数学随机生成

合集下载

mysql数学函数rand使用方法_MySQL中的RAND函数使用详解

mysql数学函数rand使用方法_MySQL中的RAND函数使用详解

mysql数学函数rand使用方法_MySQL中的RAND函数使用详解MySQL中的RAND(函数用于生成一个0到1之间的随机浮点数。

它可以用于对数据集进行随机排序、生成随机数等操作。

该函数没有参数。

使用RAND(函数需要注意以下几点:1.每次调用RAND(函数时,都会生成一个新的随机数。

如果要在查询中多次使用RAND(函数,需要确保每个RAND(函数都是独立调用的,否则它们将返回相同的随机数。

2.如果需要将RAND(函数的结果保存到数据库中,应该将其作为默认值或插入语句中的表达式,而不是在SELECT语句中使用。

3.使用RAND(函数时,应该避免使用ORDERBYRAND(来对数据集进行排序,特别是对大型数据集进行排序。

这样做会占用大量的内存和CPU资源。

如果需要随机排序数据集,可以考虑使用其他方法,例如在查询中添加一个随机排序的列。

下面是一些使用RAND(函数的示例:1.生成一个0到1之间的随机数:SELECTRAND(;2.生成一个指定范围内的随机整数:SELECT FLOOR(RAND( * range) + min;示例:生成一个1到100之间的随机整数SELECTFLOOR(RAND(*100)+1;结果示例:573.随机排序数据集:SELECT * FROM table ORDER BY RAND(;注意:当数据集较大时,使用这种方法可能会影响性能,应该尽量避免。

4.随机选择数据集中的一行:SELECT * FROM table ORDER BY RAND( LIMIT 1;这个查询将返回一个随机选择的数据集中的一行。

5.在数据集中随机选择一定数量的行:SELECT * FROM table ORDER BY RAND( LIMIT n;这个查询将返回一个随机选择的数据集中的n行。

总结:MySQL中的RAND(函数是一个非常有用的函数,可以用于生成随机数、随机排序数据集等操作。

但在使用时需要注意避免对大型数据集进行排序,以及确保多次调用RAND(函数时生成不同的随机数。

数学建模蒙特卡洛模拟方法详细案例

数学建模蒙特卡洛模拟方法详细案例

数学建模蒙特卡洛模拟方法详细案例
数学建模中的蒙特卡洛模拟方法是一种基于随机数生成和概率统计的方法,可以用于求解各种复杂的问题。

下面是一个详细的案例,以帮助你更好地理解蒙特卡洛模拟方法的应用。

案例:估计圆周率
假设我们要求解圆周率(π)的值。

我们可以使用蒙特卡洛模拟方法来估计π的值。

1. 定义问题的概率模型:在这个案例中,我们使用一个简单的概率模型,即在一个边长为1的正方形内随机生成点,并计算这些点到正方形中心的距离。

2. 生成随机数:使用随机数生成器生成一系列的随机数,这些随机数代表点在正方形内的坐标。

3. 计算点到中心的距离:对于每个生成的点,计算它到正方形中心的距离。

4. 计算落在圆内的点的比例:将落在半径为1的圆内的点的数量除以总的点数。

这个比例近似于圆的面积与正方形的面积之比,也就是π/4。

5. 通过比例求解π:将步骤4中的比例乘以4,即可得到π的近似值。

通过多次重复上述步骤并取平均值,可以进一步提高估计的准确性。

需要注意的是,蒙特卡洛模拟方法是一种基于随机数生成和概率统计的方法,其结果具有一定的随机性和误差。

因此,在应用蒙特卡洛模拟方法时,需要选择合适的随机数生成器和概率模型,以确保结果的准确性和可靠性。

高中数学必修二统计概率知识点总结

高中数学必修二统计概率知识点总结

必修第二册第九章 统计知识点总结知识点一:简单随机抽样1. 全面调查和抽样调查2.简单随机抽样的概念放回简单随机抽样不放回简单随机抽样一般地,设一个总体含有N(N 为正整数)个个体,从中逐个抽取n (1≤n<N)个个体作为样本如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.通过简单随机抽样获得的样本称为简单随机样本3.抽签法先把总体中的个体编号,然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的个体进入样本,直到抽足样本所需要的个体数.调查方式全面调查(普查)抽样调查定义对每一个调查对象都进行调查的方法,称为全面调查,又称普查根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为 抽样调查相关概念总体:在一个调查中,我们把调查对象的全体称为总体.个体:组成总体的每一个调查对象称为个体样本:把从总体中抽取的那部分个体 称为样本.样本量:样本中包含的个体数称为 样本量4.随机数法(1)定义:先把总体中的个体编号,用随机数工具产生已编号范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的个体进入样本,重复上述过程,直到抽足样本所需要的个体数.(2)产生随机数的方法:(i)用随机试验生成随机数;(ii)用信息技术生成随机数.5.总体均值和样本均值(1)总体均值:一般地,总体中有N个个体,它们的变量值分别为Y1,Y2,…,Y N,则称Y=Y1+Y2+⋯+Y NN =1N∑i=1NY i为总体均值,又称总体平均数.(2)总体均值加权平均数的形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Y k,其中Y i出现的频数f i(i=1,2,…,k),则总体均值还可以写成加权平均数的形式Y=1N ∑i=1kf i Y i.(3)如果从总体中抽取一个容量为n的样本,它们的变量值分别为y1,y2,…,y n,则称y=y1+y2+⋯+y nn =1n∑i=1ny i为样本均值,又称样本平均数.6.分层随机抽样的相关概念(1)分层随机抽样的定义:一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层.(2)比例分配:在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.(3)进行分层随机抽样的相关计算时,常用到的关系①样本容量n总体容量N =该层抽取的个体数该层的个体数;②总体中某两层的个体数之比等于样本中这两层抽取的个体数之比;③样本的平均数和各层的样本平均数的关系:w=mm+n x+nm+ny=MM+Nx+NM+Ny.1.画频率分布直方图的步骤(1)求极差:极差为一组数据中最大值与最小值的差;(2)决定组距与组数:当样本容量不超过100时,常分成5-12组,为方便起见,一般取等长组距,并且组距应力求“取整”;(3)将数据分组;(4)列频率分布表:一般分四列:分组、频数累计、频数、频率.其中频数合计应是样本容量,频率合计是⑥1;.(5)画频率分布直方图:横轴表示分组,纵轴表示频率组距=频率,各小长方形的面积的总和等于1.小长方形的面积=组距×频率组距2.其他统计图表统计图表主要应用扇形图直观描述各部分数据在全部数据中所占的比例条形图和直方图直观描述不同类别或分组数据的频数和频率反映统计对象在不同时间(或其他合适情形)的发展折线图变化情况1.第p百分位数:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.2.计算一组n个数据的第p百分位数的步骤第1步,按从小到大排列原始数据.第2步,计算i=n×p%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.3.四分位数:第25百分位数,第50百分位数,第75百分位数,这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数.知识点四:总体集中趋势的估计1.众数、中位数和平均数的定义(1)众数:一组数据中出现次数最多的数.(2)中位数:一组数据按大小顺序排列后,处于中间位置的数.如果这组数据是偶数个,则取中间两个数据的平均数.(3)平均数:一组数据的和除以数据个数所得到的数.2.众数、中位数、平均数与频率分布直方图的关系(1)平均数:在频率分布直方图中,样本平均数可以用每个小矩形底边中点的横坐标与小矩形的面积的乘积之和近似代替.(2)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.(3)众数:众数是最高小矩形底边的中点所对应的数据.2.众数、中位数、平均数与频率分布直方图的关系众数众数是最高小长方形底边的中点所对应的数据,表示样本数据的中心值中位数①在频率分布直方图中,中位数左边和右边的直方图面积相等,由此可以估计中位数的值,但是有偏差;②表示样本数据所占频率的等分线平均数①平均数等于每个小长方形的面积乘小长方形底边中点的横坐标之和;②平均数是频率分布直方图的重心,是频率分布直方图的平衡点1.一组数据x1,x2,…,x n的方差和标准差数据x1,x2,…,x n的方差为1n ∑i=1n(x i-x)2=1n∑i=1nx i2-x2,标准差为√1n∑i=1n(x i-x)2.2.总体方差和总体标准差(1)总体方差和标准差:如果总体中所有个体的变量值分别为Y1,Y2,…,Y N,总体的平均数为Y,则称S2= 1N ∑i=1N(Y i-Y)2为总体方差,S=√S2为总体标准差.(2)总体方差的加权形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Y k,其中Y i出现的频数为f i(i=1,2,…,k),则总体方差为S2= 1N ∑i=1kf i(Y i-Y)2.3.样本方差和样本标准差如果一个样本中个体的变量值分别为y1,y2,…,y n,样本平均数为y,则称s2= 1n ∑i=1n(y i-y)2为样本方差,s=√s2为样本标准差.4.标准差的意义标准差刻画了数据的离散程度或波动幅度,标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小.5.分层随机抽样的方差设样本容量为n,平均数为x,其中两层的个体数量分别为n1,n2,两层的平均数分别为x1,x2,方差分别为s12,s22,则这个样本的方差为s2=n1n [s12+(x1-x)2]+n2n[s22+(x2-x)2].必修第二册第十章概率知识点总结知识点一:有限样本空间与随机事件1.随机试验的概念和特点(1)随机试验:我们把对随机现象的实现和对它的观察称为随机试验,简称试验,常用字母E表示.(2)随机试验的特点:(i)试验可以在相同条件下重复进行;(ii)试验的所有可能结果是明确可知的,并且不止一个;(iii)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.样本点和样本空间定义字母表示样本点我们把随机试验E的每个可能的基本结果称为样本点用ω表示样本点样本空间全体样本点的集合称为试验E的样本空间用Ω表示样本空间有限样本空间如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间Ω={ω1,ω2,…,ωn}3.事件的类型我们将样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件.随机事件一般用大写字母A,B,C,…表示.在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生.Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.而空集⌀不包含任何样本点,在每次试验中都不会发生,我们称⌀为不可能事件.必然事件与不可能事件不具有随机性.为了方便统一处理,将必然事件和不可能事件作为随机事件的两个极端情形.这样,每个事件都是样本空间Ω的一个子集.知识点二:事件的关系和运算1.包含关系定义一般地,若事件A 发生,则事件B 一定发生,我们就称事件B 包含事件A(或事件A 包含于事件B)含义 A 发生导致B 发生 符号表示B ⊇A(或A ⊆B)图形表示特殊情形如果事件B 包含事件A,事件A 也包含事件B,即B ⊇A 且A ⊇B,则称事件A 与事件B 相等,记作A=B2.并事件(和事件)定义一般地,事件A 与事件B 至少有一个发生,这样的一个事件中的样本点或者在事件A 中,或者在事件B 中,我们称这个事件为事件A 与事件B 的并事件(或 和事件)含义 A 与B 至少有一个发生符号表示A ∪B(或A+B)图形表示3.交事件(积事件)定义一般地,事件A 与事件B 同时发生,这样的一个事件中的样本点既在事件A中,也在事件B 中,我们称这样的一个事件为事件A 与事件B 的交事件(或积 事件)含义 A 与B 同时发生 符号表示A ∩B(或AB)图形表示4.互斥(互不相容)一般地,如果事件A与事件B不能同时发生,也就是说A∩B是一个不可能定义事件,即A∩B=⌀,则称事件A与事件B互斥(或互不相容)含义A与B不能同时发生符号表示A∩B=⌀图形表示5.互为对立一般地,如果事件A与事件B在任何一次试验中有且仅有一个发生,即A∪B=定义Ω,且A∩B=⌀,那么称事件A与事件B互为对立.事件A的对立事件记为A 含义A与B有且仅有一个发生符号表示A∩B=⌀,且A∪B=Ω图形表示6.清楚随机事件的运算与集合运算的对应关系有助于解决此类问题.符号事件的运算集合的运算A 随机事件集合A A的对立事件A的补集AB 事件A与B的交事件集合A与B的交集A∪B 事件A与B的并事件集合A与B的并集知识点三:古典概型1.古典概型的定义试验具有如下共同特征:(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型.2.古典概型的概率计算公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)= kn =n(A)n(Ω),其中n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.知识点四:概率的基本性质1.概率的基本性质性质1 对任意的事件A,都有P(A)≥0.性质2 必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(⌀)=0.性质3 如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B).性质4 如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B).性质5 如果A⊆B,那么P(A)≤P(B).性质6 设A,B是一个随机试验中的两个事件,我们有P(A∪B)=P(A)+P(B)-P(A∩B).知识点五:事件的相互独立性1.相互独立事件的定义:对任意两个事件A与B,如果P(AB)=P(A)P(B)成立,则称事件A 与事件B相互独立,简称为独立.2.相互独立事件的性质:当事件A,B相互独立时,则事件A与事件B相互独立,事件A与事件B相互独立,事件A与事件B相互独立.【提示】公式P(AB)=P(A)P(B)可以推广到一般情形:如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2·…·A n)=P(A1)P(A2)·…·P(A n).3. 两个事件是否相互独立的判断方法(1)直接法:由事件本身的性质直接判定两个事件发生是否相互影响.(2)公式法:若P(AB)=P(A)P(B),则事件A,B为相互独立事件.4.求相互独立事件同时发生的概率的步骤:①首先确定各事件之间是相互独立的.②求出每个事件的概率,再求积.5.事件间的独立性关系已知两个事件A,B相互独立,它们的概率分别为P(A),P(B),则有事件表示概率A,B同时发生AB P(A)P(B)A,B都不发生A B P(A)P(B)A,B恰有一个发生(A B)∪(A B) P(A)P(B)+P(A)P(B)A,B中至少有一个发生(A B)∪(A B)∪(AB) P(A)P(B)+P(A)P(B)+P(A)P(B)A,B中至多有一个发生(A B)∪(A B)∪(A B) P(A)P(B)+P(A)P(B)+P(A)P(B)。

python产生5道两位数与一位数的四则运算题

python产生5道两位数与一位数的四则运算题

Python产生五道两位数与一位数的四则运算题在Python编程语言中,我们可以使用随机数生成器来产生数学题,包括两位数与一位数的四则运算题。

这不仅可以帮助学生练习基本的算术运算,还可以通过编程的方式激发学生对数学的兴趣。

在本文中,我将介绍如何使用Python生成这样的数学题,并探讨学生如何通过这些题目提高他们的数学能力。

让我们来看一下如何使用Python来生成两位数与一位数的四则运算题。

我们可以使用random模块中的randint函数来产生随机数,然后将这些随机数组合成算术表达式。

接下来我将展示一个例子,展示出如何生成五道这样的数学题。

1. 52 + 7 =2. 45 - 3 =3. 38 * 5 =4. 72 / 8 =5. 25 + 6 =在上面的例子中,我们使用了randint函数来产生两位数和一位数,然后用加、减、乘和除运算符来组合成算术表达式。

这样,我们就得到了五道两位数与一位数的四则运算题。

通过这种方式,我们可以轻松地生成大量的数学题目,供学生练习和学习。

对于学生来说,通过解决这些数学题,他们不仅可以熟练掌握基本的算术运算,还可以提高他们的数学思维能力。

通过编程生成这些题目,还可以激发学生对数学的兴趣,让他们在学习数学的过程中感受到乐趣和成就感。

除了简单的算术运算,这种方法还可以扩展到更复杂的数学题目。

我们可以使用随机数生成器来产生两位数与两位数的四则运算题,甚至是带有括号的多步运算题。

这样,我们可以为学生提供更具挑战性和趣味性的数学练习,帮助他们更好地掌握数学知识。

通过使用Python编程语言来生成两位数与一位数的四则运算题,我们不仅可以方便地创建大量的数学题目,还可以帮助学生提高他们的数学能力。

这种方法不仅可以在课堂上使用,还可以作为家庭作业或课外练习的方式。

希望学生们能够通过这种有趣的方式,愉快地学习和掌握数学知识。

Python的随机数生成器不仅可以用来产生两位数与一位数的四则运算题,还可以用来生成更复杂的数学题,比如带有括号的多步运算题。

TCL基础教程——数学计算

TCL基础教程——数学计算

TCL基础教程——数学计算TCL是一种脚本语言,它可以用于编写各种应用程序和脚本。

TCL提供了丰富的数学计算功能,包括基本的算术运算、数学函数、随机数生成等。

本教程将介绍如何在TCL中进行数学计算。

1.基本的算术运算TCL支持常见的四则运算,可以使用加号"+"、减号"-"、乘号"*"、除号"/"进行加、减、乘、除运算。

例如:``` tclset a 10set b 5set c [expr $a + $b] # 加法运算set d [expr $a - $b] # 减法运算set e [expr $a * $b] # 乘法运算set f [expr $a / $b] # 除法运算```运行以上代码后,变量`c`的值为15,`d`的值为5,`e`的值为50,`f`的值为22.数学函数TCL提供了许多数学函数,可以对数字进行各种计算。

常用的数学函数包括求幂、开方、对数等。

例如:``` tclset x 2set y 3set z [pow $x $y] # 求x的y次幂set sqrtz [sqrt $z] # 对z进行开平方set logz [log $z] # 对z取对数```运行以上代码后,变量`z`的值为8,`sqrtz`的值为2,`logz`的值为2.0793.随机数生成TCL可以生成伪随机数,可以使用`rand`函数生成随机数。

例如:``` tclset randNum [expr rand(] # 生成一个0到1之间的随机数set randInt [expr int(rand(*10)] # 生成一个0到9之间的随机整数```运行以上代码后,`randNum`的值为0到1之间的随机数,`randInt`的值为0到9之间的随机整数。

4.数学常数TCL提供了一些常见的数学常数,如pi和自然常数e,可以直接使用。

九年级数学随机事件说课稿

九年级数学随机事件说课稿

九年级数学随机事件说课稿九年级数学随机事件说课稿(精选5篇)作为一名教师,常常要根据教学需要编写说课稿,认真拟定说课稿,那么大家知道正规的说课稿是怎么写的吗?以下是本店铺精心整理的九年级数学随机事件说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

九年级数学随机事件说课稿 1教学目标:1、知识与技能:通过分析正确认识必然事件、不可能事件、随机事件,并理解随机事件的概念。

2、过程与方法:能根据随机事件的特点辨别哪些事件是随机事件。

3、情感与态度:感受数学与现实生活的联系,在独立思考的基础上,积极参与对数学问题的讨论,获得成功的体验。

在体验中去感受数学,喜欢数学。

教学重点、难点:重点:理解随机事件的概念并掌握随机事件发生可能性的变化规律。

难点:1、判断现实生活中哪些事件是随机事件。

2、探究随机事件可能性的变化规律。

教具准备:课件、口袋、小球、扑克牌、骰子教学过程:一、创设情境,引入新课在篮球比赛前,有这样一位新裁判员想以抽签方式决定两支球队的进攻方向,他准备了三根形状、大小相同的纸签。

上面分别写有1、0、0,在看不到纸签上的数字情况下,让其中一方队长从三根纸签中任意地抽取一根,抽到数字是1的纸签则拥有选择权,抽到数字是0的纸签则选择权给对方。

[师生行为]结合图片引发学生思考:如果你是队长会去抽吗?让学生凭借自己的经验谈谈想法,教师引导学生学完本节课内容后用严谨的数学知识可以解答。

[设计意图] 从篮球比赛中创设情境引出问题,让学生思考,激发学生求知欲望。

二、活动1、猜牌游戏1、展示四张红桃A,然后洗牌抽出一张,让学生猜这张是什么A?问可能是黑桃A吗?2、展示红桃A、黑桃A、方块A、梅花A各一张,然后洗牌抽出一张,猜是什么A?[设计意图] 通过师生互动游戏引导学生观察、思考并归纳出在一定条件下判断事件发生的结果有三种情况:可能、不可能、一定。

三、活动2、投掷一个质地均匀的正方体骰子,骰子六个面上分别刻有1到6的点数,每位学生掷10次并记录每次向上一面骰子的点数。

excel随机生成乘除数学题

excel随机生成乘除数学题

Excel是一款功能强大的办公软件,除了常见的数据处理和图表制作,它还可以用来生成乘除数学题。

下面将介绍如何使用Excel来随机生成乘除数学题。

1. 打开Excel软件,在一个空白的工作表中选择一个单元格,输入以下公式来生成两个随机数:=ROUND(RAND()*100,0)这个公式的作用是生成一个0到100之间的随机数,并用ROUND函数将其四舍五入为整数。

复制这个公式到另外一个单元格中,就能生成两个随机数。

2. 接下来,选择另外一个单元格,输入以下公式来生成一个随机的运算符号:=IF(RAND()>0.5,"×","÷")这个公式的作用是当随机数大于0.5时输出“×”,否则输出“÷”,这样就能生成一个随机的乘法或除法符号。

3. 然后再选择一个单元格,输入以下公式来计算上面生成的两个随机数和运算符号的结果:=IF($C$2="×",$C$1*$C$3,$C$1/$C$3)这个公式的作用是根据前面生成的随机运算符号来执行相应的乘法或除法运算,最终得出结果。

4. 将这些公式复制到需要生成题目的单元格中,就能得到随机生成的乘除数学题了。

通过上面的步骤,我们就可以利用Excel轻松地随机生成大量的乘除数学题,而且每次生成的题目都是随机的,可以有效地帮助学生进行练习。

不仅如此,Excel还可以结合条件格式和数据验证等功能,让生成的数学题更加规范和美观,提高学生的学习兴趣。

当然,除了乘除法,我们还可以通过类似的方法来生成加减法题目,只需简单地修改公式中的运算符号和对应的计算公式即可。

利用Excel来随机生成乘除数学题非常方便简单,不仅能够提高学生的学习效率,还能够减轻老师的工作负担,是一种非常实用的教学辅助工具。

希望各位老师和家长能够充分利用Excel的这一功能,为学生提供更加丰富多样的数学练习题,帮助他们更好地掌握数学知识。

人教版高中数学必修三教材用书第三章概率3.22(整数值)随机数(randomnumbers)的产生

人教版高中数学必修三教材用书第三章概率3.22(整数值)随机数(randomnumbers)的产生

3.2.2(整数值)随机数(random numbers)的产生随机数的产生[导入新知]1.随机数的产生(1)标号:把n个大小、形状相同的小球分别标上1,2,3,…,n;(2)搅拌:放入一个袋中,把它们充分搅拌;(3)摸取:从中摸出一个.这个球上的数就称为从1~n之间的随机整数,简称随机数.2.伪随机数的产生(1)规则:依照确定算法;(2)特点:具有周期性(周期很长);(3)性质:它们具有类似随机数的性质.计算机或计算器产生的随机数并不是真正的随机数,我们称为伪随机数.[化解疑难]对随机数的理解计算器或计算机产生的整数随机数是按照确定的算法产生的数,具有周期性(周期很长),它们具有类似随机数的性质,不是真正的随机数,称为伪随机数.即使是这样,由于计算器或计算机省时省力,并且速度非常快,我们还是把计算器或计算机产生的伪随机数近似地看成随机数.产生随机数的方法[导入新知]1.利用计算器产生随机数的操作方法用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数.例如,用计算器产生1到25之间的取整数值的随机数,方法如下:2.利用计算机产生随机数的操作程序每个具有统计功能的软件都有随机函数,以Excel软件为例,打开Excel软件,执行下面的步骤:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1.(2)选定A1格,按Ctrl+C快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl+V快捷键,则在A2至A100的数均为随机产生的0或1,这样相当于做了100次随机试验.(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数.(4)选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率.[化解疑难]计算机模拟试验的优点用频率估计概率时,需做大量的重复试验,费时费力,并且有些试验具有破坏性,有些试验无法真正进行.因此利用计算机进行随机模拟试验就成为一种很重要的替代方法,它可以在短时间内多次重复地来做试验,不需要对试验进行具体操作,可以广泛应用到各个领域.随机数的产生方法[例1]某校高一年级共有20个班1 200名学生,期末考试时,如何把学生随机地分配到40个考场中去?[解]第一步,n=1;第二步,用RANDI(1,1 200)产生一个[1,1 200]内的整数随机数x表示学生的座号;第三步,执行第二步,再产生一个座号,若此座号与以前产生的座号重复,则执行第二步,否则n=n+1;第四步,如果n≤1 200,则重复执行第三步,否则执行第五步;第五步,按座号的大小排列,作为考号(不足四位的前面添上“0”,补足位数),程序结束.[类题通法]产生随机数需要注意的两个问题(1)利用抽签法时,所设计的试验要切实保证任何一个数被抽到的可能性是相等的,这是试验成功的基础.(关键词:等可能)(2)利用计算器或计算机产生随机数时,由于不同型号的计算器产生随机数的方法可能会有所不同,故需特别注意操作步骤与顺序的正确性,具体操作需严格参照其说明书.(关键词:步骤与顺序)[活学活用]用随机模拟方法抛掷一枚均匀的硬币100次,产生计算机统计这100次试验中“出现正面朝上”随机数.解:利用计算机统计频数和频率,用Excel 演示.(1)选定C1格,键入频数函数“=FREQUENCY(A1:A100,0.5)”,按Enter 键,则此格中的数是统计A1至A100中比0.5小的数的个数,即0出现的频数,也就是反面朝上的频数;(2)选定D1格,键入“=1-C1/100”,按Enter 键,在此格中的数是这100次试验中出现1的频率,即正面朝上的频率. 利用随机模拟法估计概率[例2] (1)已知某运动员每次投篮命中的概率低于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569683 431 257 393 027 556 488 730 113537 989据此估计,该运动员三次投篮恰有两次命中的概率为( )A .0.35B .C .0.20D .(2)种植某种树苗,成活率是0.9.若种植该种树苗5棵,用随机模拟方法估计恰好4棵成活的概率.[解析] (1)选B 由题意知模拟三次投篮的结果,经随机模拟产生了20组随机数,在20组随机数中表示三次投篮恰有两次命中的有191,271,932,812,393,共5组随机数,∴所求概率为520=14=0.25. (2)利用计算器或计算机产生0到9之间取整数值的随机数,我们用0代表不成活,1至9的数字代表成活,这样可以体现成活率是0.9.因为种植5棵,所以每5个随机数作为一组,可产生30组随机数,如下所示:698016609777124229617423531516297472494557558652587413023224374454434433315271202178258555610174524144134922017036283005949765617334783166243034401117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率近似为9=0.3.30 [类题通法]利用随机模拟估计概率应关注三点用整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代表不同的试验结果.我们可以从以下三方面考虑:(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数;(3)当每次试验结果需要n个随机数表示时,要把n个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复.[活学活用]甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数:034 743 738 636 964 736 614 698 637 162332 616 804 560 111 410 959 774 246 762428 114 572 042 533 237 322 707 360 751据此估计乙获胜的概率为________.解析:产生30组随机数,就相当于做了30次试验.如果6,7,8,9中恰有2个或3个数出现,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为1130≈0.367. 答案:[典例] 通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 78842604 3346 0952 6807 9706 5774 57256576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,表示恰有三次击中目标,则四次射击中恰有三次击中目标的概率约为________.[解析] 表示三次击中目标分别是3013,2604,5725,6576,6754,共5组数,而随机数总共20组,所以所求的概率近似为520=25%. [答案] 25%[易错防范]1.由题意可知,数字1,2,3,4,5,6代表击中,若不能正确理解各数字的意义,则容易导致题目错解.2.解决此类题目时正确设计试验,准确理解随机数的意义是解题的基础和关键.[成功破障]天气预报说,在今后的三天中,每一天下雨的概率均为40%,用随机模拟的方法估计这三天中恰有两天下雨的概率.可利用计算机产生0到9之间的整数值的随机数,如果我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,顺次产生的随机数如下:907 966 191 925 271 932 812 458569 683 631 257 393 027 556 488730 113 137 989 则这三天中恰有两天下雨的概率约为( )A.1320B .720 C.920 D .1120 解析:选B 由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191,271,932,812,631,393,137,共7组随机数,∴所求概率为720.[随堂即时演练]1.利用抛硬币产生随机数1和2,出现正面表示产生的随机数为1,出现反面表示产生的随机数为2.小王抛两次,则出现的随机数之和为3的概率为( )A.12B .13 C.14D .15解析:选A 抛掷硬币两次,产生的随机数的情况有(1,1),(1,2),(2,1),(2,2)共四种,其中随机数之和为3的情况有(1,2),(2,1)两种,故所求概率为24=12. 2.已知某射击运动员每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0~9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:5727 0293 7140 9857 03474373 8636 9647 1417 46980371 6233 2616 8045 60113661 9597 7424 6710 4281据此估计,该射击运动员射击4次至少击中3次的概率为( )A .0.85B .0.819 2C .0.8D . 解析:选D 该射击运动员射击4次至少击中3次,考虑该事件的对立事件,故看这20组数据中含有0和1的个数多少,含有2个或2个以上的有5组数,故所求概率为1520=0.75. 3.一个正方体,它的表面涂满了红色,在它的每个面上切两刀,可得27个小正方体,从中任取一个它恰有一个面涂有红色的概率是________.解析:恰有一个面涂有红色在每一个侧面上只有一个,共有6个,故所求概率为29. 答案:294.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________.解析:从5个数中任取两个,共有10种取法,两个数相差1的有1,2;2,3;3,4;4,5四种,故所求概率为410=25. 答案:255.盒中有大小、形状相同的5只白球2只黑球,用随机模拟法求下列事件的概率:(1)任取一球,得到白球;(2)任取三球,都是白球.解:用1,2,3,4,5表示白球,6,7表示黑球.(1)步骤:①利用计算器或计算机产生1到7的整数随机数,每一个数一组,统计组数n ;②统计这n 组数中小于6的组数m ;③任取一球,得到白球的概率估计值是m n .(2)步骤:①利用计算器或计算机产生1到7的整数随机数,每三个数一组,统计组数n ;②统计这n 组数中,每个数字均小于6的组数m ;③任取三球,都是白球的概率估计值是m n. [课时达标检测]一、选择题1.袋子中有四个小球,分别写有“巴”“西”“奥”“运”四个字,有放回地从中任取一个小球,取到“奥”就停止.用随机模拟的方法估计直到第二次才停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出的小球上分别写有“巴”“西”“奥”“运”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次才停止概率为( )A.15B.14C.13D.12答案:B2.用计算机模拟随机掷骰子的试验,估计出现2点的概率,下列步骤中不.正确的是( ) A .用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间取整数值的随机数x ,如果x =2,我们认为出现2点B .我们通常用计数器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C .出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D .程序结束.出现2点的频率作为概率的近似值答案:A3.从3名男生和2名女生中任选3人参加演讲比赛,则这三人中恰有一名男生的概率是( )A.310B.35C.25D.13答案:A4.从2,4,6,8,10这5个数中任取3个,则这三个数能成为三角形三边的概率是( ) A.25B.710C.310D.35 答案:C5.甲、乙两人一起去游济南趵突泉公园,他们约定,各自独立地从1号到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.16 答案:D二、填空题6.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为________.解析:共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为36=12. 答案:127.某小组有五名学生,其中三名女生、两名男生,现从这个小组中任意选出两名分别担任正、副组长,则正组长是男生的概率是________.解析:从五名学生中任选两名,有10种情况,再分别担任正、副组长,共有20个基本事件,其中正组长是男生的事件有8种,则正组长是男生的概率是820=25. 答案:258.现有五个球分别记为A ,B ,C ,D ,E ,随机取出三球放进三个盒子,每个盒子只能放一个球,则D 或E 在盒中的概率是________.解析:从5个球中取3个,有10种取法,再把3个球放入3个盒子,有6种放法,基本事件有60个,D 和E 都不在盒中含6个基本事件,则D 或E 在盒中的概率P =1-660=910. 答案:910三、解答题9.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解:(1)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为P =310. (2)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为P =815.10.甲盒中有红、黑、白三种颜色的球各3个,乙盒子中有黄、黑、白三种颜色的球各2个,从两个盒子中各取1个球.(1)求取出的两个球是不同颜色的概率;(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).解:(1)设A 表示“取出的两球是相同颜色”,B 表示“取出的两球是不同颜色”.则事件A 的概率为:P (A )=3×2+3×29×6=29. 由于事件A 与事件B 是对立事件,所以事件B 的概率为:P (B )=1-P (A )=1-29=79. (2)随机模拟的步骤:第1步:利用抽签法或计算机(计算器)产生1~3和2~4两组取整数值的随机数,每组各有N 个随机数.用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球.第2步:统计两组对应的N 对随机数中,每对中两个数字不同的对数n .第3步:计算n N 的值,则n N就是取出的两个球是不同颜色的概率的近似值. 11.先后随机投掷2枚正方体骰子,其中x 表示第1枚骰子出现的点数,y 表示第2枚骰子出现的点数.(1)求点P (x ,y )在直线y =x -1上的概率;(2)求点P (x ,y )满足y 2<4x 的概率.解:(1)每颗骰子出现的点数都有6种情况,所以基本事件总数为6×6=36个.记“点P (x ,y )在直线y =x -1上”为事件A ,A 有5个基本事件:A ={(2,1),(3,2),(4,3),(5,4),(6,5)},∴P (A )=536. (2)记“点P (x ,y )满足y 2<4x ”为事件B ,则事件B 有17个基本事件:当x =1时,y =1;当x =2时,y =1,2;当x =3时,y =1,2,3;当x =4时,y =1,2,3;当x =5时,y =1,2,3,4;当x=6时,y=1,2,3,4.∴P(B)=1736.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学随机生成
数学随机生成是指利用数学方法生成随机数或随机序列的过程。

随机数在现代科学和技术中有着广泛的应用,例如在密码学、模拟实验、统计分析等领域。

本文将简要介绍数学随机生成的原理和应用,并讨论一些与之相关的概念和方法。

一、数学随机生成的原理
在计算机中,通常使用伪随机数生成器(Pseudo Random Number Generator, PRNG)来生成随机数。

PRNG是一种确定性算法,它利用一个初始种子(seed)作为输入,经过一系列数学运算得到一个看似随机的输出序列。

这个输出序列满足统计上的随机性要求,但实际上是可重复的。

常见的PRNG算法有线性同余法、梅森旋转算法等。

线性同余法是一种简单且高效的算法,它的基本原理是通过递推关系生成一个整数序列。

梅森旋转算法是一种更复杂的算法,它利用位运算和数学函数来生成更高质量的随机数。

1. 模拟实验:在物理学、化学、生物学等领域,科学家常常使用数学随机生成来模拟实验。

通过生成随机数来代表实验中的不确定因素,可以更好地理解和预测实验结果。

2. 统计分析:在统计学中,随机数被广泛用于抽样调查、蒙特卡洛模拟、假设检验等分析方法中。

通过生成随机数来代表总体中的个
体,可以进行大规模的统计推断,从而得到更准确的结论。

3. 加密与安全:在密码学中,随机数被用于生成密钥、生成随机种子等重要任务。

通过使用数学随机生成的随机数,可以增加密码的安全性,防止被破解和攻击。

4. 游戏和赌博:在游戏和赌博中,随机数被用于生成随机事件,例如洗牌、掷骰子、抽牌等。

这样可以增加游戏的趣味性和公平性,使玩家无法预测和控制游戏结果。

三、相关概念和方法
1. 随机性测试:为了验证随机数生成器的质量,需要进行随机性测试。

常用的测试方法包括频数分析、序列重复性检验、独立性检验等。

通过这些测试可以评估随机数生成器的随机性和均匀性。

2. 随机漫步:随机漫步是一种数学模型,描述一个物体在随机环境中的移动轨迹。

它在金融学、物理学等领域有着广泛的应用。

随机漫步可以用来模拟股票价格、颗粒运动等随机过程。

3. 蒙特卡洛方法:蒙特卡洛方法是一种基于随机数的数值计算方法,它通过随机取样来近似求解复杂的数学问题。

蒙特卡洛方法在金融工程、物理学、生物学等领域有着重要的应用。

四、总结
数学随机生成是一种重要的数学方法,它在现代科学和技术中有着
广泛的应用。

通过利用数学随机生成器可以生成满足统计上的随机性要求的数列,这对于模拟实验、统计分析、加密安全、游戏赌博等方面都具有重要意义。

同时,我们还介绍了一些与数学随机生成相关的概念和方法,如随机性测试、随机漫步、蒙特卡洛方法等。

通过了解和应用这些方法,我们可以更好地理解和利用数学随机生成的原理,为科学研究和技术发展做出贡献。

相关文档
最新文档