |x 2-2x -3=0},B ={x |ax -1=0},若B A ,求a 的值.解:A ={x |x 2-2x -3=0}={-1,3},若a =0,则B =∅,满足B A .若a ≠0,则B =⎩⎨⎧⎭⎬⎫1a . 由B A ,可知1a =-1或1a=3, 即a =-1或a =13. 综上可知a 的值为0,-1,13. 18.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B⊆∁R A,求a的取值范围.解:由题意得∁R A={x|x≥-1}.(1)若B=∅,则a+3≤2a,即a≥3,满足B⊆∁R A.(2)若B≠∅,则由B⊆∁R A,得2a≥-1且2a<a+3,即-12≤a<3.综上可得a≥-12.第1章集合1.3 交集、并集A级基础巩固1.(2014·课标全国Ⅱ卷)已知集合A={-2,0,2},B={x|x2-x -2=0},则A∩B=()A.∅B.{2}C.{0} D.{-2}解析:B={x|x2-x-2=0}={-1,2},又A={-2,0,2},所以A∩B={2}.答案:B2.设S={x||x|<3},T={x|3x-5<1},则S∩T=()A.∅B.{x|-3<x<3}C.{x|-3<x<2} D.{x|2<x<3}答案:C3.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3}, A∩∁U B={9},则A=()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}答案:D4.设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B 为()A.{x=1或y=2} B.{1,2}C.{(1,2)} D.(1,2)(x,y)|4x+y=6,3x+2y=7={(1,2)}.解析:A∩B={}答案:C5.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2解析:因为A={x|x=3n+2,n∈N}={2,5,8,11,14,…}又B={6,8,10,12,14},所以A∩B={8,14}.故A∩B中有2个元素.答案:D6.(2014·辽宁卷)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:易知A∪B={x|x≤0或x≥1}.所以∁U(A∪B)={x|0<x<1}.答案:D7.已知集合A={3,2a},B={a,b},若A∩B={2},则A∪B=________.解析:因为A∩B={2},所以2a=2,所以a=1,b=2,故A∪B={1,2,3}.答案:{1,2,3}8.已知全集S=R,A={x|x≤1},B={x|0≤x≤5},则(∁S A)∩B =________.解析:∁S A={x|x>1}.答案:{x|1<x≤5}9.设集合A={x|-1<x<a},B={x|1<x<3}且A∪B={x|-1<x<3},则a的取值范围为________.解析:如下图所示,由A∪B={x|-1<x<3}知,1<a≤3.答案:{a|1<a≤3}10.已知方程x2-px+15=0与x2-5x+q=0的解分别为M和S,且M∩S={3},则pq=________.解析:因为M∩S={3},所以3既是方程x2-px+15=0的根,又是x2-5x+q=0的根,从而求出p=8,q=6.则pq=4 3.答案:4 311.满足条件{1,3}∪A={1,3,5}的所有集合A的个数是________.解析:A可以是集合{5},{1,5},{3,5}或{1,3,5}.答案:412.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={}x |2x +a >0,满足B ∪C =C ,求实数a 的取值范围.解:(1)因为B ={x |x ≥2},所以A ∩B ={x |2≤x <3}.(2)因为C =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >-a 2,B ∪C =C ⇔B ⊆C , 所以-a 2<2.所以a >-4. B 级 能力提升13.集合A ={x ||x |≤1,x ∈R},B ={y |y =x 2,x ∈R},则A ∩B 为( )A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅解析:因为A ={x |-1≤x ≤1},B ={y |y ≥0},所以A ∩B ={x |0≤x ≤1}.答案:C14.图中的阴影部分表示的集合是( )A .A ∩(∁UB )B .B ∩(∁U A )C .∁U (A ∩B )D .∁U (A ∪B )解析:阴影部分的元素属于集合B 而不属于集合A ,故阴影部分可表示为B ∩(∁U A ).答案:B15.设全集U =R ,集合A ={x |x ≤1或x ≥3},集合B ={x |k <x<k +1,k <2},且B ∩(∁U A )≠∅,则实数k 的取值范围是________.解析:由题意得∁U A ={x |1<x <3},又B ∩∁U A ≠∅,故B ≠∅,结合图形可知⎩⎪⎨⎪⎧k <k +1,1<k +1<3,解得0<k <2. 答案:0<k <216.已知集合A ={1,3,-x 3},B ={1,x +2},是否存在实数x ,使得B ∪(∁A B )=A ?实数x 若存在,求出集合A 和B ;若不存在,说明理由.解:假设存在x ,使B ∪(∁U B )=A .所以B A .(1)若x +2=3,则x =1符合题意.(2)若x +2=-x 3,则x =-1不符合题意.所以存在x =1,使B ∪(∁U B )=A ,此时A ={1,3,-1},B ={1,3}.17.已知集合A ={x |-2≤x ≤5},B ={x |2a ≤x ≤a +3},若A ∪B =A ,求实数a 的取值范围.解:因为A ∪B =A ,所以B ⊆A .若B =∅时,2a >a +3,则a >3;若B ≠∅时,⎩⎪⎨⎪⎧2a ≥-2,a +3≤5,2a ≤a +3,解得-1≤a ≤2. 综上所述,a 的取值范围是{a |-1≤a ≤2或a >3}.18.设集合A ={x |x +1≤0或x -4≥0},B ={x |2a ≤x ≤a +2}.(1)若A ∩B ≠∅,求实数a 的取值范围;(2)若A ∩B =B ,求实数a 的取值范围.解:(1)A ={x |x ≤-1或x ≥4}.因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a ≤a +2,a +2≥4或⎩⎪⎨⎪⎧2a ≤a +2,2a ≤-1. 所以a =2或a ≤-12. 所以实数a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≤-12或a =2. (2)因为A ∩B =B ,所以B ⊆A .①B =∅时,满足B ⊆A ,则2a >a +2⇒a >2.②B ≠∅时,则⎩⎪⎨⎪⎧2a ≤a +2,a +2≤-1或⎩⎪⎨⎪⎧2a ≤a +2,2a ≥4. 解之得a ≤-3或 a =2.综上所述,实数a 的取值范围为{a |a ≤-3或a ≥2}.章末知识整合一、元素与集合的关系[例1] 设集合B =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪62+x ∈N . (1)试判断1和2与集合B 的关系;(2)用列举法表示集合B .解:(1)当x =1时,62+1=2∈N ,所以1∈B . 当x =2时,62+2=32∉N ,2∉B . (2)令x =0,1,2,3,4,代入62+x ,检验62+x∈N 是否成立,可得B ={0,1,4}.规律方法1.判断所给元素a 是否属于给定集合时,若a 在集合内,用符号“∈”;若a 不在集合内,用符号“∉”.2.当所给的集合是常见数集时,要注意符号的书写规范.[即时演练] 1.已知集合A ={x |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 中只有一个元素,求实数a 的值,并把这个元素写出来. 解:(1)A =∅,则方程ax 2-3x +2=0无实根,即Δ=9-8a <0,所以a >98. 所以a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a >98. (2)因为A 中只有一个元素,所以①a =0时,A =⎩⎨⎧⎭⎬⎫23满足要求. ②a ≠0时,则方程ax 2-3x +2=0有两个相等的实根.故Δ=9-8a =0,所以a =98,此时A =⎩⎨⎧⎭⎬⎫43满足要求. 综上可知:a =0或a =98. 二、集合与集合的关系[例2] A ={x |x <-1或x >2},B ={x |4x +p <0},当B ⊆A 时,求实数p 的取值范围.分析:首先求出含字母的不等式,其次利用数轴解决.解:由已知解得,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-p 4.又因为因为A={x|x<-1或x>2},且B⊆A,利用数轴所以-p4≤-1.所以p≥4,故实数p的取值范围为{p|p≥4}.规律方法1.在解决两个数集的包含关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解.2.注意端点值的取舍,这是同学易忽视失误的地方.[即时演练] 2.设集合P={(x,y)|x+y<4,x,y∈N*},则集合P 的非空子集的个数是()A.2 B.3 C.7 D.8解析:当x=1时,y<3,又y∈N*,因此y=1或y=2;当x=2时,y<2,又y∈N*,因此y=1;当x=3时,y<1,又y∈N*,因此这样的y不存在;当x≥4时,y<0,也不满足y∈N*.综上所述,集合P中的元素有(1,1),(1,2),(2,1),所以P 的非空子集的个数是23-1=7.故选C.答案:C三、集合的运算[例3]已知集合A={x|x-2>3},B={x|2x-3>3x-a},求A∪B,分析:先确定集合A,B,然后讨论a的范围对结果的影响.解:A={x|x-2>3}={x|x>5},B={x|2x-3>3x-a}={x|x<a-3}.借助数轴表示如图所示.(1)当a -3≤5,即a ≤8时,A ∪B ={x |x <a -3或x >5}.(2)当a -3>5,即a >8时,A ∪B ={x |x >5}∪{x |x <a -3}={x |x ∈R}=R.综上可知,当a ≤8时,A ∪B ={x |x <a -3或x >5};当a >8时,A ∪B =R.规律方法解集合问题关键是读懂集合语言,明确意义,用相关的代数或几何知识进行解决.[即时演练] 3.设集合A ={x ||x |<4},B ={x |x 2-4x +3>0},则集合∁A (A ∩B )=________.解析:因为A ={x |-4<x <4},B ={x |x <1或x >3},所以A ∩B ={x |-4<x <1或3<x <4}.所以∁A (A ∩B )={x |1≤x ≤3}.答案:{x |1≤x ≤3}四、利用集合的运算求参数[例4] 设集合M ={x |-2<x <5},N ={x |2-t <x <2t +1,t ∈R},若M ∪N =M ,求实数t 的取值范围.分析:由M ∪N =M ,知N ⊆M .根据子集的意义,建立关于t 的不等式关系来求解.解:由M ∪N =M 得N ⊆M ,故当N =∅,即2t +1≤2-t ,t ≤13时,M ∪N =M 成立. 当N ≠∅时,由数轴图可得⎩⎪⎨⎪⎧2-t <2t +1,2t +1≤5,2-t ≥-2,解得13<t ≤2.综上可知,所求实数t 的取值范围是{t |t ≤2}.规律方法1.用数轴表示法辅助理解,若右端点小于等于左端点,则不等式无解, N =∅.2.列不等式组的依据是左端点小于右端点,即2t +1在5的左侧(相等时也符合题意),2-t 在-2的右侧(相等时也符合题意).[即时演练] 4.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若A ∩B =B ,求实数m 的取值范围;(2)若A ∩B =∅,求实数m 的取值范围.解:(1)A ∩B =B ⇔B ⊆A ,当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ;当m +1≤2m -1时,要使B ⊆A .则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,m +1≤2m -1⇒2≤m ≤3. 综上,m 的取值范围为{m |m ≤3}.(2)当m +1>2m -1,即m <2时,B =∅,满足A ∩B =∅; 当B ≠∅时,要使A ∩B =∅,则必须⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2⇒m >4. 综上,m 的取值范围是{m |m <2或m >4}.五、集合的实际应用[例5] 某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有________人.分析:每名同学至多参加两个小组―→画出相应的Venn图―→根据全班有36名同学列等式―→得答案解析:设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学可得(26-6-x)+6+(15-10)+4+(13-4-x)+x=36,解得x=8,故同时参加数学和化学小组的有8人.答案:8规律方法解决有关集合的实际应用题时,首先要将文字语言转化为集合语言,然后结合集合的交、并、补运算来处理.此外,由于Venn图简明、直观,因此很多集合问题往往借助Venn图来分析.[即时演练] 5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜欢,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设A,B分别表示喜爱篮球运动、乒乓球运动的人数构成的集合,集合U表示全班人数构成的集合.设同时喜爱乒乓球和篮球运动的有x人.依题意,画出如图所示的Venn图.根据Venn图,得8+x+(15-x)+(10-x)=30.解得x=3.故喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.答案:12章末过关检测卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P解析:因为Q={x|-2<x<2},所以Q⊆P.答案:B2.已知集合A={1,2},B={(x,y)|x-y=1},则A∩B=()解析:由于A是数集,B是点集,故A∩B=∅.答案:D3.已知集合A={x|x(x-1)=0},那么下列结论正确的是() A.0∈A B.1∉AC.-1∈A D.0∉A解析:由x(x-1)=0得x=0或x=1,则集合A中有两个元素0和1,所以0∈A,1∈A.答案:A4.已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=() A.{0} B.{0,1}C.{0,2} D.{0,1,2}解析:因为A={x|x2-2x=0}={0,2},B={0,1,2},所以A∩B ={0,2}.答案:C5.若集合A={x|kx2+4x+4=0,x∈R}中只有一个元素,则实数k的值为()A.1 B.0C.0或1 D.以上答案都不对解析:当k=0时,A={-1};当k≠0时,Δ=16-16k=0,k =1.故k=0或k=1.答案:C6.下列四句话中:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有()解析:空集是任何集合的子集,故④正确,②错误;③不正确,如∅只有一个子集,即它本身;结合空集的定义可知①不正确;故只有1个命题正确.答案:B7.(2015·山东卷)已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0}.则A ∩B =( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)解析:易知B ={x |1<x <3},又A ={x |2<x <4},所以A ∩B ={x |2<x <3}=(2,3).答案:C8.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( )A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅解析:⎩⎪⎨⎪⎧a -1≤3,5≤a +2⇒3≤a ≤4. 答案:B9.已知全集U =R ,集合A ={x |x >1或x <-2},B ={x |-1≤x ≤0},则A ∪∁U B 等于( )A .{x |x <-1或x >0}B .{x |x <-1或x >1}C .{x |x <-2或x >1}D .{x |x <-2或x ≥0}解析:∁U B ={x |x <-1或x >0},所以A ∪∁U B ={x |x <-1或x >0}.答案:A10.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩∁U B =( )A .{3}B .{4}C .{3,4}D .∅解析:由题意A ∪B ={1,2,3},又B ={1,2}.所以∁U B ={3,4},故A ∩∁U B ={3}.答案:A11.已知全集U =R ,集合A ={x |y =1-x },集合B ={x |0<x <2},则(∁U A )∪B 等于( )A .[1,+∞)B .(1,+∞)C .[0,+∞)D .(0,+∞)解析:因为A ={x |x ≤1},所以∁U A ={x |x >1}.所以(∁U A )∪B ={x |x >0}.答案:D12.设全集U ={(x ,y )|x ∈R ,y ∈R},集合A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},若点P (2,3)∈A ∩(∁U B ),则下列选项正确的是( )A .m >-1,n <5B .m <-1,n <5C .m >-1,n >5D .m <-1,n >5解析:由P (2,3)∈A ∩(∁U B )得P ∈A 且P ∉B ,故⎩⎪⎨⎪⎧2×2-3+m >0,2+3-n >0,解得⎩⎪⎨⎪⎧m >-1,n <5. 答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设全集U =M ∪N ={1,2,3,4,5},M ∩∁U N ={2,4},则N =________.答案:{1,3,5}14.已知集合A ={(x ,y )|ax -y 2+b =0},B ={(x ,y )|x 2-ay +b =0},且(1,2)∈A ∩B ,则a +b =________.解析:因为(1,2)∈A ∩B ,所以⎩⎪⎨⎪⎧a -4+b =0,1-2a +b =0⇒a =53,b =73. 故a +b =4.答案:415.设集合A ={x ||x |<4},B ={x |x 2-4x +3>0},则集合{x |x ∈A ,且x ∉A ∩B }=________.解析:A ={x |-4<x <4},B ={x |x >3或x <1},A ∩B ={x |3<x <4或-4<x <1},所以{x |x ∈A 且x ∉A ∩B }={x |1≤x ≤3}.答案:{x |1≤x ≤3}16.设集合M ={x |2x 2-5x -3=0},N ={x |mx =1},若N ⊆M ,则实数m 的取值集合为________.解析:集合M =⎩⎨⎧⎭⎬⎫3,-12.若N ⊆M ,则N ={3}或⎝ ⎛⎭⎬⎫-12或∅.于是当N ={3}时,m =13;当N =⎩⎨⎧⎭⎬⎫-12时,m =-2;当N =∅时,m =0.所以m 的取值集合为⎩⎨⎧⎭⎬⎫-2,0,13. 答案:⎩⎨⎧⎭⎬⎫-2.0,13 三、解答题(本大题共6小题,共70分.解答时写出必要文字说明、计算或证明推理过程)17.(本小题满分10分)A ={x |x 2-3x +2=0},B ={x |ax -2=0},且A ∪B =A ,求实数a 组成的集合C .解:因为A ∪B =A ,所以B ⊆A .当B =∅时,即a =0时,显然满足条件.当B ≠∅时,则B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =2a ,A ={1,2}, 所以2a =1或2a=2,从而a =1或a =2. 故集合C ={0,1,2}.18.(本小题满分12分)已知集合A ={x |1≤x <7},B ={x |2<x <10},C ={x |x <a },全集为实数集R.(1)求A ∪B ,(∁R A )∩B ;(2)如果A ∩C ≠∅,求a 的取值范围.解:(1)A ∪B ={x |1≤x <10},(∁R A )∩B ={x |x <1或x ≥7}∩{x |2<x <10}={x |7≤x <10}.(2)当a >1时,满足A ∩C ≠∅.因此a 的取值范围是{a |a >1}.19.(本小题满分12分)已知A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},若B ⊆A ,求a 的取值范围.解:集合A ={0,-4},由于B ⊆A ,则:(1)当B =A 时,即0,-4是方程x 2+2(a +1)x +a 2-1=0的两根,代入解得a =1.(2)当B ≠A 时:①当B =∅时,则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1;②当B ={0}或B ={-4}时,方程x 2+2(a +1)x +a 2-1=0应有两个相等的实数根0或-4,则Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足条件.综上可知a =1或a ≤-1.20.(本小题满分12分)已知A ={x |a -4<x <a +4},B ={x |x <-1或x >5}.(1)若a =1,求A ∩B ;(2)若A ∪B =R ,求实数a 的取值范围.解:(1)当a =1时,A ={x |-3<x <5},B ={x |x <-1或x >5}. 所以A ∩B ={x |-3<x <-1}.(2)因为A ={x |a -4<x <a +4},B ={x |x <-1或x >5},又A ∪B =R ,所以⎩⎪⎨⎪⎧a -4<-1,a +4>5⇒1<a <3. 所以所求实数a 的取值范围是{a |1<a <3}.21.(本小题满分12分)已知集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},求a 取何值时,A ∩B ≠∅与A ∩C =∅同时成立.解:因为B ={2,3},C ={2,-4},由A ∩B ≠∅且A ∩C =∅知,3是方程x 2-ax +a 2-19=0的解, 所以a 2-3a -10=0.解得a =-2或a =5.当a =-2时,A ={3,-5},适合A ∩B ≠∅与A ∩C =∅同时成立;当a =5时,A ={2,3},A ∩C ={2}≠∅,故舍去.所求a 的值为-2.22.(本小题满分12分)已知集合P ={x |a +1≤x ≤2a +1},Q ={x |1≤2x +5≤15}.(1)已知a =3,求(∁R P )∩Q ;(2)若P ∪Q =Q ,求实数a 的取值范围.解:(1)因为a =3,所以集合P ={x |4≤x ≤7}.所以∁R P ={x |x <4或x >7},Q ={x |1≤2x +5≤15}={x |-2≤x ≤5},所以(∁R P )∩Q ={x |-2≤x <4}.(2)因为P ∪Q =Q ,所以P ⊆Q .①当a +1>2a +1,即a <0时,P =∅,所以P ⊆Q ;②当a ≥0时,因为P ⊆Q ,所以⎩⎪⎨⎪⎧a ≥0,a +1≥-2,2a +1≤5.所以0≤a ≤2. 综上所述,实数a 的取值范围为(-∞,2].第2章 函数2.1 函数的概念2.1.1 函数的概念和图象A 级 基础巩固1.下列各图中,不可能表示函数y =f (x )的图象的是( )答案:B2.函数y =1-x +x 的定义域是( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1,或x ≤0}D .{x |0≤x ≤1}解析:由⎩⎪⎨⎪⎧1-x ≥0,x ≥0,得0≤x ≤1. 答案:D3.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,且f (a )+f (1)=0,则a =( ) A .-3 B .-1 C .1 D .3解析:当a >0时,f (a )+f (1)=2a +2=0⇒a =-1,与a >0矛盾;当a ≤0时,f (a )+f (1)=a +1+2=0⇒a =-3,适合题意.答案:A4.定义域在R 上的函数y =f (x )的值域为[a ,b ],则函数y =f (x +a )的值域为( )A .[2a ,a +b ]B .[0,b -a ]C .[a ,b ]D .[-a ,a +b ] 答案:C5.下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3解析:A 、C 、D 的定义域均不同. 答案:B6.二次函数y =x 2-4x +3在区间(1,4]上的值域是( ) A .[-1,+∞) B .(0,3] C .[-1,3] D .(-1,3)解析:y =x 2-4x +3=(x -2)2-1≥-1,再结合二次函数的图象(如右图所示)可知,-1≤y ≤3.答案:C7.已知函数f (x )的定义域为(-3,0),则函数y =f (2x -1)的定义域是( )A .(-1,1) B.⎝ ⎛⎭⎪⎫-1,12 C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 解析:由于f (x )的定义域为(-3,0) 所以-3<2x -1<0,解得-1<x <12.故y =f (2x -1)的定义域为⎝ ⎛⎭⎪⎫-1,12.答案:B8.函数f (x )=⎝ ⎛⎭⎪⎫x -120+x 2-1x +2的定义域是__________________.解析:要使f (x )有意义,必有⎩⎨⎧x -12≠0,x +2>0,解得x >-2且x ≠12. 答案:⎝ ⎛⎭⎪⎫-2,12∪⎝ ⎛⎭⎪⎫12,+∞9.已知函数f (x )的定义域为[0,1],值域为[1,2],则f (x +2)的定义域是________,值域是________.解析:因为f (x )的定义域为[0,1],所以0≤x +2≤1.所以-2≤x ≤-1,即f (x +2)的定义域为[-2,-1],值域仍然为[1,2].答案:[-2,-1] [1,2]10.(2015·课标全国Ⅱ卷)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________.解析:因为点(-1,4)在y =f (x )的图象上, 所以4=-a +2.所以a =-2. 答案:-211.若f (x )=ax 2-2,a 为正常数,且f [f (2)]=-2,则a =________.解析:因为f (2)=a ·(2)2-2=2a -2, 所以f ()f (2)=a ·(2a -2)2-2=- 2. 所以a ·(2a -2)2=0.又因为a 为正常数,所以2a -2=0.所以a =22.答案:2212.已知函数f (x )=x +1x .(1)求f (x )的定义域; (2)求f (-1),f (2)的值;(3)当a ≠-1时,求f (a +1)的值.解:(1)要使函数f (x )有意义,必须使x ≠0, 所以f (x )的定义域是(-∞,0)∪(0,+∞). (2)f (-1)=-1+1-1=-2,f (2)=2+12=52.(3)当a ≠-1时,a +1≠0. 所以f (a +1)=a +1+1a +1. B 级 能力提升13.若函数y =f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1的定义域为( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)解析:因为f (x )的定义域为[0,2],所以g (x )=f (2x )x -1需满足⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.所以g (x )的定义域为[0,1). 答案:B14.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )解析:因为汽车先启动,再加速、匀速,最后减速,s 随t 的变化是先慢,再快、匀速,最后慢,故A 图比较适合题意.答案:A15.已知函数f (x )=x 21+x 2,那么f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+f (4)+f ⎝ ⎛⎭⎪⎫14=______. 解析:因为f (x )=x 21+x 2,f ⎝ ⎛⎭⎪⎫1x =1x 2+1,所以f (x )+f ⎝ ⎛⎭⎪⎫1x =1.所以f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+f (4)+f ⎝ ⎛⎭⎪⎫14=12+1+1+1=72.答案:7216.已知函数f (x )=2x -1-7x .(1)求f (0),f ⎝ ⎛⎭⎪⎫17,f ⎝ ⎛⎭⎪⎫111; (2)求函数的定义域.解:(1)f (0)=-1,f ⎝ ⎛⎭⎪⎫17=217=277, f ⎝ ⎛⎭⎪⎫111=2111-1-711=411-411=0. (2)要使函数有意义,则⎩⎪⎨⎪⎧x ≥0,1-7x ≥0,解得⎩⎨⎧x ≥0,x ≤17,所以0≤x ≤17. 所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0≤x ≤17.17.已知函数y =1ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的值.解:已知函数y =1ax +1(a <0且a 为常数), 因为1ax +1≥0,a <0,所以x ≤-a ,即函数的定义域为(-∞,-a ]. 因为函数在区间(-∞,1]上有意义, 所以(-∞,1]⊆(-∞,-a ]. 所以-a ≥1,即a ≤-1.所以a 的取值范围是(-∞,-1].18.试画出函数f (x )=(x -2)2+1的图象,并回答下列问题: (1)求函数f (x )在x ∈[1,4]上的值域; (2)若x 1<x 2<2,试比较f (x 1)与f (x 2)的大小. 解:由描点法作出函数的图象如图所示.(1)由图象知,f (x )在x =2时有最小值为f (2)=1, 又f (1)=2,f (4)=5.所以函数f (x )在[1,4]上的值域为[1,5]. (2)根据图象易知,当x 1<x 2<2时,f (x 1)>f (x 2).第2章 函数 2.1 函数的概念 2.1.2 函数的表示方法A 级 基础巩固1.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f (f (-7))的值为( )A .100B .10C .-10D .-100解析:因为f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,所以f (-7)=10.f (f (-7))=f (10)=10×10=100. 答案:A2.函数f (x )=cx 2x +3⎝ ⎛⎭⎪⎫x ≠-32满足f (f (x ))=x ,则常数c 等于( ) A .3 B .-3 C .3或-3D .5或-3解析:f (f (x ))=c ⎝ ⎛⎭⎪⎫cx 2x +32⎝ ⎛⎭⎪⎫cx 2x +3+3=c 2x 2cx +6x +9=x ,即x [(2c +6)x +9-c 2]=0,所以⎩⎪⎨⎪⎧2c +6=0,9-c 2=0,解得c =-3. 答案:B3.如果二次函数的图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式可以是( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1解析:由题意设f (x )=a (x -1)2+b (a >0),由于点(0,0)在图象上,所以a +b =0,a =-b ,故符合条件的是D.答案:D4.某同学从家里赶往学校,一开始乘公共汽车匀速前进,在离学校还有少许路程时,改为步行匀速前进到校.下列图形纵轴表示该同学与学校的距离s ,横轴表示该同学出发后的时间t ,则比较符合该同学行进实际的是( )解析:依题意:s 表示该同学与学校的距离,t 表示该同学出发后的时间,当t =0时,s 最远,排除A 、B ,由于汽车速度比步行快,因此前段迅速靠近学校,后段较慢.故选D.答案:D5.g (x )=1-2x ,f (g (x ))=1-x 2x 2(x ≠0),则f ⎝ ⎛⎭⎪⎫12=( )A .1B .3C .15D .30解析:由g (x )=12得:1-2x =12⇒x =14,代入1-x 2x 2得:1-⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫142=15. 答案:C6.(2015·陕西卷)设f (x )=⎩⎪⎨⎪⎧1-x ,x ≥0,x 2,x <0,则f (f (-2))=( )A .-1 B.14 C.12 D.32解析:f (-2)=(-2)2=4. 所以f (f (-2))=f (4)=1-4=-1. 答案:A7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+3x ,x ≤0,2,x >0,则方程f (x )=x 的解的个数为________.解析:x >0时,x =f (x )=2;x ≤0时,x 2+3x =x ⇒x =0或-2. 答案:38.如图所示,函数f (x )的图象是折线段ABC ,其中点A ,B ,C 的坐标分别为(0,4),(2,0),(4,2),则f (f (f (2))=________.解析:由图象及已知条件知f (2)=0,即f (f (f (2)))=f (f (0)), 又f (0)=4,所以f (f (0))=f (4)=2. 答案:29.若某汽车以52 km/h 的速度从A 地驶向260 km 远处的B 地,在B 地停留32h 后,再以65 km/h 的速度返回A 地.则汽车离开A 地后行走的路程s 关于时间t 的函数解析式为________________.解析:因为260÷52=5(h),260÷65=4(h),所以s =⎩⎪⎨⎪⎧52t ,0≤t <5,260,5≤t ≤132,260+65⎝ ⎛⎭⎪⎫t -132,132<t ≤212. 答案:s =⎩⎪⎨⎪⎧52t ,0≤t <5,260,5≤t ≤132,260+65⎝⎛⎭⎪⎫t -132,132<t ≤212 10.设f (x )=⎩⎨⎧x +1,x ≥0,1x ,x <0.若f (a )>a ,则实数a 的取值范围是________.解析:当a ≥0时,f (a )=a +1>a 恒成立. 当a <0时,f (a )=1a >a ,所以a <-1.综上a 的取值范围是a ≥0或a <-1. 答案:{a |a ≥0或a <-1}11.已知二次函数满足f (3x +1)=9x 2-6x +5,求f (x ). 解:设f (x )=ax 2+bx +c (a ≠0),则f (3x +1)=a (3x +1)2+b (3x +1)+c =9ax 2+(6a +3b )x +a +b +c .因为f (3x +1)=9x 2-6x +5,所以9ax 2+(6a +3b )x +a +b +c =9x 2-6x +5. 比较两端系数,得⎩⎪⎨⎪⎧9a =9,6a +3b =-6,a +b +c =5⇒⎩⎪⎨⎪⎧a =1,b =-4,c =8.所以f (x )=x 2-4x +8.12.已知f (x )=⎩⎪⎨⎪⎧x 2(-1≤x ≤1),1(x >1或x <-1).(1)画出f (x )的图象; (2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R.由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1].B 级 能力提升13.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1.若f (f (0))=4a ,则实数a 的值为( )A .2B .1C .3D .4解析:易知f (0)=2,所以f (f (0))=f (2)=4+2a =4a ,所以a =2. 答案:A14.任取x 1,x 2∈[a ,b ]且x 1≠x 2,若f ⎝⎛⎭⎪⎫x 1+x 22>12[f (x 1)+f (x 2)],则f (x )在[a ,b ]上是凸函数,在以下图象中,是凸函数的图象是( )解析:只需在图形中任取自变量x 1,x 2,分别标出它们对应的函数值及x 1+x 22对应的函数值,并观察它们的大小关系即可. 答案:D15.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧C x ,x <A ,C A ,x ≥A ,A ,C 为常数.已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是( ) A .75,25B .75.16C .60,25D .60,16解析:由条件可知,x ≥A 时所用时间为常数,所以组装第4件产品用时必须满足第一段分段函数,即f (4)=C 4=30⇒C =60, f (A )=60A=15⇒A =16. 答案:D16.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f (f (2))的值;(2)若f (x 0)=8,求x 0的值.解:(1)因为0≤x ≤2时,f (x )=x 2-4,所以f (2)=22-4=0,f (f (2))=f (0)=02-4=-4.(2)当0≤x 0≤2时,由x 20-4=8,得x 0=±23∉[0,2],故无解. 当x 0>2时,由2x 0=8,得x 0=4.因此f (x 0)=8时,x 0的值为4.17.某市出租车的计价标准是:4 km 以内10元,超过4 km 且不超过18 km 的部分1.2 元/km ,超过18 km 的部分1.8 元/km.(1)如果不计等待时间的费用,建立车费与行车里程的函数关系式;(2)如果某人乘车行驶了20 km ,他要付多少车费?解:(1)设车费为y 元,出租车行驶里程为x km.由题意知,当0<x ≤4时,y =10;当4<x ≤18时,y =10+1.2(x -4)=1.2x +5.2;当x >18时,y =10+1.2×14+1.8(x -18)=1.8x -5.6.所以,所求函数关系式为y =⎩⎪⎨⎪⎧10,0<x ≤4,1.2x +5.2,4<x ≤18,1.8x -5.6,x >18.(2)当x =20时,y =1.8×20-5.6=30.4.所以乘车行驶了20 km 要付30.4元的车费.18.某种商品在30天内每件的销售价格P (元)与时间t (天)的函数关系用图①表示,该商品在30天内日销售量Q (件)与时间t (天)之间的关系如下表所示:t /天 5 15 20 30Q /件 35 25 20 10(1)根据提供的图象(图①),写出该商品每件的销售价格P 与时间t 的函数解析式;(2)在所给平面直角坐标系(图②)中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定一个日销售量Q 与时间t 的函数解析式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天(日销售金额=每件的销售价格×日销售量).解:(1)根据图象,每件的销售价格P 与时间t 的函数解析式为:P =⎩⎪⎨⎪⎧t +20,0<t <25,t ∈N ,-t +100,25≤t ≤30,t ∈N.(2)描出实数对(t ,Q )的对应点,如下图所示.从图象发现:点(5,35),(15,25),(20,20),(30,10)似乎在同一条直线上,为此假设它们共线于直线l :Q =kt +b .由点(5,35),(30,10)确定出l 的解析式为Q =-t +40,通过检验可知,点(15,25),(20,20)也在直线l 上.所以日销售量Q 与时间t 的一个函数解析式为Q =-t +40(0<t ≤30,t ∈N).(3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800,0<t <25,t ∈N ,t 2-140t +4 000,25≤t ≤30,t ∈N. 因此y =⎩⎪⎨⎪⎧-(t -10)2+900,0<t <25,t ∈N ,(t -70)2-900,25≤t ≤30,t ∈N. 若0<t <25(t ∈N),则当t =10时,y max =900;若25≤t ≤30(t ∈N),则当t =25时,y max =1 125.因此第25天时销售金额最大,最大值为1 125元.第2章 函数2.2 函数的简单性质2.2.1 函数的单调性A 级 基础巩固1.函数f (x )的图象如图所示,则( )A .函数f (x )在[-1,2]上是增函数B .函数f (x )在[-1,2]上是减函数C .函数f (x )在[-1,4]上是减函数D .函数f (x )在[2,4]上是增函数解析:增函数具有“上升”趋势;减函数具有“下降”趋势,故A正确.答案:A2.已知函数f(x)是(-∞,+∞)上的增函数,若a∈R,则() A.f(a)>f(2a) B.f(a2)<f(a)C.f(a+3)>f(a-2) D.f(6)>f(a)解析:因为a+3>a-2,且f(x)在(-∞,+∞)上是增函数,所以f(a+3)>f(a-2).答案:C3.y=2x在区间[2,4]上的最大值、最小值分别是()A.1,12 B.12,1 C.12,14 D.14,12解析:因为函数y=2x在[2,4]上是单调递减函数,所以y max=22=1,y min=24=12.答案:A4.函数y=x2-6x的减区间是() A.(-∞.2] B.[2,+∞) C.[3,+∞) D.(-∞,3] 解析:y=x2-6x=(x-3)2-9,故函数的单调减区间是(-∞,3].答案:D5.下列说法中,正确的有()①若任意x1,x2∈I,当x1<x2时,f(x1)-f(x2)x1-x2>0,则y=f(x)在I上是增函数;②函数y =x 2在R 上是增函数; ③函数y =-1x在定义域上是增函数; ④函数y =1x的单调区间是(-∞,0)∪(0,+∞). A .0个 B .1个 C .2个 D .3个解析:当x 1<x 2时,x 1-x 2<0,由f (x 1)-f (x 2)x 1-x 2>0知f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2),①正确;②③④均不正确.答案:B6.已知函数f (x )=4x -3+x ,则它的最小值是( )A .0B .1 C.34 D .无最小值解析:因为函数f (x )=4x -3+x 的定义域是⎣⎢⎡⎭⎪⎫34,+∞,且是增函数,所以f (x )min =f ⎝ ⎛⎭⎪⎫34=34. 答案:C7.函数y =f (x )的图象如图所示,则函数f (x )的单调递增区间是________________.解析:由图象可知函数f (x )的单调递增区间是(-∞,1]和(1,+∞).答案:(-∞,1]和(1,+∞)8.已知f (x )是R 上的减函数,则满足f (2x -1)>f (1)的实数x 的取值范围是________.解析:因为f (x )在R 上是减函数,且f (2x -1)>f (1),所以2x -1<1,即x <1.答案:(-∞,1)9.已知函数f (x )=x 2-2x +3在闭区间[0,m ]上的最大值为3,最小值为2,则m 的取值范围是________.解析:因为f (x )=(x -1)2+2,其对称轴为直线x =1,所以当x =1时,f (x )min =2,故m ≥1.又因为f (0)=3,所以f (2)=3.所以m ≤2.故1≤m ≤2.答案:[1,2]10.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x (其中销售量单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为________万元.解析:设公司在甲地销售x 台,则在乙地销售(15-x )台,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝ ⎛⎭⎪⎫x -1922+30+1924, 所以当x =9或10时,L 最大为120万元.答案:12011.讨论函数y =x 2-2(2a +1)x +3在[-2,2]上的单调性.解:因为函数图象的对称轴x =2a +1,所以当2a +1≤-2,即a ≤-32时,函数在[-2.2]上为增函数.当-2<2a +1<2,即-32<a <12时, 函数在[-2,2a +1]上是减函数,在[2a +1,2]上是增函数.当2a +1≥2,即a ≥12时,函数在[-2,2]上是减函数. 12.已知f (x )=x +12-x,x ∈[3,5]. (1)利用定义证明函数f (x )在[3,5]上是增函数;(2)求函数f (x )的最大值和最小值.解:(1)f (x )在区间[3,5]上是增函数,证明如下:设x 1,x 2是区间[3,5]上的两个任意实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1+12-x 1-x 2+12-x 2=3(x 1-x 2)(2-x 1)(2-x 2). 因为3≤x 1<x 2≤5,所以x 1-x 2<0,2-x 1<0,2-x 2<0.所以f (x 1)<f (x 2).所以f (x )在区间[3,5]上是增函数.(2)因为f (x )在区间[3,5]上是增函数,所以当x =3时,f (x )取得最小值为-4,当x =5时,f (x )取得最大值为-2.B 级 能力提升13.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是( )A .(-∞,40)B .[40,64]C .(-∞,40]∪[64,+∞)D .[64,+∞)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1 集合的含义及其表示(1)
课后训练
【感受理解】
1.给出下列命题(其中N 为自然数集) :
①N 中最小的元素是1 ②若a ∈N 则-a ∉N ③ 若a ∈N ,b ∈N ,则a +b 的最小值是2 (4)x x 212=+的解可表示为}1,1{, 其中正确的命题个数为 .
2.用列举法表示下列集合.
①小于12的质数构成的集合;
②平方等于本身的数组成的集合;
③由||||(,)a b a b R a b
+∈所确定的实数的集合; ④抛物线221y x x =-+ (x 为小于5的自然数)上的点组成的集合.
3. 若方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合为M ,则M 中元素的个数为
4.由2,2,4a a -组成一个集合A ,A 中含有3个元素,则a 的取值可以是
【思考应用】
5.由实数332,,,x x x x --所组成的集合里最多有 个元素.
6. 由“,x xy 组成的集合与由“0,||,x y ”组成的集合是同一个集合,则实数,x y 的值是否确定的?若确定,请求出来,若不确定,说明理由.
7.定义集合运算:},),({B y A x y x xy z z B A ∈∈+==Θ,设集合}3,2{},1,0{==B A ,求集合B A Θ.。

相关文档
最新文档