初中数学八年级下册全册单元测试,同步练习以及最新中考试题(分章来整理)-43.doc
八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇下学期期中复习同步练习

八年级数学下学期期中复习同步练习(答题时间:60分钟)一、选择题1. 如果三角形的两边分别为3和5,那么连接这个三角形三边中点所得三角形的周长可能是()A. 5.5B. 5C. 4.5D. 42. 如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A. S平行四边形ABCD=4S△AOBB. AC=BDC. AC⊥BDD. 平行四边形ABCD是轴对称图形3. 如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A. 1B. 2C. 3D. 44. 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 80*5. 如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A. 4B. 3C. 52D. 2*6. 如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;其中正确的个数是()A. 0B. 1C. 2D. 3*7. 如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( )A. 53cmB. 25 cmC. 485 cmD. 245cm *8.如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为( )A. 3B. 3.5C. 2.5D. 2.8**9. 如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF ,则四边形BCDE 的面积是( )A. 32B. 33C. 4D. 34**10. 如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 最小的值是( )A. 2B. 3C. 4D. 5二、填空题11. 5082。
人教版八年级数学下册单元测试题全套及参考答案

浙教版八年级数学下册单元测试题全套(含答案)第1章 达标检测卷 (满分100分 时间60分钟)一、选择题(每小题4分,共20分) 1.若m -3为二次根式,则m 的取值范围为( )A .m ≤3B .m <3C .m ≥3D .m >3 2.下列式子中,二次根式的个数是( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸2)31(-;⑹)1(1>-x x ;⑺322++x x .A .2B .3C .4D .53是同类二次根式的是( )4.下列计算正确的有( )①694)9)(4(=-⋅-=--;②694)9)(4(=⋅=--; ③145454522=-⋅+=-;④145452222=-=-. A .1个 B .2个 C .3个 D .4个5, , 是( )A .①②B .③④C .①③D .①④ 二、填空题(每小题4分,共20分) 6.化简:=<)0(82a b a .7.计算:= . 8.在实数范围内分解因式:=-322x .9.比较大小:--(填“>”“<”或“=” ).10.一个三角形的三边长分别为8,12,18cm cm cm ,则它的周长是 cm. 三、解答题(共60分)11.计算:(每小题5分,共25分) (1)n m 218 (2)232⨯(3))36)(16(3--⋅- (4)33142ab a b • (5)45188125+-+12.(8分)已知一个矩形的长和宽分别是10和22,求这个矩形的面积.13.(8分)的值。
互为相反数,求与已知:b a b a b a •-++-8614.(9分) 已知32-=x ,32+=y ,求代数式22y xy x ++的值.15.(10分)实数p 在数轴上的位置如图,化简()222)1(p p -+- .参考答案一、选择题1.A 2.C 3.D 4.A 5.C 二、填空题 6.b a 22- 7.391948.()()3232-+x x 9.> 10.3225+三、解答题11.(1)n m 23 (2)6 (3)-243(4)222b a (5)258+第2章 达标检测卷 (100分 60分钟 )一、选择题(本大题共9个小题,每小题3分,共27分) 1.下列方程,是关于x 的一元二次方程的是( ). A.23(1)2(1)x x +=+ B.21120x x+-= C.20ax bx c ++= D.2221x x x +=- 2.方程()()24330x x x -+-=的根为( ). A.3x = B.125x =C.12123,5x x =-=D.12123,5x x == 3.解下列方程:(1)()225x -=,(2)2320x x --=,(3)x 2+2x +1=0,较适当的方法分别为( ). A.(1)直接开平法方,(2)因式分解法,(3)配方法 B.(1)因式分解法,(2)公式法,(3)直接开平方法 C.(1)公式法,(2)直接开平方法,(3)因式分解法 D.(1)直接开平方法,(2)公式法,(3)因式分解法 4.方程0322=-+x x 的两根的情况是( ). A.没有实数根 B.有两个不相等的实数根 C.有两个相同的实数根 D.不能确定5.若12+x 与12-x 互为倒数,则实数x 为( ).A.12±B.1±C.2±D.6.如果21,x x 是方程0122=--x x 的两个根,那么21x x +的值为( ).A. -1B. 2C.21-D.21+7.若方程0522=+-m x x 有两个相等的实数根,则m =( ). A.2- B. 0 C. 2 D.8138.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,那么根据题意,列出方程为( ).A.(1)1035x x +=B.(1)10352x x -=⨯C.(1)1035x x -=D.2(1)1035x x +=9.某厂今年一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增率是x ,则可以列方程为( ).A.720)21(500=+xB.720)1(5002=+x C.720)1(5002=+x D.500)1(7202=+x二、填空题(本大题共8个小题,每小题3分,共24分) 10.方程2310x x -+=的解是.11.如果二次三项式221)16x m x -++(是一个完全平方式,那么m 的值是_______. 12.如果一元二方程043)222=-++-m x x m (有一个根为0,那么m =. 13.若方程02=++q px x 的两个根是2-和3,则q p ,的值分别为.14是同类二次根式,则x =____________.15.已知方程022=-+kx x 的一个根是1,则另一个根是,k 的值是.16. 若一元二次方程20ax bx c ++=有两根1和-1,则a +b +c =______,a -b +c =_____. 17.若2225120x xy y --=,则xy=____________. 三、解答题(共49分)18.(9分)用适当的方法解下列方程:(1) 26730x x +-=; (2) 22510x x +-=.19.(10分)已知)0(04322≠=-+y y xy x ,求yx yx +-的值.20. (10分)已知关于x 的方程222(1)0x m x m -++=. (1) 当m 取何值时,方程有两个实数根;(2) 为m 选取一个适合的整数,使方程有两个不相等的实数根,并求出这两个实数根.21. (10分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图).(1)根据图中所提供的信息回答下列问题:2018年底的绿地面积为平方米,比2017年底增加了平方米;在2016年,2017年,2018年这三年中,绿地面积增加最多的 是年.(2)为满足城市发展的需要,政府加大绿化投入,到2020年底城区绿地面积达到72.6平方米,试问这两年绿地面积的年平均增长率是多少?22.(10分)阅读诗词解题:(通过列方程式,算出周瑜去世时的年龄) 大江东去浪涛尽,千古风流数人物;而立之年睿东吴,早逝英年两位数, 十位恰小个位三,个位平方与寿符;哪位学子算的快,多少年华属周瑜?参考答案一、选择题1.A2.D3.D4.B5.A6.B7.D8.B9.B 二、填空题 10.253± 11.125,3m m =-= 12.2m =- 13.1,6p q =-=- 14. 2或12 15.22,1x k =-= 16. 0,0 17. 4或32-三、解答题 18.[解] (1) 1213,32x x ==-. (2) 12x x ==.19.[解]原方程可变形为:(4)()0+-=x y x y 即(4)0()0+=-=或x y x y ∴4=-=或x y x y 当45443---=-==+-+,x y y y x y x y y y 当0--===++,x y y yx y x y y y20.[解] (1)依题意得:△≥0即 224(1)4+-m m ≥0 整理得:84+m ≥0 解得:当12≥-m .(2) 当4=m 时,原方程可化为:210160-+=x x 解得:122,8==x x .21.(1) 60平方米 4平方米 2017年. (2) 10%22.解:设周瑜逝世时的年龄的个位数字为x ,则十位数字为x -3,依题意得, x 2=10(x -3)+x ;即x 2-11x +30=0;解得x 1=5,x 2=6;当x 1=5时,周瑜的年龄是25岁,非而立之年,不合题意舍去;当x 2=6时,周瑜的年龄是36岁,完全符合题意.答:周瑜去世时的年龄是36岁.第3章 达标检测卷(时间:90分钟 满分:120分)一、精心选一选(每小题3分,共30分)1.某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5.这组数据的众数是( )A.3 B.3.5 C.4 D.52.在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子做调查,以决定最终向哪家店采购.下面的统计量,最值得关注的是()A.方差 B.平均数 C.中位数 D.众数3.在样本方差的计算公式S2=110[(x1-20)2+(x2-20)2+…+(x10-20)2]中,数字10与20分别表示样本的( )A.容量,平均数 B.平均数,容量 C.容量,方差 D.标准差,平均数4.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映的统计量是()A.众数和平均数 B.平均数和中位数 C.众数和方差 D.众数和中位数5.某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是()A.8 B.7 C.9 D.106.某市6月份日平均气温统计如图,则在日平均气温这组数据中,众数和中位数分别是()A .21,21B .21,21.5C .21,22D .22,227.今年,我省启动了“关爱留守儿童工程”.某村小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是( )A .平均数是15B .众数是10C .中位数是17D .方差是4438.某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分.甲、乙、丙三人四科的测试成绩如下表,综合成绩按照数学、物理、化学、生物四科测试成绩的1.2∶1∶1∶0.8的比例计分,则综合成绩第一名是( )A.甲 B .乙 C .丙 D .不确定9.一组数据6,4,a ,3,2的平均数是5,这组数据的标准差为( ) A .2 2 B .5 C .8 D .310.在某中学举行的演讲比赛中,八年级5名参赛选手的成绩如下表,请你根据表中提供的数据,计算出这5名选手成绩的方差为( )A.2 B .6.8 C .34 D .93二、细心填一填(每小题3分,共24分)11.甲、乙两人进行射击测试,两人10次射击成绩的平均数都是8.5环,方差分别是:s 甲2=2,s 乙2=1.5,则射击成绩较稳定的是___.(填“甲”或“乙”)12.数据1,2,3,a 的平均数是3,数据4,5,b ,6的众数是5,则a +b =____. 13.已知一组数据3,1,5,x ,2,4的众数是3,那么这组数据的标准差是____.14.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算.已知小明数学得分为95分,综合得分为93分,那么小明物理得分是___分.15.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下的频数分布表,这个样本的中位数在第____组.16.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0,的整数,则x 的值为___.17.两组数据m ,6,n 与1,m ,2n ,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为____.18.已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s =____.(用只含有n ,k 的代数式表示)三、耐心做一做(共66分)19.(8分)在“全民读书月活动”中,小明调查了全班40名同学本学期计划购买课外书的花费情况,并将结果绘制如图的统计图.请根据相关信息,解答下列问题:(直接填写结果)(1)这次调查获取的样本数据的众数是___;(2)这次调查获取的样本数据的中位数是____;(3)若该校共有学生1 000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有____人.20.(10分)为了了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问:这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?21.(10分)某公司员工的月工资情况统计如下表:(1)分别计算该公司员工月工资的平均数、中位数和众数;(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由.22.(12分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为___,图①中m的值为___;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?23.(12分)甲、乙两人是NBA联盟凯尔特人队的两位明星球员,两人在前五个赛季的罚球命中率如下表:(1)分别求出甲、乙两位球员在前五个赛季罚球的平均命中率;(2)在某场比赛中,因对方球员技术犯规需要凯尔特人队选派一名队员进行罚球,你认为甲、乙两位球员谁来罚球更好?(请通过计算说明理由)24.(14分)如图,A,B两个旅游点从2012年至2016年“五一”的旅游人数变化情况分别用实线和虚线表示.根据图中所有示信息,解答以下问题:(1)B旅游点的旅游人数相对上一年来说,增长最快的是哪一年?(2)求A,B两个旅游点从2012年至2016年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系y=5-x100.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少?参考答案1.B2.D3.A4.D5.C6.C7.C8.A9.A 10.B 11. 乙 12.11 13.15314.90 15.2 16.4 17.7 18.nk 19.(1)30元 (2)50元 (3)25020. 解:(1)被抽检的电动汽车共有30÷30%=100(辆),补全条形统计图略. (2)x =1100(10×200+30×210+40×220+20×230)=217(千米).21. 解:(1)平均数=3 800元,中位数=3 500元,众数=3 500元.(2)用众数代表该公司员工的月工资水平更为合适,因为3 500出现的次数最多,能代表大部分人的工资水平.22.解:(1)40 15.(2)众数为35 中位数为36+362=36.(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例为30%,则计划购买200双运动鞋,有200×30%=60(双)为35号.23. 解:(1)x 甲=(87+86+83+85+79)÷5=84;x 乙=(87+85+84+80+84)÷5=84.所以甲、乙两位球员罚球的平均命中率都为84%. (2)S甲2=[(87-84)2+(86-84)2+(83-84)2+(85-84)2+(79-84)2]÷5=8,S乙2=[(87-84)2+(85-84)2+(84-84)2+(80-84)2+(84-84)2]÷5=5.2.由x 甲=x 乙,S 甲2>S 乙2可知,乙球员的罚球命中率比较稳定,建议由乙球员来罚球更好.24. 解:(1)B 旅游点的旅游人数相对上一年来说,增长最快的是2 013年.(2) x A =1+2+3+4+55=3(万人),x B =3+3+2+4+35=3(万人).S A 2=15×[0+0+(-1)2+12+0]=25(万人2).从2012年至2016年,A ,B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游点较B 旅游点的旅游人数波动大.(3) 由题意得5-x100≤4,解得x ≥100,100-80=20(元).答:门票价格至少应提高20元.第4章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1.在平行四边形ABCD中,∠A:∠B:∠C=1:2:1,则∠D等于()A.0° B.60° C.120° D.150°2.在平行四边形ABCD中,对角线AC、BD交于点O,下列式子一定成立的是()A.AC⊥BD B.OA=OC C.AC=BD D.AO=OD3.若点P(a,2)与Q(-1,b)关于坐标原点对称,则a,b分别为()A.-1,2 B.1,-2 C.1,2 D.-1,-24.在美丽的明清宫广场中心地带整修工程中,计划采用同一种正多边形地板砖铺设地面,在下面的地板砖:①正方形,②正五边形,③正六边形,④正八边形中能够铺满地面的地板砖的种数是()A.1 B.2 C.3 D.45.已知下列命题:①对顶角相等;②垂直于同一条直线的两直线平行;•③相等的角是对顶角;④同位角相等,其中假命题有()A.1个 B.2个 C.3个 D.4个6.下列图形,既是轴对称图形又是中心对称图形的是( )7.一个多边形的内角和是720°,那么这个多边形是()A.四边形 B.五边形 C.六边形 D.七边形8.在四边形ABCD中,AD∥BC,若ABCD是平行四边形,则还应满足()A.∠A+∠C=180° B.∠B+∠D=180°C.∠A+∠B=180° D.∠A+∠D=180°9.已知平行四边形 ABCD的周长为30cm,AB:BC=2:3,则AB的长为()A.6cm B.9cm C.12cm D.18cm10.如图,在平行四边形ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数是()A.7 B.8 C.9 D.11O二、填空题(每小题4分,共40分)11.在四边形ABCD中,若∠A=∠C=100°,∠B=60°,则∠D=______.12.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45•°”时,应假设_______________.13.“平行四边形的对角线互相平分”的逆命题是____________.14.如图,E,F是平行四边形ABCD对角线BD上的两点,请你添加一个条件,使四边形AECF•也是平行四边形.你添加的条件是:___________.15.如图,在平行四边形ABCD中,∠A的平分线交BC于点E.若AB=10cm,CD=14cm,则EC=_____.16.已知直角三角形的两边长分别是5,12,则第三边的长为_______.17.已知三角形的三边长分别是4,5,6,则它的三条中位线围成的三角形的周长是________.18.在平行四边形ABCD中,AC,BD交于点O,若AB=6,AC=8,则BD的取值范围是_______.19.如图,在图(1)中,A1、B1、C1分别是△ABC的边BC、CA、AB的中点,在图(2)中,A2、B2、C2分别是△A1B1C1的边B1C1、C1 A1、 A1B1的中点,…,按此规律,则第n个图形中平行四边形的个数是.20.如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线交l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y 轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C n的坐标是.21.(6分)如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.22. (8分)如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.试判断AF与CE是否相等,并说明理由.23.(10分)如图,E、F分别是平行四边形ABCD对角线BD所在直线上两点,DE = BF.请你以F为一个端点,和图中已标有字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须研究一组线段相等即可).⑴连结_______________;⑵猜想:_______________;⑶证明:(说明:写出证明过程中的重要依据)24. (12分)如图,在□ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)试说明:AE⊥BF;(2)判断线段DF与CE的大小关系,并予以说明.25. (14分)探究规律:如图1,已知直线m ∥n ,A 、B 为直线n 上的两点,C 、P 为直线m 上的两点。
初中数学八年级下册全册单元测试,同步练习以及最新中考试题(分章来整理)-3.doc

17.1 反比例函数 达标训练一、基础·巩固1.在反比例函数y=x2的图象上的一个点的坐标是( ) A.(2,1) B.(-2,1) C.(2,21) D.(21,2)2.对于函数y=x3,下列判断正确的是( )A.图象经过点(-1,3)B.图象在第二、四象限C.图象所在的每个象限内,y 随x 的增大而减小;D.不论x 为何值时,总有y >0 3.已知反比例函数y=x6的图象经过点(a ,b ),(c ,d ),且b <d <0,则a 与c 的大小关系是( )A.a >c >0B.a <c <0C.c >a >0D.c <a <0 4.在反比例函数y=xk(k<0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1>x 2>0,则y 1-y 2的值为( )A.正数B.负数C.非正数D.非负数 5.设反比例函数y=xm3的图象上有两点A (x 1,y 1)和B (x 2,y 2),且当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是( ) 6.点(1,3)在反比例函数y=xk的图象上,则k=__________,在图象的每一支上,y 随x 的增大而_________. 7.若反比例函数y=xk经过点(-1,2),则一次函数y=-kx+2的图象一定不经过第____象限.8.正比例函数y=x 的图象与反比例函数y=xk的图象有一个交点的纵坐标是2, 求:(1)x=-3时反比例函数y 的值;(2)当-3<x<-1时,反比例函数y 的取值范围.9.已知反比例函数y=(a -2)x 62-a ,当x>0时,y 随x 的增大而增大,求函数关系式.二、综合·应用10.函数y=-ax +a 与y=xa-(a≠0)在同一坐标系中的图象可能是图17-1-6中的( )图17-1-611.在平面直角坐标系内,过反比例函数y=xk(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为___________. 12.若函数y=(2m -1)x 与y=xm-3的图象交于第一、三象限,则m 的取值范围是________. 13.在同一直角坐标系内,如果将直线y=-x+1沿y 轴向上平移2个单位后,那么所得直线与函数y=x2的图象的交点共有几个?14.已知反比例函数y=x k 的图象经过点A (4,21),若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B (2,m ),求平移后的一次函数图象与x 轴的交点坐标.15、三个反比例函数:(1)y=x k 1;(2)y=x k2;(3)y=xk 3在x 轴上方的图象如图17-1-7所示,由此推出k 1,k 2,k 3的大小关系是________.图17-1-7 图17-1-816、两个反比例函数y=x 3,y=x 6在第一象限内的图象如图17-1-8所示,点P 1,P 2,P 3,…,P 2 005在反比例函数y=x6的图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2 005,纵坐标分别是1,3,5,…,共2 005个连续奇数,过点P 1,P 2,P 3,…,P 分别作y 轴的平行线,与y=x3的图象的交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2 005(x 2 005,y 2 005),则y 2 005=____________.17、如图17-1-9所示,已知直线y 1=x+m 与x 轴、y 轴分别交于点A 、B ,与双曲线y 2=xk (k<0)分别交于点C 、D ,且C 点坐标为(-1,2). (1)分别求直线AB 与双曲线的解析式; (2)求出点D 的坐标;(3)利用图象直接写出当x 在什么范围内时,y 1>y 2.图17-1-918.已知一次函数y=kx+b 的图象与反比例函数y=x8的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是-2,求: (1)一次函数的解析式;(2)△AOB 的面积.参考答案一、基础·巩固 1.在反比例函数y=x2的图象上的一个点的坐标是( ) A.(2,1) B.(-2,1) C.(2,21) D.(21,2)思路分析:判断一点是否在图象上,只要这点的横、纵坐标的乘积等于比例系数k 即可. 答案:A2.对于函数y=x3,下列判断正确的是( ) A.图象经过点(-1,3) B.图象在第二、四象限 C.图象所在的每个象限内,y 随x 的增大而减小;D.不论x 为何值时,总有y >0 思路分析:本题适合用淘汰法.因为(-1)×3≠3,所以淘汰A ; 因为k=3>0,所以图象在第一、三象限,淘汰B ; 因为当x=-1时,y=-3<0,所以淘汰D ; 因此答案应选C. 答案:C3.已知反比例函数y=x6的图象经过点(a ,b ),(c ,d ),且b <d <0,则a 与c 的大小关系是( )A.a >c >0B.a <c <0C.c >a >0D.c <a <0 思路分析:因为比例系数k=6>0,所以图象在一、三象限,并且在图象在它所在的每个象限内,y 随x 的增大而减小.因为b <d <0,所以c <a <0. 答案:D 4.在反比例函数y=xk(k<0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1>x 2>0,则y 1-y 2的值为( )A.正数B.负数C.非正数D.非负数思路分析:当k <0时,图象在第二、四象限,且图象在它所在的每个象限内,y 随x 的增大而增大.因为x 1>x 2>0,所以点A (x 1,y 1),B (x 2,y 2)都在第四象限内的图象上,所以y 1>y 2. 答案:A5.设反比例函数y=xm-3的图象上有两点A (x 1,y 1)和B (x 2,y 2),且当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是( )思路分析:当x 1<0<x 2时,有y 1<y 2,这说明反比例函数y=xm-3的图象在一、三象限,所以k=3-m >0,解得m <3. 答案:m <36.点(1,3)在反比例函数y=xk的图象上,则k=__________,在图象的每一支上,y 随x 的增大而_________.思路分析:因为点(1,3)在反比例函数y=x k 的图象上,所以3=1k,即k=3. 当k >0时,图象所在的每个象限内,y 随x 的增大而减小. 答案:3 减小 7.若反比例函数y=xk经过点(-1,2),则一次函数y=-kx+2的图象一定不经过第_________象限.思路分析:若反比例函数y=xk经过点(-1,2),则k=-2,一次函数y=-kx+2的解析式为y=2x+2.由一次函数的性质可得到图象不经过第四象限. 答案:四8.正比例函数y=x 的图象与反比例函数y=xk的图象有一个交点的纵坐标是2, 求:(1)x=-3时反比例函数y 的值;(2)当-3<x<-1时,反比例函数y 的取值范围. 思路分析:因为正比例函数y=x 的图象与反比例函数y=xk的图象有一个交点的纵坐标是2,所以交点坐标为(2,2),可求得k=4.则(1)(2)的答案易求得. 解:(1)∵正比例函数y=x 的图象与反比例函数y=xk的图象有一个交点的纵坐标是2, ∴交点的纵坐标也是2,即交点坐标为(2,2),把交点坐标(2,2)代入y=xk,可求得k=4. ∴反比例函数y=x k 的解析式为y=x 4,当x=-3,时y=34-.(2)当-3<x<-1时,反比例函数的图象在第三象限,y 随x 的增大而减小.当x=-3时,y=34-;当x=-1时,y=-4. ∴当-3<x<-1时,-4<y <34-.9.已知反比例函数y=(a -2)x62-a ,当x>0时,y 随x 的增大而增大,求函数关系式. 解:因为函数y=(a -2)x62-a 是反比例函数,所以a 2-6=-1.解得a=±5.当x>0时,y 随x 的增大而增大,说明反比例函数y=(a -2)x 62-a 图象在二、四象限,所以比例系数小于零,即a -2<0,所以a=5-,y=x25--. 二、综合·应用10.函数y=-ax +a 与y=xa-(a≠0)在同一坐标系中的图象可能是图17-1-6中的( )图17-1-6思路分析:解答此类型的题目,可用特殊值法和淘汰法,分a=1和a=-1两种情况讨论:当a=1时,y=-ax +a 的图象经过一、二、四象限,y=xa-(a≠0)的图象经过二、四象限.应选B ,淘汰A;当a=-1时,y=-ax +a 的图象经过一、三、四象限,y=xa-(a≠0)的图象经过一、三象限,淘汰C 、D. 答案:B11.在平面直角坐标系内,过反比例函数y=xk(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为___________. 思路分析:从反比例函数y=xk(k≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积S=|xy|=|k|,所以S=|xy|=|k|=6,又因为k >0,所以k=6,则函数解析式为y=x6. 答案:y=x612.若函数y=(2m -1)x 与y=xm-3的图象交于第一、三象限,则m 的取值范围是________. 思路分析:由题意得,函数y=(2m -1)x 与y=xm-3的图象都位于第一、三象限,那么可得到2m -1>0, 3-m >0,解得m>21,m <3,则m 的取值范围是21<m<3. 答案:21<m<3 13.在同一直角坐标系内,如果将直线y=-x+1沿y 轴向上平移2个单位后,那么所得直线与函数y=x2的图象的交点共有几个? 思路分析:如果将直线y=-x+1沿y 轴向上平移2个单位,那么直线y=-x+1变为y=-x+3,将y=-x+3和y=x2联立得方程组,它有两组解,这说明交点有两个,并且都在第一象限内.解:如果将直线y=-x+1沿y 轴向上平移2个单位, 那么直线y=-x+1变为y=-x+3,将y=-x+3和y=x 2联立得方程组⎪⎩⎪⎨⎧=+-=,2,3x y x y 解这个方程组得⎩⎨⎧==⎩⎨⎧==.1,2,2,1y x y x 或 ∴平移所得直线与函数y=x2的图象的交点共有两个. 14.已知反比例函数y=x k 的图象经过点A (4,21),若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B (2,m ),求平移后的一次函数图象与x 轴的交点坐标. 思路分析:由反比例函数y=x k 的图象经过点A (4,21),可求得k 的值,由k 的值可求得m 的值,由一次函数y=x+1的图象平移后经过该反比例函数图象上的点B (2,m ),可求得平移后的一次函数解析式,从而求得平移后的一次函数图象与x 轴的交点坐标.解:∵反比例函数y=x k 的图象经过点A (4,21), ∴21=4k ,解得k=2,解析式为y=x2. 又∵点B (2,m )在反比例函数y=x2的图象上,∴m=22=1,即点B 坐标为(2,1) 设一次函数y=x+1的图象平移后的解析式为y=x+n.∵一次函数y=x+n 的图象经过反比例函数图象上的点B (2,1), ∴1=2+n,解得n=-1.∴一次函数y=x+1的图象平移后解析式为y=x -1, 当y=0时,解得x=1.∴平移后的一次函数图象与x 轴的交点坐标为(1,0). 15、三个反比例函数:(1)y=x k 1;(2)y=x k2;(3)y=xk 3在x 轴上方的图象如图17-1-7所示,由此推出k 1,k 2,k 3的大小关系是________.图17-1-7思路分析:由图象所在的象限可知,k 1<0,k 2>0,k 3>0;在(2)(3)中,为了比较k 2与k 3的大小,可取x=a>0,作直线x=a ,与两图象相交,找到y=xk 2与y=x k3的对应函数值b 和c ,由于k 2=ab ,k 3=ac ,而c>b>0,因而k 3>k 2>k 1. 答案:k 3>k 2>k 1 16、两个反比例函数y=x 3,y=x 6在第一象限内的图象如图17-1-8所示,点P 1,P 2,P 3,…,P 2 005在反比例函数y=x6的图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2 005,纵坐标分别是1,3,5,…,共2 005个连续奇数,过点P 1,P 2,P 3,…,P 分别作y 轴的平行线,与y=x3的图象的交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2 005(x 2 005,y 2 005),则y 2 005=____________.图17-1-8思路分析:分析两个反比例函数,它们的比例系数分别为k 1=3,k 2=6,即k 1=21k 2,这说明横坐标相同时,纵坐标是1∶2的关系,第2 005个连续奇数是4 009,所以y 2 005=21×4009=2 004.5. 答案:2 004.517、如图17-1-9所示,已知直线y 1=x+m 与x 轴、y 轴分别交于点A 、B ,与双曲线y 2=xk (k<0)分别交于点C 、D ,且C 点坐标为(-1,2).图17-1-9(1)分别求直线AB 与双曲线的解析式; (2)求出点D 的坐标;(3)利用图象直接写出当x 在什么范围内时,y 1>y 2. 思路分析:直线y 1=x+m 与双曲线y 2=xk(k<0)交于点C ,把C 点坐标代入就可以求出它们的解析式,两解析式联立后就可以求出点D 的坐标,由点C 、D 的坐标可直接写出答案.解:(1)∵直线y 1=x+m 与双曲线y 2=xk(k<0)交于点C , 把C 点坐标(-1,2)分别代入y 1=x+m 和y 2=x k得,m=3,k=-2.∴直线AB 与双曲线的解析式分别是y 1=x+3,y 2=-x2.(2)将y 1=x+3,y 2=-x 2联立得方程组⎪⎩⎪⎨⎧-=+=,2,3x y x y解得⎩⎨⎧=-=⎩⎨⎧=-=.1,2,2,1y x y x 或 ∴点D 的坐标为(-2,1).(3)观察图象可知,C 、D 部分的图象满足y 1>y 2,此时-2<x<-1.新世纪教育网 精品资料 版权所有@新世纪教育网新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。
人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。
最新人教版八年级数学下册单元测试题及答案全套

最新人教版八年级数学下册单元测试题及答案全套含期中期末试题单元测试(一) 二次根式1.使式子x -2有意义的x 的取值范围是()A .x ≤2B .x ≤-2C .x ≠2D .x ≥2 2.下列二次根式中是最简二次根式的是()A .12B .13C .a 2+1D .3a 2 3.化简(-5)2的结果是()A .5B .-5C .±5D .254.下面选项中,与3是同类二次根式的是()A .12B .8C .22D 5.下列计算正确的是()A .8-3= 5B .32+2=4 2C .18÷3=6D .6×(-3)=326.若实数x ,y 满足2x -1+||y -1=0,则x +y 的值是()A .1B .32C .2D .527.实数a ,b 在数轴上的对应点的位置如图所示,且|a|>|b|,则化简a 2-(a +b )2的结果为()A .2a +bB .-2a +bC .bD .-2a -b8.若8n 是整数,则正整数n 的最小值是()A .4B .3C .2D .09.已知x 1=3+2,x 2=3-2,则x 21+x 22等于()A .8B .9C .10D .1110.将1,2,3三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2 018,2 018)表示的两个数的积是()1 第1排3 2 第2排3 2 1 第3排1 32 1 第4排……第4列第3列第2列第1列A. 2B. 3C. 6 D.3二、填空题(本大题共6小题,每小题4分,共24分)11.化简(315)2的结果是____________.12.计算:15×5=____________.13.若a=3-1,则a2+2a+2的值是____________.14.已知最简二次根式2m-1与n则m=____________,n=____________.15.如果ab>0,a+b<0,;②ab·ba=1;③ab÷ab=-b,其中正确的是____________.16.观察下列各式:1+13=213,2+14=314,3+15=415,…,请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________________________.三、解答题(本大题共5小题,共46分)17.(12分)计算:(1)(827-53)×6;(2)8+23-(27-2);(3)(72+12-18)×2;(4)(25-52)(-25-52)-(5-2)2.18.(8分)先化简,再求值:a 2-b 2a +b ÷a -ba 2b 2,其中a =2,b = 3.19.(8分)已知y =x -2+2-x +5,求x +2y 2的值.20.(8分)在一块边长为(1015+55)m 的正方形土地中,修建了一个边长为(1015-55)m 的正方形养鱼池,问:剩余部分的面积是多少?21.(10分)在进行二次根式的化简时,我们有时会碰到如53,23,23+1这样的式子,其实我们还可以将其进一步化简:53=5×33×3=533;(一) 23=2×33×3=63;(二) 23+1=2×(3-1)(3+1)(3-1)=2(3-1)(3)2-12=3-1.(三) 以上这种化简的步骤叫做分母有理化. 23+1还可以用以下方法化简: 23+1=3-13+1=(3)2-123+1=(3+1)(3-1)3+1=3-1.(四) (1)请用不同的方法化简25+3 .①参照(三)式得25+3=________________________________________________________________________;②参照(四)式得25+3=________________________________________________________________________;(2)化简:13+1+15+3+17+5+…+.参考答案单元测试(一) 二次根式1.D 2.C 3.A 4.A 5.B 6.B 7.C 8.C 9.C 10.D 11.16512.53 13.4 14.7 3 15.②③ 16.n +1n +2=(n +1)1n +2(n ≥1) 17.(1)43-15 2.(2)32- 3.(3)7.(4)23+210.18.原式=a 2b 2.当a =2,b =3时,原式=6.19.由题意,得x =2,此时y =5.∴x +2y 2=2+2×52=52=213.20.(1015+55)2-(1015-55)2=(1015+55+1015-55)(1015+55-1015+55)=2015×105=20015×5=1 0003(m 2).答:剩余部分的面积是1 000 3 m 2. 21.(1)①2×(5-3)(5+3)(5-3)=2(5-3)5-3=5-3②5-35+3=(5)2-(3)25+3=(5+3)(5-3)5+3=5-3(2)原式=3-12+5-32+7-52+…+2n +1-2n -12=3-1+5-3+7-5+…+2n +1-2n -12=2n +1-12.单元测试(二) 勾股定理 (时间:40分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A .3,4,5B .6,8,10C .3,2, 5D .5,12,13 2.已知命题:等边三角形是等腰三角形,则下列说法正确的是()A .该命题为假命题B .该命题为真命题C .该命题的逆命题为真命题D .该命题没有逆命题3.如图,点P 是平面直角坐标系中的一点,则点P 到原点的距离是()A .3B . 2C .7D .53第3题图 第5题图 第8题图4.直角三角形的一直角边长是7 cm ,另一直角边与斜边长的和是49 cm ,则斜边的长为()A .18 cmB .20 cmC .24 cmD .25 cm5.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为()A .4B .8C .16D .64 6.适合下列条件的△ABC 中,直角三角形的个数为()①a =13,b =14,c =15;②a ∶b ∶c =1∶2∶3;③∠A =32°,∠B =58°;④a =7,b =24,c =25;⑤a =2,b =2,c =3.A .2B .3C .4D .57.已知一个三角形的三个内角的比是1∶2∶1,则这三个内角对应的三条边的比是()A.1∶1∶ 2 B.1∶2∶1 C.1∶1∶2 D.1∶4∶18.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里9.如图,在△ABC中,∠ACB=90°,AC=40,CB=9,M,N在AB上且AM=AC,BN=BC,则MN的长为()A.6 B.7 C.8 D.910.一架2.5米长的梯子,斜靠在一竖直的墙上,这时梯足到墙底端的距离为0.7米.如果梯子的顶端下滑0.4米,那么梯足将向外移()A.0.6米B.0.7米C.0.8米D.0.9米二、填空题(本大题共6小题,每小题4分,共24分)11.如图,等腰△ABC的底边BC长为16,底边上的高AD长为6,则腰AB的长为____________.第11题图第12题图第13题图12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200 m,结果他在水中实际游了520 m,则该河流的宽度为____________ m.13.如图,三个正方形的面积分别为S1=3,S2=2,S3=1,则分别以它们的一边为边围成的三角形中,∠1+∠2=____________度.14.一个直角三角形的两边长分别为5 cm,12 cm,则这个直角三角形的第三边长为____________.15.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为____________.第15题图第16题图16.如图,一个三级台阶,它的每一级的长、宽和高分别为20,3,2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是____________.三、解答题(本大题共5小题,共46分)17.(8分)如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC的长度.18.(9分)已知:如图,AB=3,AC=4,AB⊥AC,BD=12,CD=13.(1)求BC的长度;(2)线段BC与线段BD的位置关系是什么?说明理由.19.(9分)如图,在边长为1的正方形组成的网格图中,△ABC的三个顶点均在格点上,请按要求完成下列问题:(1)求△ABC的周长;(2)试判断△ABC的形状.20.(10分)在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺(如图).突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲离开原处的水平距离为6尺,请问水深多少?21.(10分)如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD′,AD ′与BC 交于点E ,若AD =4,DC =3,求BE 的长.单元测试(二) 勾股定理1.C 2.B 3.A 4.D 5.D 6.A 7.B 8.D 9.C 10.C 11.10 12.480 13.90 14.13 cm 或119 cm 15.9216.25 17. 6. 18.(1)5.(2)BC ⊥BD ,理由如下:∵BC =5,BD =12,CD =13,∴BC 2+BD 2=25+144=169=132=CD 2.∴∠CBD =90°.∴BC ⊥BD.19.(1)5+3 5.(2)△ABC 是直角三角形.20.4.5尺.21.∵四边形ABCD 是长方形,∴AB =CD ,∠B =∠D =90°.由折叠可知,∠D =∠D′,CD =CD′.∴∠B =∠D′,AB =CD′.又∵∠AEB =∠CED′,∴△ABE ≌△CD ′E(AAS ).∴AE =CE.设BE =x ,则AE =CE =4-x ,在Rt △ABC 中,由勾股定理得,AB 2+BE 2=AE 2,即32+x 2=(4-x)2.解得x =78.∴BE 的长为78.单元测试(三) 平行四边形 (时间:40分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.已知▱ABCD 中,∠B =∠A +∠C ,则∠C =()A .18°B .36°C .60°D .144°2.在平行四边形、矩形、菱形、正方形中,是轴对称图形的有()A .1个B .2个C .3个D .4个 3.如图,在▱ABCD 中,下列说法一定正确的是()A .AB =CD B .AB =BC C .AC =BD D .AC ⊥BD 4.下列命题中正确的是()A .有一组邻边相等的四边形是菱形B .有一个角是直角的平行四边形是矩形C .对角线垂直的平行四边形是正方形D .一组对边平行的四边形是平行四边形5.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 的中点,且OE =a ,则菱形ABCD 的周长为()A .16aB .12aC .8aD .4a第5题图 第6题图 第7题图6.如图,已知阴影部分是一个正方形,AB=4,∠B=45°,此正方形的面积()A.16 B.8 C.4 D.27.如图,将矩形ABCD沿AE对折,使点D落在点F处.若∠CEF=60°,则∠EAF等于() A.60° B.50° C.40° D.30°8.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线EF交对角线AC于点F,E为垂足,连接DF,则∠CDF等于()A.80°B.70°C.65°D.60°第8题图第9题图第10题图9.如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为()A.12 B.13 C.14 D.1510.如图,△ACE是以▱ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(5,-23),则D点的坐标是()A.(3,0) B.(4,0) C.(5,0) D.(23,0)二、填空题(本大题共6小题,每小题4分,共24分)11.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是____________.(横线上只需填一个你认为合适的条件即可)12.平行四边形的周长为24 cm,相邻两边长的比为3∶1,那么这个平行四边形较短的边长为____________cm.13.已知三角形的三边长分别是4,5,6,则它的三条中位线围成的三角形的周长是____________.14.菱形的边长为5,一条对角线长为8,另一条对角线长为____________.15.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D′重合.若BC=8,CD=6,则CF=____________.第15题图第16题图16.如图,正方形ABCD中,点E,F分别在边BC,CD上,且AE=EF=FA.有下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF.其中正确的是____________(只填写序号).三、解答题(本大题共5小题,共46分)17.(6分)如图,在▱ABCD中,已知M和N分别是边AB,DC的中点,求证:四边形BMDN是平行四边形.18.(8分)如图,矩形ABCD中,AC与BD交于点O,BE⊥AC于E,CF⊥BD于F.求证:BE=CF.19.(10分)如图,在四边形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,点E在AO上,且OE =OC.(1)求证:∠1=∠2;(2)连接BE,DE,判断四边形BCDE的形状,并说明理由.20.(10分)如图,将▱ABCD 的边BA 延长到点E ,使AE =AB ,连接EC ,交AD 于点F ,连接AC ,ED.(1)求证:四边形ACDE 是平行四边形;(2)若∠AFC =2∠B ,求证:四边形ACDE 是矩形.21.(12分)如图,BD 是正方形ABCD 的对角线,BC =2,边BC 在其所在的直线上平移,经通过平移得到的线段记为PQ ,连接PA ,QD ,并过点Q 作QO ⊥BD ,垂足为O ,连接OA ,OP.(1)请直接写出线段BC 在平移过程中,四边形APQD 是什么四边形? (2)请判断OA ,OP 之间的数量关系和位置关系,并加以证明.单元测试(三) 平行四边形1.C 2.C 3.A 4.B 5.C 6.B 7.D 8.D 9.C 10.B11.AD =BC(或AB ∥CD) 12.3 13.7.5 14.6 15.5316.①②③⑤17.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =DC.∵M 和N 分别是AB ,DC 的中点,∴BM =12AB ,DN =12DC.∴BM =DN.∴四边形BMDN 是平行四边形.18.证明:∵四边形ABCD 为矩形,∴OB =OC.∵BE ⊥AC 于E ,CF ⊥BD 于F ,∴∠BEO =∠CFO =90°.又∵∠BOE =∠COF ,∴△BOE ≌△COF(AAS ).∴BE =CF.19.(1)证明:在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC(SSS ).∴∠1=∠2.(2)四边形BCDE是菱形.理由如下:∵BC =DC ,∠1=∠2,OC =OC ,∴△ODC ≌△OBC(SAS ).∴OD =OB ,OC ⊥BD.∵OE =OC ,∴四边形BCDE 是平行四边形.∵OC ⊥BD ,∴四边形BCDE 是菱形.20.(1)∵▱ABCD 中,AB =CD 且AB ∥CD ,又∵AE =AB ,∴AE =CD ,AE ∥CD.∴四边形ACDE 是平行四边形.(2)∵▱ABCD 中,AD ∥BC ,∴∠EAF =∠B.又∵∠AFC =∠EAF +∠AEF ,∠AFC =2∠B ,∴∠EAF =∠AEF.∴AF =EF.又∵▱ACDE 中,AD =2AF ,EC =2EF ,∴AD =EC.∴四边形ACDE 是矩形. 21.(1)四边形APQD 是平行四边形.(2)OA ⊥OP ,OA =OP.∵四边形ABCD 为正方形,∴∠ABO =∠OBC =45°.∵OQ ⊥BD ,∴∠BOQ =90°.∴∠OQB =45°.∴∠OQB =∠ABO =∠OBQ =45°.∴OB =OQ.在△ABO 和△PQO 中,⎩⎨⎧AB =PQ ,∠ABO =∠OQB ,OB =OQ ,∴△ABO ≌△PQO(SAS ).∴OA =OP ,∠AOB =∠POQ.∵∠BOQ =∠BOP +∠POQ =90°,∴∠BOP +∠AOB =∠AOP =90°.∴OA ⊥OP.单元测试() 一次函数 (时间:40分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列函数:①y =x ;②y =2x -1;③y =1x;④y =x 2-1中,是一次函数的有()A .4个B .3个C .2个D .1个2.把直线y =3x 向下平移2个单位长度,得到的直线是()A .y =3x -2B .y =3(x -2)C .y =3x +2D .y =3(x +2) 3.下列变量之间的关系中,一个变量是另一个变量的正比例函数的是()A .正方形面积S 随边长a 的变化而变化B .用10米长的绳子围一个矩形,则所围成的矩形的长y(米)随宽x(米)的变化而变化C .一场电影票价(元/张)一定时,则该场电影票房收入m(元)随出售票数n(张)的变化而变化D .菱形的面积一定时,则一条对角线长度y 随另一条对角线长度x 的变化而变化4.下列曲线中,不能表示y是x的函数的是()5.如图,直线y=2x必过的点是()A.(2,1) B.(2,2) C.(-1,-1) D.(0,0)6.已知一次函数y=kx+b,y随x的增大而减小,且kb<0,则在平面直角坐标系内它的大致图象是()7.小明同学从家里去学校,开始采用匀速步行,走了一段路后,发觉照这样走下去会迟到,于是匀速跑完余下路程,下面坐标系中,横轴表示小明从家里出发后的时间t,纵轴表示小明距离家的路程s,则s与t之间函数的图象大致是()8.对于函数y=-2x+1,下列结论正确的是()A.它的图象必经过点(-1,2) B.它的图象经过第一、二、三象限C.当x>1时,y<0 D.y的值随x值的增大而增大9.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是() A.x>0 B.x<0 C.x>1 D.x<1第9题图第10题图10.某通讯公司提供了两种移动电话收费方式:方式1,收月基本费20元,再以每分钟0.1元的价格按通话时间计费;方式2,收月基本费20元,送80分钟通话时间,超过80分钟的部分,以每分钟0.15元的价格计费.下列结论:①如图描述的是方式1的收费方法;②若月通话时间少于240分钟,选择方式2省钱;③若月通讯费为50元,则方式1比方式2的通话时间多;④若方式1比方式2的通讯费多10元,则方式1比方式2的通话时间多100分钟.其中正确的是()A.只有①②B.只有③④C.只有①②③D.①②③④二、填空题(本大题共6小题,每小题4分,共24分)11.直线y=2x+1经过点(0,a),则a=____________.12.函数y=x+1+1x-1中自变量x的取值范围是____________.13.同一温度的华氏度数y()与摄氏度数x(℃)之间的函数关系是y=95x+32.如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是____________.14.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“联盟数”.若“联盟数”为[1,m-5]的一次函数是正比例函数,则m的值为____________.15.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为____________.第15题图第16题图16.如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(-1,0),BC⊥x轴.将△ABC以y轴为对称轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点).直线y=x +b经过点A,C′,则点C′的坐标是____________.三、解答题(共46分)17.(6分)希望中学学生从2016年12月份开始每周喝营养牛奶,单价为2元/盒,总价y元随营养牛奶盒数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.18.(8分)根据下列条件分别确定函数y =kx +b 的解析式:(1)y 与x 成正比例,当x =2时,y =3; (2)直线y =kx +b 经过点(2,4)与点(13,-13).19.(10分)如图,正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A(m ,2),一次函数的图象经过点B(-2,-1),与y 轴交点为C ,与x 轴交点为D.(1)求一次函数的解析式; (2)求△AOD 的面积.20.(10分)我州某教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案.甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?21.(12分)如图,直线y =kx +6与x 轴、y 轴分别相交于点E ,F ,点E 的坐标为(8,0),点A 的坐标为(6,0),点P(x ,y)是第一象限内直线上的一个动点(点P 不与点E ,F 重合).(1)求k 的值;(2)在点P 运动的过程中,求出△OPA 的面积S 与x 的函数关系式; (3)若△OPA 的面积为278,求此时点P 的坐标.单元测试() 一次函数1.C 2.A 3.C 4.D 5.D 6.A 7.A 8.C 9.B 10.C 11.1 12.x ≥-1且x ≠1 13.77 14.5 15.y =100x -40 16.(1,3) 17.y =2x ;常量:2;变量:x ,y ;自变量:x ;y 是x 的函数:y =2x. 18.(1)y =32x.(2)y =135x -65. 19.(1)y =x +1.(2)S △AOD =1.20.设有x 名教师到外地学习,则甲宾馆的收费情况是:y 1=⎩⎪⎨⎪⎧120x (x ≤35),108x +420(x>35);乙宾馆的收费情况是:y 2=⎩⎪⎨⎪⎧120x (x ≤45),96x +1 080(x>45).(1)当x ≤35时,选择两个宾馆是一样的.(2)当35<x ≤45时,选择甲宾馆比较便宜.(3)当x >45时,①若y 1=y 2,即108x +420=96x +1 080,解得x =55;②若y 1>y 2,即108x +420>96x +1 080,解得x >55;③若y 1<y 2,即108x +420<96x +1 080,解得x <55.综上可得,当x ≤35或x =55时,选择两个宾馆是一样的;当35<x <55时,选择甲宾馆更实惠些;当x >55时,选择乙宾馆更实惠些.21.(1)由题意,得8k +6=0,解得k =-34.∴y =-34x +6.(2)过点P 作PD ⊥OA 于点D.∵点P(x ,y)是第一象限内直线上的一个动点,∴PD =-34x +6(0<x <8).∵点A 的坐标为(6,0),∴S =12×6×(-34x +6)=-94x +18(0<x <8).(3)∵△OPA 的面积为278,∴-94x +18=278,解得x =132.将x =132代入y =-34x +6,得y =98,∴P(132,98).单元测试(五) 数据的分析 (时间:40分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105,则这七天空气质量指数的平均数是()A .71.8B .77C .82D .95.72.在端午节到来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A .方差B .平均数C .中位数D .众数3.已知一组数据:-3,6,2,-1,0,4,则这组数据的中位数是()A .1B .43C .0D .24.学校组织领导、教师、学生、家长对教师的教学质量进行综合评分,满分为100分,张老师得分的情况如下:领导平均给分80分,教师平均给分76分,学生平均给分90分,家长平均给分84分.如果按照1∶2∶4∶1的权进行计算,那么张老师的综合评分为()A .83.5分B .84.5分C .85.5分D .86.35分5.甲、乙、丙、丁四名运动员参加了射击预选赛,他们成绩的平均环数x 及其方差s 2如下表所示:如果选出一名成绩较好且状态稳定的运动员去参赛,那么应选()A.甲B.乙C.丙D.丁6.2016年欧洲杯足球赛中,某国家足球队首发上场的11名队员身高如表:则这11名队员身高的众数和中位数分别是(单位:cm)()A.180,180 B.180,182 C.182,182 D.3,27.A,B,C,D,E五名同学在一次数学测验中的平均成绩是80分,而A,B,C三人的平均成绩是78分,下列说法一定正确的是()A.D,E两人的成绩比其他三人都好B.D,E两人的平均成绩是83分C.五人的成绩的中位数一定是80分D.五人的成绩的众数一定是80分8.小丽根据演讲比赛中九位评委所给的分数作了如下表格:如果去掉一个最高分和一个最低分,那么表中数据一定不会发生变化的是()A.平均数B.众数C.方差D.中位数9.若一组数据1,2,3,4,x的平均数与中位数相同,则x的值不可能是()A.0 B.2.5 C.3 D.510.从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题4分,共24分)11.红树林中学共有学生1 600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有____________人.12.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分,面试成绩为85分,那么小明的总成绩为____________分.13.金华火腿闻名遐迩.某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500克的火腿片.现从它们分装的火腿片中各随机抽取10盒,经称量并计算得到质量的方差如下表所示,你认为包装质量最稳定的切割包装机是____________.14.有5个从小到大排列的正整数,如果中位数是3,唯一的众数是7,那么这5个数的平均数是____________.15.若干名同学制作迎奥运卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为____________(请用“>”连接).16.若一组数据x1,x2,…,x n的平均数是a,方差是b,则4x1-3,4x2-3,…,4x n-3的平均数是____________,方差是____________.三、解答题(本大题共5小题,共46分)17.(6分)老师计算学生的学期总评成绩时按照如下的标准:平时作业占10%,单元测验占30%,期中考试占25%,期末考试占35%.小丽和小明的成绩如下表所示:请你通过计算,比较谁的学期总评成绩高?18.(8分)经市场调查,某种优质西瓜质量为(5±0.25)kg的最为畅销.为了控制西瓜的质量,农科所采用A,B两种种植技术进行试验.现从这两种技术种植的西瓜中各随机抽取20个,记录它们的质量如下(单位:kg):A:4.1 4.8 5.4 4.9 4.7 5.0 4.9 4.8 5.8 5.25.0 4.8 5.2 4.9 5.2 5.0 4.8 5.2 5.1 5.0B:4.5 4.9 4.8 4.5 5.2 5.1 5.0 4.5 4.7 4.95.4 5.5 4.6 5.3 4.8 5.0 5.2 5.3 5.0 5.3(1)若质量为(5±0.25)kg的为优等品,根据以上信息完成下表:(2)请分别从优等品数量、平均数与方差三方面对A,B两种技术作出评价.从市场销售的角度看,你认为推广哪种种植技术较好?19.(10分)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现.老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是____________;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.20.(10分)在某旅游景区上山的一条山路上,有一些断断续续的台阶,如图是其中的甲、乙两段台阶路高度的示意图.(单位:cm)(1)两段台阶路有哪些相同点与不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为了方便游客行走,需要重新整修上山的小路,对于这两条台阶路,在台阶数不变的情况下,请你提出合理的整修建议.21.(12分)为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如下表:然后做上记号再放回鱼塘中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.(1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点);(2)根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg).单元测试(五)数据的分析1.C 2.D 3.A 4.B 5.B 6.A7.B8.D9.C10.C 11.68012.8813.甲14.415.b>a>c 16.4a-316b17.小丽的成绩是80×10%+75×30%+71×25%+88×35%=79.05(分),小明的成绩是76×10%+80×30%+70×25%+90×35%=80.6(分),80.6>79.05,所以小明的学期总评成绩高.18.(1)1610(2)从优等品数量的角度看,因为A技术种植的西瓜优等品数量较多,所以A技术较好;从平均数的角度看,因为A 技术种植的西瓜质量的平均数更接近5 kg ,所以A 技术较好;从方差的角度看,因为B 技术种植的西瓜质量的方差更小,所以B 技术种植的西瓜质量更为稳定;从市场销售角度看,因为优等品更畅销,A 技术种植的西瓜优等品数量更多,且平均质量更接近5 kg ,所以更适合推广A 种技术. 19.(1)C 组 (2)图略.(3)小明的判断符合实际.理由:这次活动中做家务的时间的中位数所在的范围是1.5≤x<2,小明这一周做家务2小时,所在的范围是2≤x <2.5,所以小明的判断符合实际.20.(1)因为x 甲=15,x 乙=15,所以,相同点是两段台阶路高度的平均数相同.不同点:两段台阶路高度的中位数、方差均不相同.(2)甲路段走起来更舒服些,因为它的台阶高度的方差小些.(3)使每个台阶高度均为15 cm ,使得台阶路高度的方差为0.21.(1)补图略.(2)其质量落在0.5~0.8 kg 这一组内的可能性最大.(3)质量落在0.8~1.1 kg 这一组内.(4)平均数x =0.5×1+0.6×8+0.7×15+1.0×18+1.2×5+1.6×1+1.9×250=0.904(kg ).50÷2100×0.904=2260(kg ).∴水库中成品鱼的总质量约为2 260 kg .(答案不唯一,合理即可)期中测试(时间:100 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.若2x -1在实数范围内有意义,则x 的取值范围是()A .x ≥12B .x ≥-12C .x >12D .x ≠122.一直角三角形的两直角边长分别为12和16,则斜边长为()A .12B .16C .18D .203.以下四组木棒中,哪一组的三条能够刚好做成直角三角形的木架()A .3 cm ,4 cm ,5 cmB .7 cm ,12 cm ,15 cmC .7 cm ,12 cm ,13 cmD .8 cm ,15 cm ,16 cm 4.下列计算错误的是()A.14×7=7 2 B.32-2=3 C.9a+25a=8 a D.60÷5=235.如图,在一块平地上,张大爷家屋前9米远处有一棵大树,在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米,大树倒下时会砸到张大爷的房子吗?()A.一定不会B.可能会C.一定会D.以上答案都不对第5题图第6题图6.如图,在▱ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=() A.30°B.50°C.70°D.110°7.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形8.估计8×0.5+7的运算结果在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间9.如图,菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是() A.16 3 B.16 C.8 3 D.8第9题图第10题图10.如图是由四个边长为1的正方形构成的田字格,只用没有刻度的直尺在田字格中最多可以作长为5的线段共()A.4条B.6条C.7条D.8条二、填空题(本大题共6小题,每小题4分,共24分)11.化简:15=__________.12.下面四组数:①4,5,6;②6,8,10;③8,15,17;④9,40,41,其中有一组与其他三组规律不同的是____________.13.如图,在平面直角坐标系中,四边形AOBC是菱形.若点A的坐标是(3,4),则菱形的周长为____________,点B的坐标是____________.第13题图第14题图第15题图第16题图14.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2=____________.15.如图所示,矩形ABCD的两条对角线相交于点O,AD=8,AB=6,将△ABO向右平移得到△DCE,则△ABO向右平移过程中扫过的面积是____________.16.如图,分别以Rt△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=其中结论正确的是____________.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:(1)(46-62)÷22;(2)27-(3-2)0+3 3 .18.(6分)如图,点P是▱ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC于点F.求证:AE=CF.19.(6分)已知x,y是实数,且y=4x-1+1-4x+3,求3xy的值.四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)已知,如图,在△ABC中,∠B=30°,∠C=45°,AC=2 2.求:(1)AB的长;(2)△ABC的面积.21.(7分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12BC.若AB=12,求EF的长.22.(7分)如图,∠O=90°,OA=90 cm,OB=30 cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在▱ABCD中,∠DAB=60°,AB=2AD,点E,F分别是AB,CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.24.(9分)如图,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.25.(9分)如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边的中点位置时.①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是____________;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是____________,请证明你的猜想;(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.期中测试1.A 2.D 3.A 4.B 5.A 6.C 7.D 8.B 9.C 10.D 11.5512.① 13.20 (5,0) 14.2π 15.48 16.①③④ 17.(1)23-3.(2)43-1.18.证明:在▱ABCD 中,AB ∥CD ,∴∠CAE =∠ACF ,∠FEA =∠EFC.又∵点P 是AC 的中点,∴AP =CP.∴△AEP ≌△CFP(AAS ).∴AE =CF. 19.32. 20.(1)4.(2)2+2 3. 21.6. 22.机器人行走的路程BC 为50 cm .23.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB =CD ,AD ∥BC 且AD =BC.∵E ,F 分别为AB ,CD 的中点,∴BE =12AB ,DF =12CD.∴BE =DF.∴四边形DEBF 是平行四边形.在△ABD 中,E是AB 的中点,AB =2AD ,∴AE =BE =12AB =AD.又∵∠DAB =60°,∴△AED 是等边三角形.∴DE =AE =AD.∴DE =BE.∴四边形DEBF 是菱形.(2)四边形AGBD 是矩形.证明:∵AD ∥BC 且AG ∥DB ,∴四边形AGBD 是平行四边形.由(1)知AD =DE =AE =BE ,∴∠ADE =∠DEA =60°.∴∠EDB =∠DBE =30°.∴∠ADB =90°.∴四边形AGBD 是矩形.24.(1)证明:连接DB ,DF.∵四边形ABCD ,ADEF 都是菱形,∴AB =BC =CD =DA =DE =EF =FA.在△BAD 和△FAD 中,⎩⎨⎧AB =AF ,∠BAD =∠FAD ,AD =AD ,∴△BAD ≌△FAD(SAS ).∴DB =DF.∴D 在线段BF 的垂直平分线上.∵AB =AF ,∴A 在线段BF 的垂直平分线上.∴AD 是线段BF 的垂直平分线.∴AD ⊥BF.(2)150°. 25.(1)①DE =EF ②NE =BF.证明:∵四边形ABCD 为正方形,∴AD =AB ,∠DAB =∠ABC =90°.∵N ,E 分别为AD ,AB 中点,∴AN =DN =12AD ,AE =EB =12AB.∴DN =BE ,AN =AE.∵∠DEF =90°,∴∠AED +∠FEB =90°.又∵∠ADE +∠AED =90°,∴∠FEB =∠ADE.∵AN =AE ,∴∠ANE =∠AEN.又∵∠A =90°,∴∠ANE =45°.∴∠DNE =180°-∠ANE =135°.∵∠CBM =90°,BF 平分∠CBM ,∴∠CBF =45°.∴∠EBF =135°.∴∠DNE =∠EBF.∴△DNE ≌△EBF(ASA ).∴NE =BF.(2)DE =EF.证明:在DA 边上截取DN =EB ,连接NE ,∵四边形ABCD 是正方形,DN =EB ,∴AN =AE.∴△AEN 为等腰直角三角形.∴∠ANE =45°.∴∠DNE =180°-45°=135°.∵BF 平分∠CBM ,∴∠EBF =90°+45°=135°.∴∠DNE =∠EBF.∵∠NDE +∠DEA =90°,∠BEF +∠DEA =90°,∴∠NDE =∠BEF.∴△DNE ≌△EBF(ASA ).∴DE =EF.。
新人教版八年级数学下册课课练题全册单元同步测试及答案

新人教版八年级数学下册课课练题全册单元同步测试及答案新人教版八年级数学下册《16.1 二次根式》同步测试(共2课时)新人教版八年级数学下册《16.2 二次根式的乘除》同步测试(共2课时)新人教版八年级数学下册《16.3 二次根式的加减》同步测试(共2课时)新人教版八年级数学下册《17.1 勾股定理》同步测试(共2课时)新人教版八年级数学下册《17.2勾股定理的逆定理》同步测试(共2课时) 新人教版八年级数学下册《矩形》同步测试(共2课时) 新人教版八年级数学下册《平行四边形》同步测试(共3课时)新人教版八年级数学下册《函数》同步测试题新人教版八年级数学下册《一次函数》同步测试题新人教版八年级数学下册《课题学习 选择方案》同步测试题新人教版八年级数学下册《平均数》同步测试练习题 新人教版八年级数学下册《数据的波动程度》同步测试题与答案 新人教版八年级数学下册《16.1 二次根式》同步测试(共2课时) 新人教版八年级数学下册《16.2 二次根式的乘除》同步测试(共2课时) 新人教版八年级数学下册《16.3 二次根式的加减》同步测试(共2课时) 新人教版八年级数学下册《17.1 勾股定理》同步测试(共2课时) 新人教版八年级数学下册《17.2勾股定理的逆定理》同步测试(共2课时) 新人教版八年级数学下册《矩形》同步测试(共2课时) 新人教版八年级数学下册《平行四边形》同步测试(共3课时) 新人教版八年级数学下册《函数》同步测试题 新人教版八年级数学下册《一次函数》同步测试题 新人教版八年级数学下册《课题学习 选择方案》同步测试题 新人教版八年级数学下册《平均数》同步测试练习题 新人教版八年级数学下册《数据的波动程度》同步测试题与答案答案新人教版八年级数学下册《16.1 二次根式》同步测试(共2课时)新人教版八年级数学下册《16.2 二次根式的乘除》同步测试(共2课时)新人教版八年级数学下册《16.3 二次根式的加减》同步测试(共2课时)新人教版八年级数学下册《17.1 勾股定理》同步测试(共2课时)新人教版八年级数学下册《17.2勾股定理的逆定理》同步测试(共2课时)新人教版八年级数学下册《矩形》同步测试(共2课时)新人教版八年级数学下册《平行四边形》同步测试(共3课时)新人教版八年级数学下册《函数》同步测试题新人教版八年级数学下册《一次函数》同步测试题新人教版八年级数学下册《课题学习选择方案》同步测试题新人教版八年级数学下册《平均数》同步测试练习题新人教版八年级数学下册《数据的波动程度》同步测试题与。
2022-2023学年全国初中八年级下数学人教版单元测试(含答案解析)053143

2022-2023学年全国初中八年级下数学人教版单元测试考试总分:150 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 18 小题 ,每题 5 分 ,共计90分 )1. 方程的根的情况是( )A.有两个不相等实根B.有两个相等实根C.无实根D.以上三种情况都有可能2. 一元二次方程的根的情况为 A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3. 若关于的方程有两个相等的实数根,则的值是( )A.B.C.D.4. 若关于的一元二次方程有实数根,则整数的最大值为()A.B.C.D.5. 若关于的一元二次方程有实数根,则的取值范围为( )−4x+9=0x 22–√−x−1=0x 2()x (a −5)−4x−1=0x 2a −4−221x (a −1)−2x+2=0x 2a −112x (k −2)−2kx+k =6x 2kA.B.且C.D.且6. 对于一元二次方程的根的情况,下列判断正确的是 A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.有且只有一个实数根7. 如果关于的方程有实数根,那么的取值范围是( )A.B.C.D.8. 一元二次方程的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根9. 若关于的一元二次方程有两个不相等的实数根,则一次函数的大致图象可能是 A.k ≥0k ≥0k ≠2k ≥32k ≥32k ≠2−3x =0x 2()x −6x+m=0x 2m m>9m≥9m<9m≤92−3x+1=0x 2x −2x+kb +1=0x 2y =kx+b ()B. C. D.10. 若关于的一元二次方程有两个相等实数根,则的值是 A.B.C.D.11. 已知关于的一元二次方程没有实数根,则的取值范围是( )A.B.且C.D.12. 下列一元二次方程中,有两个不相等实数根的是( )A.B.C.D.13. 下列方程中没有实数根的是( )x 4−4x+c x 2=0c ()−11−44x (k −1)+2x+1=0x 2k k <2k <2k ≠1k >2k ≥2+6x+9=0x 2=xx 2+3=2xx 2(x−1+1=0)2−2x+1=02A.B.C.D.14. 若关于的一元二次方程有实数根,则实数的取值范围是( )A.B.且C.且D.15. 已知一元二次方程 ,则该一元二次方程根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根16. 已知关于的方程有两个不相等的实数根,则的取值范围是A.B.C.且D.且17. 关于的方程的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.有两个实数根D.没有实数根−2x+1=0x 2=x−1x 22+3x =3x 2−1=0x 2x k −2x+=0x 214k k >4k <4k ≠0k ≤4k ≠0k ≤42020−2x+=0x 212020x x(x−2)+3m=0m ( )m<13m>−13m<13m≠0m>−13m≠0y −2y+4=0y 218. 关于的一元二次方程有两个实数根,则的取值范围是( )A.B.C.D.二、 填空题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )19. 对于实数,定义一种运算""为,如果关于的方程有两个相等的实数根,那么满足条件的实数的值是________.20. 关于的方程=有两个不相等的实数根,则的取值范围是________.21. 一元二次方程=的根的判别式是________.22. 关于的方程有两个不相等的实数根,那么的取值范围是________.23. 若关于的一元二次方程 有两个不相等的实数根,则的取值范围是________.24. 已知关于的一元二次方程有两个实数根,为正整数,且该方程的根都是整数,则符合条件的所有正整数 的和为________.25. 已知关于的方程有两个实数根,则实数的取值范围是________.三、 解答题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )26. 关于的一元二次方程 有两个实数根,求的取值范围. 27. 关于的一元二次方程=.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求的最小值. 28. 关于的一元二次方程有实数根.求实数的取值范围;如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值.x +4x+k =0x 2k k ≤4k <−4k ≤−4k <4m n ⊕m ⊕n =mn+n x x ⊕(a ⊕x)=−14a x +4x−k x 20k a +bx+c x 20(a ≠0)x m −2x+3=0x 2m x +3x−k =0x 2k x +2x+m−2=0x 2m m x +(2k +1)x+=0x 2k 2k x −(2m−1)x++1=0x 2m 2m x −(m+3)x+m+2x 20m x −3x+k =0x 2(1)k (2)k (m−1)+x+m−3=0x 2−3x+k =0x 2m29. 已知方程有整数根,且是非正整数,求方程的整数根.30. 乐乐在解方程__,时,常数项__有点模糊不清,乐乐猜成了.请按照乐乐猜测的结果解上面的方程;有同学说乐乐猜错了,__应该是,乐乐认为如果是的话,方程没有实数根,你同意乐乐的说法吗?请说明理由.−3x−m=0x 2m −3x+x 2=01(1)(2)33参考答案与试题解析2022-2023学年全国初中八年级下数学人教版单元测试一、 选择题 (本题共计 18 小题 ,每题 5 分 ,共计90分 )1.【答案】C【考点】根的判别式【解析】根据方程各项系数结合根的判别式,即可得出,进而即可得出方程无解.【解答】解:在方程中,,∴该方程没有实数根.故选.2.【答案】A【考点】根的判别式【解析】根据一元二次方程的根的判别式与的大小关系来判断根的情况.【解答】解:∵,∴有两个不相等的实数根.故选.3.【答案】△=−4ac b 2△=−4<0−4x+9=0x 22–√Δ=(−4−4×1×9=−4<02–√)2C △0Δ=1+4=5>0AD【考点】根的判别式【解析】此题暂无解析【解答】解:∵方程有两个相等的实数根,∴,∴.故选.4.【答案】B【考点】根的判别式一元二次方程的定义【解析】由关于的一元二次方程有实数根,则,且,即,解不等式得到的取值范围,最后确定的最大整数值.【解答】解:关于的一元二次方程有实数根,且,且,整数的最大值为.故选.5.【答案】D【考点】根的判别式一元二次方程的定义(a −5)−4x−1=0x 2Δ=16−4×(−1)×(a −5)=4a −4=0a =1D x (a −1)−2x+2=0x 2a −1≠0△≥0△=(−2−8(a −1)=12−8a ≥0)2a a ∵x (a −1)−2x+2=0x 2∴△=(−2−8(a −1)=12−8a ≥0)2a −1≠0∴a ≤32a ≠1∴a 0B【解析】分和两种情况考虑,当原方程为一元一次方程时,可求出的值,从而得出符合题意;当原方程为一元二次方程时,利用根的判别式即可得出关于的一元一次不等式,解之即可得出的取值范围.综上即可得出结论.【解答】解:∵关于的一元二次方程有实数根,∴且,解得:且.故选.6.【答案】A【考点】根的判别式【解析】求出一元二次方程根的判别式;根据根的判别式即可判断根的情况.【解答】解:∵,∴方程有两个不相等的实数根.故选.7.【答案】D【考点】根的判别式【解析】根据一元二次方程的定义和根的判别式的意义可得.【解答】1−k =01−k ≠0x k =1k k x k −2≠0Δ=(−2k −4(k −2)(k −6)≥0)2k ≥32k ≠2D Δ=−4ac =(−3−4×1×0=9>0b 2)2A Δ>0−6x+m=02解:关于的一元二次方程有实数根,则,即,解得,故的取值范围为.故选.8.【答案】A【考点】根的判别式【解析】根据方程各项系数结合根的判别式即可得出,由此即可得出结论.【解答】解:∵在方程中,,∴方程有两个不相等的实数根.故选.9.【答案】B【考点】一次函数的图象根的判别式一元二次方程的解【解析】根据一元二次方程有两个不相等的实数根,得到判别式大于,求出的符号,对各个图象进行判断即可.【解答】解:∵有两个不相等的实数根,∴,解得,.,,即,故不正确;.,,即,故正确;.,,即,故不正确;x −6x+m=0x 2Δ≥0−4m≥062m≤9m m≤9D △=1>02−3x+1=0x 2Δ=(−3−4×2×1=1>0)22−3x+1=0x 2A −2x+kb +1=0x 20kb −2x+kb +1=0x 2Δ=4−4(kb +1)>0kb <0A k >0b >0kb >0A B k >0b <0kb <0B C k <0b <0kb >0C.,,即,故不正确;故选.10.【答案】B【考点】根的判别式【解析】根据判别式的意义得到==,然后解一次方程即可.【解答】解:∵一元二次方程有两个相等实数根,∴,∴.故选.11.【答案】C【考点】一元二次方程的定义根的判别式【解析】根据一元二次方程的定义和判别式的意义得到且,然后求出两个不等式解的公共部分即可.【解答】解:根据题意得且,解得.故选.12.【答案】D k >0b =0kb =0D B △−4×4c 4204−4x+c x 2=0Δ=−4×4c 42=0c=1B k −1≠0△=−4(k −1)<022k −1≠0Δ=−4(k −1)<022k >2C【解析】根据一元二次方程根的判别式判断即可.【解答】解:选项,,方程有两个相等实数根;选项,,,两个不相等实数根;选项,,,方程无实根;选项,,则方程无实根.故选.13.【答案】B【考点】根的判别式【解析】此题暂无解析【解答】解:,,方程有两个相等的实数根;,,方程没有实数根;,,方程有两个不相等的实数根;,,方程有两个不相等的实数根.故选.14.【答案】A +6x+9=0x 2Δ=−4×9=36−36=062B =x x 2−x =0x 2Δ=(−1−4×1×0=1>0)2C +3=2x x 2−2x+3=0x 2Δ=(−2−4×1×3=−8<0)2D (x−1+1=0)2(x−1=−1)2B A Δ=4−4=0B Δ=1−4=−3<0C Δ=9+24=33>0D Δ=0+4>0B一元二次方程的定义【解析】方程有实数根,则根的判别式,且二次项系数不为零.【解答】解:∵,解上式得,,∵二次项系数,∴且.故选.15.【答案】B【考点】根的判别式【解析】此题暂无解析【解答】解:,则该一元二次方程有两个相等的实数根.故选.16.【答案】A【考点】根的判别式【解析】将方程整理为一般式,再由有两个不相等的实数根得出,解之可得.△≥0Δ=−4ac =(−2−4×k ×≥0b 2)214k ≤4k ≠0k ≤4k ≠0C Δ=(−2−4×2020×=0)212020B △=(−2−4×1×3m>0)2解:将方程整理为一般式得,根据题意知,解得.故选.17.【答案】D【考点】根的判别式【解析】此题暂无解析【解答】解:∵,,,∴,∴方程没有实数根.故选.18.【答案】A【考点】根的判别式【解析】根据判别式的意义得,然后解不等式即可.【解答】解:根据题意得,解得.故选.二、 填空题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )19.−2x+3m=0x 2Δ=(−2−4×1×3m>0)2m<13A a =1b =−2c =4△=−4ac =(−2−4×1×4=−12<0b 2)2D △=−4k ≥042Δ=−4k ≥042k ≤4A【考点】根的判别式【解析】由题关于的方程变为,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于的关系式,即可解决问题.【解答】解:由,得,依题意有,即,,解得或(舍去).故答案为:.20.【答案】【考点】根的判别式【解析】此题暂无解析【解答】此题暂无解答21.【答案】=【考点】根的判别式【解析】x x ⊕(a ⊕x)=−14(a +1)+(a +1)x+=0x 214a x ⊕(a ⊕x)=−14(a +1)+(a +1)x+=x 214a +1≠0a ≠−1Δ=−(a +1)=0(a +1)2a =0a =−10k >−4△−4acb 2【解答】此题暂无解答22.【答案】且【考点】根的判别式一元二次方程的定义【解析】【解答】解:∵方程有两个实数根,∴方程为一元二次方程,即.又∵有两个不相等的实数根,∴,解得.∴的取值范围是且.故答案为:且.23.【答案】【考点】根的判别式【解析】【解答】解:根据题意该一元二次方程有两个不相等的实数根,m<13m≠0m≠0Δ=−4ac =4−12m>0b 2m<13m m<13m≠0m<13m≠0k >−94故答案为:.24.【答案】【考点】根的判别式【解析】【解答】解:∵,,,关于的一元二次方程有实数根,∴,∴.∵为正整数,且该方程的根都是整数,为整数,∴或,∴符合条件的所有的和为.故答案为:.25.【答案】【考点】根的判别式一元二次方程的解【解析】本题考查了一元二次方程的根的判别式,解题的关键是知道时,一元二次方程有两个实数根,要求学生具备一定的理解能力和计算能力。
初中数学八年级下册全册单元测试,同步练习以及最新中考试题(分章来整理)-49.doc

(第6题)(第12题)307米5米第十八章 勾股定理(3)一、填空题(每小题3分,共36分)1、在Rt △ABC 中,∠C=90°,AC=3,BC=4,则AB=___________;2、如图,小明的爸爸在院子的门板上钉了 一个加固板,从数学的角度看, 这样做的 道理是 .3、小明同学要做一个直角三角形小铁架,他现有4根长度分别为4cm 、6cm 、8cm 、10cm 的铁棒,可用于制作成直角三角形铁架的三条铁棒分别是________________________;4、若三角形三条边的长分别为7,24,25,则这个三角形的最大内角是 度.5、在△ABC 中,∠C =90°,若c =10,a ∶b =3∶4,则ab6、如图,在等腰△ABC 中,AB=AC=10,BC=12,则高7、等腰△ABC 的面积为12cm 2,底上的高AD =3cm , 则它的周长为___.8、在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 29、有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为 ;10、有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了___米.11、一个三角形的三边的比为5∶12∶13,它的周长为60cm ,则它的面积是___.12、如图,今年第8号台风“桑美”是50多年以来登陆我国大陆地区 最大的一次台风,一棵大树受“桑美”袭击于离地面5米 处折断倒下,倒下部分的树梢到树的距离为7米, 则这棵大树折断前有__________ 米(保留到0.1米)。
二、选择题(每小题4分,共24分)13、下列各组数据为边的三角形中,是直角三角形的是( )A 、 2、3、7B 、5、4、8C 、5、2、1D 、2、3、 5 14、正方形ABCD 中,AC=4,则正方形ABCD 面积为( )A 、 4B 、8C 、 16D 、3215、已知Rt △ABC 中,∠A ,∠B ,∠C 的对边分别为a,b,c ,若∠B=90○,则( ) A 、b 2= a 2+ c 2 ;B 、c 2= a 2+ b 2;C 、a 2+b 2=c 2;D 、a +b =cAB D C16、三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是 ( ).A 、钝角三角形B 、锐角三角形C 、直角三角形D 、等边三角形17、将Rt △ABC 的三边都扩大为原来的2倍,得△A ’B ’C ’,则△A ’B ’C ’为( ) A 、 直角三角形 B 、锐角三角形 C 、钝角三角形 D 、无法确定18、一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是 ( )A 、 12米B 、 13米C 、 14米D 、15米 三、解答题19、(12分)如右图,等边△ABC 的边长6cm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第18章 勾股定理综合检测题
一、认真选一选,你一定很棒!(每题3分,共30分)
1、直角三角形的周长为24,斜边长为10,则其面积为( )
A .96
B .49
C .24
D .48
2、三角形的三边长分别为6,8,10,它的最短边上的高为( )
A. 6
B. 4.5
C. 2.4
D. 8
3、三角形的三边长为(a +b )2=c 2+2ab ,则这个三角形是( )
A.等边三角形
B.钝角三角形
C.直角三角形
D.锐角三角形
4、已知一个直角三角形的两边长分别为3和4,则第三边长是( )
A.5
B.25
C.7
D.5或7
5、已知Rt △ABC 中,∠C =90°,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是( )
A.24cm 2
B.36cm 2
C.48cm 2
D.60cm 2
6、直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )
A.121
B.120
C.90
D.不能确定
7、放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行
走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( )
A.600米
B.800米
C.1000米
D.不能确定
8、直角三角形的三边为a -b ,a ,a +b 且a 、b 都为正整数,则三角形其中一边长可能为( )
A.61
B.71
C.81
D.91
9、如图1所示,有一块直角三角形纸片,两直角边分别为:AC =6cm ,BC =8cm ,现将直
角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )
A.2cm
B.3cm
C.4cm
D.5cm
10、如图2,第1个正方形(设边长为2)的边为第一个等腰直角三角形的斜边,第一个等腰
直角三角形的直角边是第2个正方形的边,第2个正方形的边是第2个等腰三角形的斜边……依此不断连接下去.通过观察与研究,写出第2008个正方形的边长a 2008为( )
A.a 2008=4200712⎛⎫ ⎪⎝⎭
B. a 2008=
220072⎛ ⎝⎭ C. a 2008=4200812⎛⎫ ⎪⎝⎭ D. a 2008=
220082⎛ ⎝⎭
二、仔细填一填,你一定很准!(每题3分,共24分)
11、在△ABC 中,∠C =90°,AB =5,则AB 2+AC 2+BC 2=___.
12、如图3,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼
合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边1 2 3 4 5 图2 … C A E D 图1
的和等于 .
13、现有一长5米的梯子,架靠在建筑物上,它们的底部在地面的水平距离是3
米,•则梯
子可以到达建筑物的高度是
_________m ,若梯子沿建筑物竖直下滑1米,则建筑物底部与梯子底部在地面的距离是_______m.
14、一个三角形的三边长分别是m 2-1,2m ,m 2+1,则三角形中最大角是_______.
15、一轮船以16海里/时的速度从A 港向东北方向航行,另一艘船同时以12海里/时的速度
从A 港向西北方向航行,经过1.5小时后,它们相距________海里.
16、如图4,所示图形中,所有的三角形都是直角三角形,所有的四边形都是正方形,其中
最大的正方形边长为7cm.则正方形A 、B 、C 、D 的面积和是________.
17、小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,
把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 .
18、如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:㎝),在上盖中开
有一孔便于插吸管,吸管长为13㎝, 小孔到图中边AB 距离为1㎝,到上盖中与AB 相邻的两边距离相等,设插入吸管后露在盒外面的管长为h ㎝,则h 的最小值大约为_________㎝.235 2.2≈≈≈)
三、细心做一做,你一定会成功!(共66分)
19、某校把一块形状为直角三角形的废地开辟为生物园,如图5所示,∠ACB =90°,AC =
80米,BC =60米,若线段CD 是一条小渠,且D 点在边AB 上,已知水渠的造价为10元/米,问D 点在距A 点多远处时,水渠的造价最低?最低造价是多少?
A
B
10
5
6 吸管 A B C D 7cm a
b c d x y 图4
图3 图5
20、印度数学家拜斯迦罗(公元1114~1185年)的著作中,有个有趣的“荷花问题”,是以诗歌的形式出现的:
湖静浪平六月天,荷花半尺出水面;忽来一阵狂风急,吹倒花儿水中偃.
湖面之上不复见,入秋渔翁始发现;残花离根二尺遥,试问水深尺若干?
问题:这是一道数学诗,你能读懂诗意,求出水深是多少尺吗?
21、细心观察下图,认真分析各式,然后解答问题.
1)2+1=2,S1=
1
2
22+1=3,S2=
2
2
;32+4=5,S3
3
(1)请用含n(n是正整数)的等式表示上述变化规律;
(2)推算出OA10的长;
(3)求出S12+S22+S22+…+S102的值.
图6
22、如图7,已知AB ∥CD ,AD ∥BC ,∠D =90°,AB =2,AD ≠DC ,长方形ABCD 的面积为S ,沿长方形的对称轴折叠一次得到一个新长方形,求这个新长方形的对角线的长度.
23、如图8是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a 和b ,斜边长为c ,如图9是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.
(1)画出拼成的这个图形的示意图,写出它是什么图形;
(2)用这个图形证明勾股定理;
(3)假设图8中的直角三角形有若干个,你能运用图8中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图.(无需证明)
D C B A 图
7
图
8
图9
24、阅读下面材料,并解决问题:
(1)如图10,等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5则∠APB=______,由于P A,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌_______这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.
(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图11,△ABC中,∠CAB =90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2.
P'
P
B
A
图10
图11 F
E C
B
A
参考答案
一、1,C ;2,D ;3,C ;4,D ;5,A ;6,C ;7,C ;8,C ;9,B .点拨:AB =10,∠AED =90°,CD =DE ,AE =AC =6,所以BE =4,设CD =x ,则BD =8-x .在Rt △BED 中,BE 2+DE 2=BD 2,即42+x 2=(8-x )2,x =3;10,B .
二、11,50;12,10;13,4、4;14,90°;15,30;16,49cm 2;17,2m ;18,2.
三、19,当CD 为斜边上的高时,CD 最短,从而水渠造价最低.因为CD ·AB =AC ·BC ,所以CD =AC BC AB
=48米,所以AD
64米.所以,D 点在距A 点64米的地方,水渠的造价最低,其最低造价为480元.
20,3.75尺.点拨:设水深h 尺,则有h 2+22=(h +0.5)2,解得h =3.75.
21,(1)S n =1
2·1=1
2.(2)OA 10
=.(3)S 12+S 22+…+S 102=
2
+()2
)2+…
2=14(1+2+…+10)=554. 22,分类讨论:①以A 、B 为对称点,因为AB ·BC =S ,所以BC =AD =
2S ,根据对称性DF =21AB =1,∠D =90°,所以根据勾股定理得AF =2142+S ;②以A 、D 为对称点,得BF =21BC =4
S .因为∠B =90°根据勾股定理得AF =41642+S . 23,(1)如图是直角梯形.
(2)因为S 梯形=12(a +b )(a +b )=12(a +b )2,S =2×12ab +12c 2=ab +12c 2,所以12
(a +b )2
=ab +12
c 2,即a 2+b 2=c 2.(3)如图所示. 24,(1)150°、△ABP .(2)如图,由于AB =AC ,∠BAC =90°,所以可以将△ACF 绕点A 旋转90°,到△ABD 的位置,即过点B 作BD ⊥BC ,截取BD =FC ,连结DE .则△ADB ≌△AFC ,又易证△ADE ≌△AFE ,所以DE =EF ,在Rt △DBE 中,由勾股定理,得DE 2=DB 2+BE 2,所以EF 2=BE 2+FC 2.
c c b a b a
D F E C B A。