用递推公式计算定积分(matlab版).doc

合集下载

【精选】MATLAB编辑辛普生法计算定积分的程序 doc资料

【精选】MATLAB编辑辛普生法计算定积分的程序 doc资料

MATLAB编辑辛普生法计算定积分的程序辛普生法计算积分程序:function s=Simpson()%辛普生法求积分clear;clc;options={'积分下限a','积分上限b' ,'插入点相关的值M'};topic='seting';lines=1;def={'-5','5','1000'};h=inputdlg(options,topic,lines,def);a=eval(h{1});%积分下限b=eval(h{2});%积分上限M=eval(h{3});%子区间个数的一半%********************************************f='func';%用f来调用被积函数funch=(b-a)/(2*M);s1=0;s2=0;for k=1:Mx=a+h*(2*k-1);s1=s1+feval(f,x);endfor k=1:(M-1)x=a+h*2*k;s2=s2+feval(f,x);ends=h*(feval(f,a)+feval(f,b)+4*s1+2*s2)/3;%s是辛普生规则的总计end%定义被积函数funcfunction y=func(x)y=cos(x)./sqrt(1+x.^2);end运行情况:按“run”运行时,弹出窗口将图框中的相关数据更改为:点击图框中的“OK”,在“command window”中输出结果为:ans =第10章MATLAB外部程序接口应用10.1 MATLAB数据接口MA TLAB语言和其他程序设计语言一样,程序运行中的所有变量都保存在称为工作区的内存中,这些变量可以在程序中直接引用。

但是工作区的大小是有限的,如果处理的数据较大,就需要和磁盘文件中的数据进行交换。

有时要从外部设备中输入数据,有时要把程序处理过的数据输出到外部设备中。

matlab 递推公式求通项公式

matlab 递推公式求通项公式

matlab 递推公式求通项公式
在MATLAB中,我们可以使用递推公式来求解通项公式。

通常,我们需要
首先编写一个递推公式,然后使用该公式来计算序列的多个项,并观察模式。

一旦我们找到了模式,我们就可以用它来找到通项公式。

以下是一个简单的例子,假设我们有一个斐波那契数列的递推公式:
```css
a(n) = a(n-1) + a(n-2)
```
其中,a(1) = 1 和 a(2) = 1。

在MATLAB中,我们可以这样实现:
```matlab
% 初始化第一和第二个项
a = [1, 1];
% 使用递推公式计算接下来的项
for n = 3:10
a(n) = a(n-1) + a(n-2);
end
% 打印结果
disp(a);
```
这段代码将计算斐波那契数列的前10项。

观察结果,我们可以看到斐波那契数列是一个以1和1开始的数列,之后的每一项都是前两项的和。

因此,斐波那契数列的通项公式为:a(n) = a(n-1) + a(n-2)。

matlab求定积分之实例说明精品文档5页

matlab求定积分之实例说明精品文档5页

一、符号积分符号积分由函数int来实现。

该函数的一般调用格式为:int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分;int(s,v,a,b):求定积分运算。

a,b分别表示定积分的下限和上限。

该函数求被积函数在区间[a,b]上的定积分。

a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。

当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。

当a,b中有一个是inf时,函数返回一个广义积分。

当a,b中有一个符号表达式时,函数返回一个符号函数。

例:求函数x^2+y^2+z^2的三重积分。

内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下:>>syms x y z %定义符号变量>>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式F2 =1610027357/6563700-6072064/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2 ^(3/4) %给出有理数解>>VF2=vpa(F2) %给出默认精度的数值解VF2 =224.92153573331143159790710032805二、数值积分1.数值积分基本原理求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)•法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。

它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。

matlab定积分及应用

matlab定积分及应用

实验四 定积分及应用实验的目的1、掌握利用Matlab 进行积分运算;2、掌握积分在计算面积、体积等问题中的应用;3、掌握各种积分指令的区别与特点。

实验的基本理论与方法1、定积分定义:函数)(x f 在区间],[b a 上的定积分定义为:设函数)(x f 在],[b a 上有界,在区间],[b a 上任取1-n 个分点:b x x x x x a n n =<<<<<=-1210 ,把],[b a 分成n 个小区间],[1i i i x x -=∆, n i ,,2,1 =。

这些分点构成对区间],[b a 的一个分割,用T 表示。

小区间i ∆的长度为1--=∆i i i x x x 。

记{}i ni x T ∆=≤≤1ma x ,称为分割T 的模。

在区间],[1i i ix x -=∆上取点i ξ)(1i i i x x ≤≤-ξ,做函数值)(i f ξ与小区间长度i x ∆的乘积),2,1()(n i x f i i =∆ξ,并作和∑=∆=ni i i x f S 1)(ξ。

当0→T 时,和S 总趋于确定的极限,这时这个极限为函数)(x f 在区间],[b a 上的定积分,记作⎰badx x f )(。

即i ni i T bax f dx x f ∆=∑⎰=→1)(lim )(ξ。

2、定积分的应用①计算平面图形的面积:由连续曲线)0)()((≥=x f x f y ,直线)(,b a b x a x <==及x 轴所围成的曲边梯形面积为⎰=badx x f S )(;②计算旋转体的体积:由连续曲线)(x f y =,直线)(,b a b x a x <==及x 轴所围成的曲边梯形绕x 轴旋转一周所成立体的体积为⎰=badx x f V 2)]([π;③计算平面曲线的弧长:设曲线弧由直线坐标方程))((b x a x f y ≤≤=给出,其中)(x f 在],[b a 上具有一阶连续导数,则曲线弧长dx y l ba⎰'+=21;设曲线弧由参数方程⎩⎨⎧≤≤==)(,)()(βαt t y y t x x 给出,其中)(),(t y t x 在],[βα上具有连续导数,则曲线弧长dt t y t x l ⎰'+'=βα22)()(;设曲线弧由极坐标方程))((βθαθ≤≤=r r 给出,其中)(θr 在],[βα上具有连续导数,则曲线弧长θθθβαd r r l ⎰'+=22)()(。

matlab求定积分之实例说明

matlab求定积分之实例说明

一、符号积分符号积分由函数int来实现。

该函数的一般调用格式为:int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分;int(s,v,a,b):求定积分运算。

a,b分别表示定积分的下限和上限。

该函数求被积函数在区间[a,b]上的定积分。

a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。

当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。

当a,b中有一个是inf时,函数返回一个广义积分。

当a,b中有一个符号表达式时,函数返回一个符号函数。

例:求函数x^2+y^2+z^2的三重积分。

内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下:>>syms x y z %定义符号变量>>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式F2 =1610027357/6563700-6072064/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2 ^(3/4) %给出有理数解>>VF2=vpa(F2) %给出默认精度的数值解VF2 =224.92153573331143159790710032805二、数值积分1.数值积分基本原理求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)•法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。

它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。

三用MATLAB实现定积分计算

三用MATLAB实现定积分计算

s=s+feval(f,z1(j))+feval(f,z2(j));
0,2*pi,1000)
end
s=
s=s*h/2;
-267.2458
Gauss-lobatto是改进的高斯积分方法,采取自适应求积方法

三 用MATLAB实现定积分计算: 2 sin xdx 0
⑴ 矩形公式与梯形公式 z1 =
形的公求式积代公数式精。度为对于1,f 辛(x)甫=1森, x公, 式x 2的, x代3,数应精该度有为 3。
节成点立我x,ba下i和们依f面系先(次介x数考11)将绍dfA虑f(x的i(,xx节))是d=使点x1取t代数, (x消数xAb,为1对xaa精f22)(2区/bx,度而21x间)尽使3代等可用Ab入2分2能(fa1,(的1高1x1)即2限计的)f可制(算所得a,的谓2b到n积高确给分斯b定定近2公aA后似t式1,)同A值d。2时t有,x确1代,x定数2
这两种用随机模拟的方式求积分近似值的方法 z=sum(y)*pi/2/n
/2
z=
蒙特卡罗方法
sin xdx
1.0010
0
3、蒙特卡罗方法的通用函数与调用格式
均值估计法
随机投点法 (设0≤ f(x) ≤1)
b
a
f
( x)dx

ba n
n i1
f
(a (b a)ui )
直接调用。这里被积函数为内部函数,无需另外定义。
s=gaussinteg(‘sin', 0, pi/2,1000) s=
1.0000
6000
§2 数值积分应用问题举例4000
2000
0
一 求卫星轨道长度

MATLAB求定积分

MATLAB求定积分
[I,n]=quadl('fname',a,b,tol,trace)
其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。
2.数值积分的实现方法
基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为:
[I,n]=quad('fname',a,b,tol,trace)
基于变步长、牛顿-柯特斯(Newton-Cotes)法,MATLAB给出了quadl函数来求定积分。该函数的调用。该函数的一般调用格式为:
int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;
int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分;
int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。该函数求被积函数在区间[a,b]上的定积分。a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。当a,b中有一个是inf时,函数返回一个广义积分。当a,b中有一个符号表达式时,函数返回一个符号函数。

matlab 定积分函数

matlab 定积分函数

matlab 定积分函数一、函数简介matlab 定积分函数是一个非常重要的数学函数,它可以用来计算给定区间内的函数积分值。

在实际的数学应用中,定积分函数广泛应用于各种领域,例如物理、经济学、工程学等等。

二、函数语法matlab 定积分函数的语法如下所示:Q = integral(fun,a,b)其中,fun 是被积函数句柄;a 和 b 是积分区间的上下限;Q 是计算得到的积分值。

三、参数说明1. fun:被积函数句柄,即指向一个可以接受一个输入参数并返回单个输出值的 matlab 函数。

该函数必须定义在当前工作空间中。

2. a 和 b:定积分区间的上下限。

如果 a 大于 b,则计算得到的结果为负数。

3. Q:计算得到的定积分值。

四、使用示例以下是一个简单的使用示例:% 定义被积函数fun = @(x) x.^2;% 计算 [0,1] 区间内 fun 的定积分Q = integral(fun, 0, 1);disp(Q);运行以上代码,将会输出 0.3333,即 [0,1] 区间内 x^2 的定积分值为1/3。

五、注意事项1. 被积函数必须是连续的。

如果被积函数在定积分区间内不连续,那么计算得到的结果可能会不准确。

2. 如果被积函数有奇点,则需要进行适当的变量替换或数值调整,以避免计算得到的结果无穷大或无法收敛。

3. 在使用定积分函数时,需要对积分区间进行合理的选择,以保证计算得到的结果准确可信。

4. 定积分函数可以处理多重积分问题,只需依次指定多个被积函数即可。

六、总结matlab 定积分函数是一个非常强大和实用的数学工具。

通过使用该函数,我们可以轻松地计算出给定区间内各种复杂函数的积分值。

在实际应用中,我们需要注意被积函数是否连续、是否存在奇点等问题,并对积分区间进行合理选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档