分数百分数复习指导(

合集下载

百分数知识点复习

百分数知识点复习

百分数知识点复习百分数是我们在数学学习中经常会遇到的重要概念,它在日常生活和实际应用中也有着广泛的用途。

接下来,让我们一起对百分数的相关知识点进行一次全面的复习。

一、百分数的定义百分数表示一个数是另一个数的百分之几,也叫百分率或百分比。

百分数通常不写成分数的形式,而采用符号“%”(叫做百分号)来表示。

例如,45% 表示的是 45 是 100 的百分之四十五。

二、百分数的写法写百分数时,通常先写分子,再在后面加上百分号“%”。

例如,百分之三十五,先写 35,再在后面加上“%”,写作 35% 。

三、百分数与分数、小数的互化1、百分数与小数的互化百分数化成小数:把百分号去掉,同时把小数点向左移动两位。

例如,56% 化成小数是 056 。

小数化成百分数:把小数点向右移动两位,同时加上百分号。

例如,037 化成百分数是 37% 。

2、百分数与分数的互化百分数化成分数:把百分数写成分母是 100 的分数,再约分化简。

例如,25% 化成分数是 25/100 ,约分后为 1/4 。

分数化成百分数:通常先把分数化成小数(除不尽时,一般保留三位小数),再把小数化成百分数。

例如,3/5 化成小数是 06 ,化成百分数是 60% 。

四、百分数的应用1、求一个数是另一个数的百分之几用一个数除以另一个数,再乘以 100% 。

例如,甲数是 20 ,乙数是25 ,甲数是乙数的百分之几?列式为:20÷25×100% = 80% 。

2、求一个数的百分之几是多少用这个数乘以百分数。

例如,50 的 30% 是多少?列式为:50×30% = 15 。

3、已知一个数的百分之几是多少,求这个数用已知的数量除以对应的百分数。

例如,一个数的 25% 是 10 ,这个数是多少?列式为:10÷25% = 40 。

五、百分率常见的百分率有及格率、合格率、出勤率、发芽率、成活率等。

计算百分率时,总数作为单位“1”,公式为:部分数量÷总数×100% 。

_百分数的整理和复习解读

_百分数的整理和复习解读
25%。………………………………………( v )
(7)1 吨 50%吨。… … … … … ( )
2
(8) 某工厂今年产值是去年产值的 108%,
说明今年产值比去年多。… … … … (√ )
(9)分母是100的分数叫做百分数。(×)
(10)小红的身高是147%米。 ( ×) (11)34%读作百分之三四。 ( )×
联系 百分数可以看作分母是100的特殊分数。
判断:
1、3%米是百分数。……………….………( ) 2、百分数的意义与分数的意义完全一样..( ) 3、37.5%读作百分之三十七点五。…...…( ) 4、把1千克糖平均分成100份,每份是1%千 克。…………………………………………( ) 5、甲数是乙数的0.25倍,也相当于甲数是乙数的
30÷40×100%=75% 40×85%-30=4(人) 85%-75%=10% 2 、 某班组开会,出席人数有40人,还有2人缺 席,出席率是多少?
40÷(40+2)×100%=95.2%
3、小明在一月内完家庭作业情况如下:全对24
次,有错误6次。请计算出一月内完家庭作业
的正确率和错误率。 24÷(24+6)×100%=80% 6÷(24+6)×100%=80% 4、小东与小华进行投篮比赛,小东投中15个
16
人数
12
8 6
2
公交车自行车 步行 地铁 汽车
连线:
学校图书馆新购进科技书350本,故事书300本。
故事书比科技书少百分之几? 科技书占两种书总数的百分之几? 故事书是科技书的百分之几? 故事书占两种书总数的百分之几? 科技书比故事书多百分之几?
350÷(350+300)=53.8% 300÷350≈0.857=85.7% 300÷(300+350)=46.2% (350-300)÷350≈0.143=14.3% ( 350 -300)÷300≈0.167=16.7%

《分数与百分数》概念整理

《分数与百分数》概念整理

分数与百分数的概念复习整理分数与百分数知识属于数与代数中数的认识这一内容,知识点以理解和掌握机及运用位主。

一、基本知识点:1、 分数的意义与性质包括7个小知识点:分数的意义、分数大小的比较、分数与除法的关系、真分数、假分数(带分数)、分数的基本性质、最简分数、约分与通分、分数和小数的互化。

2、 百分数包括4个小知识点:百分数的意义、成数、折扣、百分数和分数、小数的互化。

二、通过复习应该达到以下复习目标:理解分数的意义和性质;百分数的意义和特征。

掌握分数和百分数的读法、写法。

能运用对意义的理解解决相关问题。

掌握分数、小数、百分数互化的方法,能比较分数、小数、百分数的大小。

理解分数乘除法的意义,能正确解答分数、百分数的应用题。

掌握分数混合运算的顺序和方法,能根据运算定律、运算性质进行简便运算。

三、知识重点的疏理。

一)分数1、分数的意义①分数表示“把单位1平均分成若干份,表示这样一份或几份的数”。

“1”可以是一个物体、一个图形、一个计量单位或者一个整体……。

分数的分数单位区别于整数和小数是十进制,而要根据分母来确定分数单位。

学生应该能正确找到一个分数的分数单位及包含几个这样分数单位。

②正确区分分率和数量:2米的绳子平均截成5段。

每段长( ),每段是这根绳子的()()。

③能灵活运用分数的意义解决问题,这是学生学习的难点。

如:甲绳比乙绳长13 ,乙绳比甲绳少( )( )。

学生能够通过对13 的理解,即把乙绳看成“1”,平均分成3份,甲绳多了这样的1份,也就是甲绳有4份。

乙绳比甲绳少一份,以甲绳为“1”,也就是比甲绳少了14 。

当然老师还可以变换问题,如问,乙绳是甲绳的( )( ),甲绳是乙绳的( )( )等。

同样也可以替换信息,如甲绳是乙绳的43 ,乙绳是甲绳的34 等,与问题合理匹配,主要是让学生体会思考问题的步骤,抓住解决问题的关键。

在学生掌握了基本方法的基础上,教师还要给学生提供独立运用方法的机会,可以在提供信息的形式上继续变化,强化对思考步骤和方法的掌握。

分数、百分数的认识复习

分数、百分数的认识复习
第七单元 总复习
3.分数、百分数的认识
整理与反思
你了解分数和百分数的哪些知识? (1)什么叫分数?什么叫百分数? (2)分数和除法有什么联系?请你举例说明。 (3)分数的基本性质是什么?你能用它说明小数的性质吗? (4)小数、分数和百分数怎样互相改写?
分数 把单位“1”平均分成若干份,表示这样的一 份或者几份的数,叫作分数。
水、电、煤 气和电话费 10%
其他 15%
伙食费 40%
教育 10%
拓展练习
观察下图,将涂色部分与整个图形的面积的关 系分别用分数、最简整数比、百分数表示:
3
3 10 30
10
小结: 百分数、分数与小数之间的互相转化。
数学阅读
一天,百分数20%、小数0.15、分数 1 三位朋友见面 10
了,寒暄一阵后,它们很想知道谁大谁小,但又不知该怎 么比较。坐在一旁的钢笔似乎看出了它们的心思,给它们 想了一个办法:“你们三个都穿同一件外衣,进行比较, 这样一看就能知道谁大,谁小!”钢笔让它们先穿上20% 的外衣。可0.15和 1 怎样才能脱掉自己的外衣呢?
说说百分数与小数的互化方法。
小数点向右移动两位,同时加上%
小数
百分数
去掉%,小数点同时向左移动两位
说说百分数与分数的互化方法。
先化几,再约分
巩固练习
25
9
3 5
60
4.填表。
0.75
1.2
2
6
5
5
40%
75%
方法一:
方法二:
购物 25%
百分数 表示一个数是另一个数百分之几的数,叫 作百分数。又叫作百分比或百分率。
分数与除法的联系
a a b(b 0) b

《百分数(一)整理与复习》教案

《百分数(一)整理与复习》教案
在学生小组讨论环节,大家表现出较强的合作意识,能够积极分享自己的观点。但在讨论过程中,我也注意到有些学生发言不够积极,可能是因为他们对百分数在实际生活中的应用还不够熟悉。因此,我计划在今后的教学中,多设计一些与生活密切相关的讨论主题,激发学生的兴趣和参与热情。
本次教学中,我努力尝试将课堂还给学生,让他们在自主探究、合作交流中学习百分数知识。但从教学反思来看,我还需要在以下几个方面进行改进:
其次,在百分数与分数、小数的互化方面,学生们掌握程度不一。有些学生在互化过程中容易出现错误,这提示我在今后的教学中要注重对这部分学生的个别辅导,帮助他们熟练掌握互化方法。
此外,实践活动环节,学生们的参与度很高,讨论热烈。但在实验操作过程中,我发现部分学生在将实际问题抽象为数学表达式时存在困难。针对这一点,我将在以后的教学中加强对学生问题抽象能力的培养,帮助他们更好地将实际问题与百分数知识联系起来。
1.加强对学生的个别辅导,关注他们在学习中的困难,提高他们的自信心。
2.设计更多有趣的生活实例,让学生在情境中感受百分数的应用,提高问题解决能力。
3.激发学生的讨论热情,鼓励他们大胆发言,提高课堂参与度。
3.百分数的应用:复习百分数在实际问题中的应用,如折扣、成数、增长率等,提高学生解决实际问题的能力。
4.百分数的运算:巩固百分数的加减乘除运算,以及如何利用百分数解决简单的比例问题。
5.综合练习:设计一些典型题目,帮助学生巩固本章所学知识,提高综合运用能力。
二、核心素养目标
本节课旨在培养学生以下核心素养:
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“百分数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

总复习-数的认识2-小数、分数、百分数

总复习-数的认识2-小数、分数、百分数
突破方法
通过引导学生自主复习、归纳,让学生系统地理解小数、分数和百分数的知识,构建小数、分数和百分数的知识体系。
难点
掌握小数、分数和百分数的联系与区别。
突破方法
让学生在复习中,结合具体的例想子,感受小数、分数和百分数之间的联系和区别。
教法
采用练习法、问题引导法、自学辅导法等方法让学生系统复习小数、分数和百分数的知识。
引导学生回答:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。
如: =3÷4.
(2)追问:分数与除法之间有什么区别?
让学生明白:除法是一种运算,而分数既可以表示具体的数量,又可以表示两个量之间的倍数关系。
3.商不变的规律和分数的基本性质。
(1)指名说一说什么是“商不变的规律”?什么是“分数的基本性质”?
课题
总复习-数的认识2-小数、分数、百分数
目标
1.进一步认识整数、小数的数位和计数单位,体会整数和小数相邻计数单位间的进率都是10。
2.探索小数、分数和百分数之间的关系,会进行它们之间的互化。
3.结合具体情境,理解小数、分数、百分数的意义,会认、读、写小数、分数和百分数。
重点
复习小数、分数和百分数,构建较完整的知识体系。
认真聆听教师的
谈话。
用简单的语言,开门见山地告诉学生本节课学习的内容,让学生对所整理与复习的知识有一个大概的了解。
新探
(一)复习“分数的意义”。
1.请同学们先回忆一下,什么是分数?什么是分数单位?
引导学生回答:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数;其中的一份叫做分数单位。
2.对照情境图,你能用尽可能多的方式解释“ ”的含义吗?
课件出示教材第68页“回顾与交流”第1题情境图。

(完整版)分数百分数应用题典型解法的整理和复习(可编辑修改word版)

(完整版)分数百分数应用题典型解法的整理和复习(可编辑修改word版)

-- ) - - ) 分数(百分数)应用题典型解法的整理和复习分数(百分数)应用题是小学数学应用题的主要内容之一,它是整、小数倍数关系应用题的继续和深化,是研究数量之间份数关系的典型应用题。

分数应用题涉及的知识面广, 题目变化的形式多,解题的思路宽,既有独特的思维模式,又有基本的解题思路。

小学即将毕业阶段,如何通过分数(百分数)应用题方法的复习,让孩子们掌握一些基本解题方法,感悟数学的基本思想,从而达到培养初步的逻辑思维能力和运用所学知识解决实际问题能力之目的,笔者根据长期的教学实践和体会,总结出以下一些典型方法,以飨读者。

一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。

画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。

【例 1 120 千克,还剩下 22 千克。

原】一桶油第一次用去 ,第二次比第一次多用去5来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1 1 1=20+225 5则这桶油的千克数为:(20+22)÷(1 1 1=70(千克)5 5【例 2】一堆煤,第一次用去这堆煤的 20%,第二次用去 290 千克,这时剩下的煤比原来这堆煤的一半还多 10 千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10则这堆煤的千克数为:(290+10)÷(1-20%-50%)=1000(千克)二、对应思想】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的 ,第二天卖出余下的 , 量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。

(量率对应常常和画线段图结合使用,效果 极佳。

)【例 3】缝纫机厂女职工占全厂职工人数的 720 工多少人?[分析与解],比男职工少 144 人,缝纫机厂共有职解题的关键是找到与具体数量 144 人的相对应的分率。

小学阶段分数和百分数知识点汇总复习

小学阶段分数和百分数知识点汇总复习

小学阶段分数和百分数知识点汇总复习分数【真分数、假分数】一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

表示其中一份的数,是这个分数的分数单位。

二、两个数相除,它们的商可以用分数表示。

即:a÷b=a/b (b≠0)三、小数和分数的意义可以看出,小数实际上就是分母是10、100、1000…的分数。

四、分数可以分为真分数和假分数。

五、分子小于分母的分数叫做真分数。

真分数小于1。

六、分子大于或等于分母的分数叫做假分数。

假分数大于或等于1。

七、分子和分母只有公因数1的分数叫做最简分数。

八、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。

九、小数的性质和分数的基本性质一致的,应用分数的基本性质,可以通分和约分。

百分数【税率、利息、折扣、成数】一、表示一个数是另一个数的百分之几的数叫做百分数。

百分数也叫百分率或百分比,百分数通常用“%”表示。

二、分数与百分数比较:不同点相同点分数可以表示具体数量,可以有单位名称表示两个数之间的关系百分数不可以表示具体数量,不可以有单位名称三、分数、小数、百分数的互化。

(1)把分数化成小数,用分数的分子除以分母。

(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。

(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。

(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。

(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。

(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

四、熟记常用三数的互化。

五、1、出勤率表示出勤人数占总人数的百分之几。

2、合格率表示合格件数占总件数的百分之几。

3、成活率表示成活棵数占总棵数的百分之几。

六、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。

七、1、多的÷“1”=多百分之几 2、少的÷“1”= 少百分之几八、应得利息是税前利息,实得利息是税后利息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数乘除法、百分数期末复习资料【知识点梳理】①分数乘、除法的意义,百分数的意义和读写,比的意义,比的基本性质,倒数的认识。

②分数乘除法的计算方法、分数混合运算的运算顺序和计算方法、运用运算定律进行分数的简便运算.化简比和求比值。

③百分数与小数、分数的互化④解决分数〔百分数〕乘法的实际问题:A、求一个数的几分之几是多少?B、求比一个数多或少几分之几〔百分之几〕的数是多少。

C、求一个数是另一个数的几分之几〔百分之几〕。

D、已知一个数的几分之几〔百分之几〕是多少,求这个数?E、稍复杂的求已知一个数的几分之几〔百分之几〕是多少,求这个数?F、求一个数比另一个数多〔或少〕百分之几的问题?G、比的应用〔按比例分配〕H、折扣问题I、纳税问题J、利率问题。

复习分数百分数应用题时,要注意分析题目的数量关系,判断把谁看做单位1,单位1是已知量还是未知量,在根据分数乘法或除法的意义进行解答。

通过联系和比照,使学生清楚认识到,分数应用题属于同一种数量关系,只是已知和未知发生了变化,关键在于要正确判断把哪一个数量看做单位1.【考点1】分数乘除法的意义、百分数的意义和读写1.看图用两种方法列式计算。

①②__________________________ ____________________________________________________ __________________________2.154154+154+154+154=( ) ×( )=( ) 112+112+112+116=( ) ×( )=( )3.72×4表示( ), 或〔 〕4. 看图列式:〔 〕×〔 〕=〔 〕 〔 〕×〔 〕=〔 〕 5. 画图表示43526. 一根8米长的绳子平均剪成5段,其中每段占全长的〔 〕,每段长〔 〕米【考点2】百分数的意义和读写1.下面数中能写成百分数的是〔 〕A 、一瓶矿泉水52千克 B 、杨树是柳树的43 C 、西瓜比苹果多0.5千克 D 、20个人2. 用阴影表示以下各百分数:50% 42% 93% 8% 3.写出下面各百分数〔1〕某城市森林的覆盖率为百分十四十九点二。

〔 〕 〔2〕制衣厂第一季度完成全面计划的百分之三十点七五。

〔 〕【考点3】百分数与分数小数的互化1、填表 分 数 1001 87 32小 数 百分数16%130%2、分别用不同的数表示图中阴影部分占整幅图的多少?用分数表示______ 用分数表示______ 用分数表示______ 用小数表示______ 用小数表示______ 用小数表示______ 用百分数表示______ 用百分数表示______ 用百分数表示______ 4、()()45:)()(12)%(4.02510====÷==〔 〕折5、一个数由4个一和6个百分之一组成,这个数写成小数是〔 〕,写成分数是〔 〕, 写成百分数是〔 〕。

6、把87.5%的百分号去掉,结果〔 〕A 、不变B 、扩大到原来的100倍C 、缩小到原来的1100 7、在49后面添上“%”,结果〔 〕A 、不变B 、扩大到原来的100倍C 、缩小到原来的1100【考点4】比的意义和比的基本性质1.两个数〔 〕叫做两个数的比,比的〔 〕不能为0。

2.比的前项除以后项所得的商,叫做〔 〕,它通常用〔 〕表示,也可以用〔 〕 或〔 〕表示。

3. 9﹕8中,9是比的〔 〕项,8是比的〔 〕项,比值是〔 〕。

4.87:0.125化成最简单的整数比是〔 〕,比值是〔 〕。

6. 求3 km ∶0.5 km 的比值是〔 〕。

7.买4套运动服要560元,总价与数量的比是〔 〕,比值是〔 〕,表示〔 〕。

8. 小明和小亮从学校到图书馆,小明用了10分钟,小亮用了12分钟。

小明和小亮所用的 时间比是〔 〕,速度比是〔 〕。

9、把下面的比化成最简整数比,并求比值。

① 60:32 ② 0.45:0.2 ③ 65:73 ④ 0.2小时:20分钟10、3:8的前项乘4,要使比值不变,后项应该〔 〕。

如果前项加上6,要使比值不 变,后项应该〔 〕。

【考点5】倒数。

1.乘积是〔 〕的两个数互为倒数 。

0没有倒数,1的倒数是1 2.51与它的倒数的积是〔 〕。

3.154的倒数是〔 〕,〔 〕的倒数是81。

4.72×〔 〕=109×〔 〕=5××〔 〕=1【考点6】分数乘除法运算① 7642⨯ ② 21847⨯ ③ 7103227⨯⨯ ④ 45435443⨯÷⨯⑤ 27)27498(⨯+ ⑥ 61959565⨯+⨯ ⑦ 759575⨯- ⑧ 546165⨯+⑨ ()596.09÷- ⑩ ⎪⎭⎫⎝⎛+÷3218597 ⑾ ⎥⎦⎤⎢⎣⎡÷⎪⎭⎫ ⎝⎛-⨯31015315 ⑿ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯÷91213115⒀ ⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-319216375.0 ⒁ ⎪⎭⎫⎝⎛⨯⨯⨯435145 ⒂ ()()%251%251-÷+ 解以下方程6532=x 6532=÷x 6532=÷x 1432172⨯=x1856192⨯=÷x x -61x =41 3x +73=710x -20%x =2【考点7】解决分数〔百分数〕乘法的实际问题A 、求一个数的几分之几〔百分之几〕是多少? ①判断:5千克的30%和3千克的50%一样重。

〔 〕②80千克的80%是〔 〕千克;1小时的20%是〔 〕分钟。

③203分米=〔 〕厘米 43小时=〔 〕分钟④一个长方形的菜地,长是24米,宽是长的125,这块地的面积是多少平方米?⑤学校购进900本书,其中六年级分得92,分给五年级的本数相当于六年级的54,五年级 分得多少本?⑥一种服装原价210元,现降价52,现售价是多少元?⑦鄱阳湖的面积为3960平方千米,洞庭湖的面积比鄱阳湖的31大1500平方千米,洞庭湖的 面积是多少平方千米?〔比照练习〕庭湖的面积2820平方千米,比鄱阳湖的31大1500平方千米,洞庭湖的面积是多少平方千米?B 、求比一个数多或少几分之几〔百分之几〕的数是多少。

①1200台?台比计划多25%计划 实际列式计算:______________________ 列式计算:______________________ ②比4米多52是〔 〕米;比4米多52米是〔 〕米;比52吨少20%是〔 〕吨。

③中央电视塔高400米,广州电视塔比中央电视塔高50%,广州电视塔高多少米?④一台空调原价1400元,现价比原价降低了41,现价是多少元?⑤一辆汽车从甲地开往乙地,每小时行45千米,56小时到达,如果把速度提高20%,那么 几小时可以到达?C 、求一个数是另一个数的几分之几〔百分之几〕。

①20相当于40的〔 〕%;91是31的〔 〕。

600g 是1kg 的〔 〕%。

②六年1班有学生50人,体育达标的有40人,六年一班学生的体育达标率是_______。

③在一次数学考试中,有48人及格,2人不及格,及格率是_______。

④学校植树,有285棵成活了,有15棵没有成活,这批树苗的成活率是_________。

⑤一种树的成活率为98%,如果植3200棵树,则成活______棵,要成活2450棵,需要种_______棵。

⑥用400千克的大豆榨出了160千克的豆油,这种大豆的出油率是_______。

D 、已知一个数的几分之几〔百分之几〕是多少,求这个数?①列式计算:___________________ 列式计算:___________________②( )的53是27;45是〔 〕的95;〔 〕吨的30%是60吨。

③一个数的85是45,这个数的43是〔 〕。

④一个数的75%是30,这个数的20%是〔 〕。

⑤栽一种树苗,成活率为94%,要栽活470棵,至少要栽树苗_______棵。

⑥一件商品打八五折后,售价为1700元,原价为_______元。

⑦一条绳子剪去12米后,剩下的占全长的40%,这个绳子长〔 〕米。

⑧某洗衣机厂第一季度生产洗衣机1200台,相当于全年计划的52,该厂计划生产洗衣机多 少台?⑨水果店运来雪梨160千克,运来的苹果重量是雪梨43,又是运来的西瓜重量的85运来西瓜多少千克?⑩仓库里有假设干吨化肥,第一天运出总数的101,第二天运出总数的51,还剩49吨,仓库里原有化肥多少吨?〔11〕一台微波炉按七五折出售,廉价了150元,这台微波炉的原价是多少元?用去85300千克?千克E 、稍复杂的求已知一个数的几分之几〔百分之几〕是多少,求这个数?①列式计算:___________________ 列式计算:___________________列式计算:___________________ 列式计算:___________________②〔比照练习〕〔 〕米比20米少25%,20米比〔 〕米少41。

〔 〕比30多61,30比〔 〕多20%③〔比照练习〕1) 电视机厂今年生产电视机3600台,比去年少生产41,去年生产多少台?2) 电视机厂今年生产电视机3600台,比去年多生产25%,去年生产多少台?3) 电视机厂今年生产电视机3600台,去年产量比今年少41,去年生产多少台?4) 电视机厂今年生产电视机3600台,去年产量比今年多25%,去年生产多少台?④一件服装现价是96元,比原价降低了51,这件服装原价是多少元?⑤某工厂十月份实际生产电视机1200台,比计划增产了20%,计划生产电视机多少台?40个?个比篮球多31 篮球足球1000台比计划多25%计划 实际?台1000台节约了25% 二月份 三月份?台F 、求一个数比另一个数多〔或少〕百分之几的问题?①45比50少〔 〕%,30比24多〔 〕%。

②甲乙两数的比是4:5,则甲比乙少〔 〕%,乙比甲多〔 〕%。

③甲数是乙数的85,乙数比甲数多〔 〕%,甲数比乙数少〔 〕%。

④苹果的重量比梨的重量多41,那么梨的重量比苹果少〔 〕,苹果重量与梨重量之比是〔 〕:〔 〕。

⑤甲数比乙数多25%,乙数比甲数少〔 〕%。

⑥小飞家原来每月用水约10吨,更换水龙头后每月用水约9吨,每月用水比原来节约了百分之几?⑦一件商品原价52元,现价39元,降低了百分之几?⑧电视机厂今年第二季度计划生产电视机1600台,实际生产了1760台,实际比计划增产了 百分之几?⑨明明今年身高是85cm ,比去年高了5cm ,明明的身高增高了百分之几?⑩根据下面的统计图计算并填空。

〔1〕菠菜种植面积占这块地总面积的〔 〕。

相关文档
最新文档