八年级二元一次方程知识点
认识二元一次方程组(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题5.1认识二元一次方程组(知识梳理与考点分类讲解)【知识点1】二元一次方程1.定义含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.2.二元一次方程的条件(1)整式方程;(2)只含有两个未知数;3.关于x,y的两元一次方程的一般形式:ax+by=c(a≠0,b≠0).特别提醒:“所含未知数的项的次数都是1”不可理解为两个未知数的次数都是1,例如2xy+1=0不是二元一次方程.【知识点2】二元一次方程组1.定义共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.2.二元一次方程组应满足的条件:(1)两个方程都是整式方程;(2)共含有两个未知数;(3)两个方程都是一次方程;特别提醒:判断二元一次方程组时,误认为每个方程必须是二元一次方程.【知识点3】二元一次方程的解1.二元一次方程组的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.2.判断一对数值是不是二元一次方程的解的方法:判断一对数值是不是二元一次方程的解,只需将这对数值分别代入方程的左右两边,看其是否相等.特别提醒:二元一次方程只要给定其中的一个未知数的值,就可以相应地求出另一个未知数的值,因此二元一次方程有无数个解.二元一次方程的整数解有时只有有限个.【知识点4】二元一次方程组的解1.二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.2.判断一对数值是不是二元一次方程组的解的方法判断一对数值是否为一个二元一次方程组的解,必须将这对数值分别带入方程组中的每一个方程进行检验,若满足没一个方程,则这对数值就是这个方程组的解,否则就不是这个方程组的解.特别提醒:方程组的解一定是方程组中每个方程的解,而方程组中某个方程的解不一定是方程组的解.【考点目录】【考点1】二元一次方程的认识;【考点2】二元一次方程组的认识【考点3】二元一次方程的解;【考点4】二元一次方程组的解【答案】0【分析】根据二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的整式方程,进行求解即可解:∵方程()()33420m n m xn y --+--=是关于x y ,的二元一次方程,∴40312031m m n n +≠⎧⎪-=⎪⎨-≠⎪⎪-=⎩,∴44m n ==,,∴m n -440=-=【点拨】本题考查二元一次方程的定义,掌握二元一次方程组的定义是解题关键.二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.【举一反三】【变式1】(2023上·河北张家口·八年级统考期中)下列是二元一次方程的是()A .215x -=B .21x y +=C .23x y +=D .12y x+=【答案】C【分析】本题考查了二元一次方程的定义,二元一次方程需满足三个条件:①首先是整式方程,②方程中共含有两个未知数,③所有未知项的次数都是一次,不符合上述任何一个条件的都不叫二元一次方程.解:A .215x -=,是一元一次方程,故本选项不符合题意;B .21x y +=,是二元二次方程,故本选项不符合题意;C .23x y +=,是二元一次方程,故本选项符合题意;D .12y x+=,是分式方程,故本选项不符合题意.故选:C .【变式2】(2022下·湖北荆州·七年级校考期中)若方程:223m x ++514n y -=6是关于x 、y 的二元一次方程,则n m -的平方根为.【答案】2±【分析】根据二元一次方程的定义,得各个未知数的次数为1,求得m ,n 的值,进而求解.解:由题意,得:231m +=,5141n -=,解得1m =-,3n =.∴()314n m -=--=,∴n m -的平方根2=±.故答案为:2±.【点拨】本题考查二元一次方程的定义,平方根,熟练掌握只含有两个未知数,且未知项的次数为1的整式方程是二元一次方程是解题的关键.【考点二】二元一次方程组的认识【例2】(2017下·四川宜宾·七年级校联考阶段练习)已知方程组()()2233112m x m ym x --⎧--=⎪⎨+=-⎪⎩是二元一次方程组,求m 的值.【答案】m =5解:依题意,得:|m -2|-2=1,且m -3≠0,且m +1≠0,解得:m =5.【点拨】本题考查了二元一次方程组的定义.二元一次方程组也满足三个条件:①方程组中的两个方程都是整式方程,②方程组中共含有两个未知数,③每个方程都是一次方程.【举一反三】【变式1】(2023下·河北廊坊·七年级统考期末)下列方程组中是二元一次方程组的是()A .436231x y y z -=⎧⎨-=⎩B .45342x y x =⎧⎨-=⎩C .46323xy x y =⎧⎨+=⎩D .23325y xy x ⎧+=⎪⎨⎪+=⎩【答案】B【分析】根据二元一次方程组定义判断即可.解: A.此方程组含有,,x y z 三个未知数,故不是二元一次方程组,故此选项不符合题意;B .该方程组是二元一次方程组,故此选项符合题意;C .46xy =是二元二次方程,故不是二元一次方程组,故此选项不符合题意;D .233y x+=是分式方程,故不是二元一次方程组,故此选项不符合题意;故选:B .【点拨】本题主要考查了二元一次方程的定义.一定要紧扣二元一次方程组的定义回答.【变式2】(2023下·江苏徐州·七年级统考期末)观察所给的4个方程组:①23x y =⎧⎨=⎩;②415343x y x =⎧⎨-=-⎩;③2164x y x y +=⎧⎨-=⎩;④352494x y x y +=⎧⎨+=⎩,其中,符合二元一次方程组定义的是(写出所有正确的序号).【答案】①②④【分析】含有两个未知数,且未知数的最高次数是1,这样的整式方程组是二元一次方程组,根据定义逐一判断即可.解:①23x y =⎧⎨=⎩,符合二元一次方程组定义;②415343x y x =⎧⎨-=-⎩,符合二元一次方程组定义;③2164x y x y +=⎧⎨-=⎩,未知数x 的最高次数是2,不符合二元一次方程组定义;④352494x y x y +=⎧⎨+=⎩,符合二元一次方程组定义;所以符合二元一次方程组定义的是①②④.故答案为:①②④.【点拨】本题考查的是二元一次方程组的定义,熟记定义是解本题的关键.【考点三】二元一次方程的解【例3】(2023上·河北张家口·八年级统考期中)已知24x y =⎧⎨=⎩是关于x ,y 的二元一次方程314x ay +=的一组解.(1)求a 的值(2)请用含有x 的代数式表示y .【答案】(1)2a =;(2)372y x=-【分析】(1)将二元一次方程的解24x y =⎧⎨=⎩代入314x ay +=得到关于a 的方程,解关于a 的方程即可;(2)将2a =代入314x ay +=得到3214x y +=,将x 看作已知数,y 看作未知数,解关于y 的方程即可.(1)解:将24x y =⎧⎨=⎩代入314x ay +=,得:32414a ⨯+=,解得2a =;(2)解:∵2a =,∴原方程可变为3214x y +=,∴372y x =-.【举一反三】【变式1】(2023上·陕西西安·八年级高新一中校考期中)若关于x 、y 的二元一次方程221x y a +=-的一组解为3x =,1y =,则a 的值是()A .3B .2C .1D .1-【答案】A【分析】本题考查了二元一次方程的解,解题的关键是掌握二元一次方程的定义.把3x =,1y =代入到221x y a +=-中即可求解.解:把3x =,1y =代入到221x y a +=-中得:21321a -=+⨯,216a -=,3a =,故选:A .【变式2】(2023上·全国·八年级专题练习)小方解方程组232ax by cx y +=⎧⎨-=-⎩时,因抄错了a ,解得11x y =⎧⎨=⎩,则c 的值为.【答案】1【分析】本题主要考查了二元一次方程的解,将解代入第二个方程即可解答.解:把11x y =⎧⎨=⎩代入32cx y -=-得:32c -=-,解得:1c =.故答案为:1.【考点四】二元一次方程组的解【例4】(2023上·全国·八年级专题练习)甲和乙两人同解方程组125bx y x ay +=⎧⎨+=⎩,甲因抄错了a ,解得52x y =⎧⎨=⎩,乙因抄错了b ,解得32x y =⎧⎨=⎩,求52a b -的值.【答案】1【分析】本题考查了二元一次方程组的解,将甲、乙求得的解分别代入正确的方程,求出a ,b 的值即可求解,用代入法解方程是解本题关键.解:由题意52x y =⎧⎨=⎩,是12bx y +=的解,∴5212b +=,解得2b =,又 32x y =⎧⎨=⎩是5x ay +=的解,∴325a +=,解得1a =,5251221a b ∴-=⨯-⨯=.【举一反三】【变式1】(2023上·广东深圳·八年级校联考期中)若关于x ,y 的二元一次方程组2138x ay bx y -=-⎧⎨+=⎩的解是15x y =⎧⎨=⎩,则关于m 、n 的二元一次方程组()()()()2138m n a m n b m n m n ⎧+--=-⎪⎨++-=⎪⎩的解是()A .15m n =⎧⎨=⎩B .51m n =⎧⎨=⎩C .23m n =-⎧⎨=⎩D .32m n =⎧⎨=-⎩【答案】D【分析】本题考查了二元一次方程组的解及解二元一次方程组,先将15x y =⎧⎨=⎩代入2138x ay bx y -=-⎧⎨+=⎩解得357a b ⎧=⎪⎨⎪=-⎩,再将357a b ⎧=⎪⎨⎪=-⎩代入()()()()2138m n a m n b m n m n ⎧+--=-⎪⎨++-=⎪⎩即可求解,熟练掌握二元一次方程组的解及利用加减消元法解二元一次方程组是解题的关键.解:将15x y =⎧⎨=⎩代入2138x ay bx y -=-⎧⎨+=⎩得:251158a b -=-⎧⎨+=⎩,解得:357a b ⎧=⎪⎨⎪=-⎩,()()()()3215738m n m n m n m n ⎧+--=-⎪∴⎨⎪-++-=⎩,解得:32m n =⎧⎨=-⎩,故选D .【变式2】(2023下·七年级单元测试)写出一个解为25x y =⎧⎨=-⎩的二元一次方程组:.【答案】37x y x y +=-⎧⎨-=⎩(答案不唯一)【分析】方程组的解,指的是该数值满足方程组中的每一方程.在求解时,应先围绕25x y =⎧⎨=-⎩列一组算式,如253-=-,257+=,然后用x ,y 代换,可得方程组.解:先围绕25x y =⎧⎨=-⎩列一组算式,如:253-=-,257+=,然后用x ,y 代换,可得37x y x y +=-⎧⎨-=⎩等.答案不唯一,符合题意即可.故答案为:37x y x y +=-⎧⎨-=⎩(答案不唯一).【点拨】本题考查二元一次方程组的解,此题是开放性题目,答案不唯一.掌握二元一次方程组解的意义是解题的关键.。
八年级数学二元一次方程组知识点

八年级数学二元一次方程组知识点
以下是八年级数学二元一次方程组的主要知识点:
1. 二元一次方程组的定义:由两个未知数的一次方程组成的方程组。
2. 解二元一次方程组的方法:
a. 消元法:通过变换方程组中的某一方程使得两个方程的系数相同,从而使得方程组中某个未知数的系数为零,然后解得另一个未知数,再回代求解另一个未知数。
b. 代入法:将一个方程的一个未知数用另一个未知数表示,然后代入另一个方程,得到包含一个未知数的一次方程,从而解出这个未知数,再代入另一个方程解出另一个未知数。
3. 方程组的解的情况:
a. 有唯一解:方程组有一个解,即两个方程表示的直线在某一点相交。
b. 无解:方程组的两个方程表示的直线平行,不相交。
c. 无穷多解:方程组的两个方程表示的直线重合,有无穷多个解。
4. 方程组解的判断:
a. 可以通过将解代入方程组中验证方程组是否成立,以确定解是否正确。
b. 可以通过画出方程组所表示的直线来观察直线的相交情况,以判断方程组是否有解及解的情况。
5. 方程组应用题:将实际问题转化为方程组,通过解方程组求解实际问题,如两个人同时出发,相遇时互相报告行进的时间等问题。
这些是八年级数学二元一次方程组的主要知识点,希望对你有帮助。
初二数学上学期第七章二元一次方程组知识点加试题

第七章:二元一次方程组考点1: 方程组及其解法一、考点讲解:1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程. 2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组. 3.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解. 4.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)减消无法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法. 5.整体思想解方程组.(1)整体代入.如解方程组3(1) 5 5(1)3(5) x y y x -=+⎧⎨-=+⎩①②,方程①的左边可化为3(x+5)-18=y+5③,把②中的3(x+5)看作一个整体代入③中,可简化计算过程,求得y .然后求出方程组的解.(2)整体加减,如1+3y 19 313x+y 11 3x ⎧=⎪⎪⎨⎪=⎪⎩①②因为方程①和②的未知数x 、y 的系数正好对调,所以可采用两个方程整体相加减求解.利用①+②,得x+y=9③,利用②-①得x -y=3④,可使③、④组成简单的方程组求得x ,y . 二、经典考题剖析:【考题1-1】(2004、汉中)若x+y+4则 3x+2y =_______解:-6 点拨:由x+y+4=0, x-2=0,解得x=2, y=-6,故3x+2y =3×2+2×(-6)= -6 【考题1-2】(2004、北碚,5分) 解方程组:x-y=42x+y=5⎧⎨⎩点拨:此题用加减消元法较容易,也可用代人消元法解. 三、针对性训练:( 20分钟) (答案:242 ) 1、对方程组4x+7y=-19 4x-5y=17 ⎧⎨⎩①②,用加减法消去x ,得到的方程为( )A 、2y=-2 =-36 C. 12y=-2 =-36 2.二元一次方程组x+y=102x-y=-1⎧⎨⎩的解是( ) A .11x=x=2x=73 C. D.19y=8y=3y=3x=3 B.y=7⎧⎪⎧⎧⎪⎪⎪⎨⎨⎨⎪⎪⎩⎩⎪⎪⎩⎧⎨⎩ 3.若x=-2y=1⎧⎨⎩ 是方程组ax+by=1bx+ay=7⎧⎨⎩的解,则(a+b ) (a -b )的值为( )A. -353B. 353 C. -164.解方程组:⑴2x+5y=53x+2y=53x-5y=102x+5y=7⎧⎧⎨⎨⎩⎩⑵ 5.已知方程组ax+5y=15 4x-by=-2 ⎧⎨⎩①②由于甲看错了方程①中的a 得到的方程组的解为x=-3y=-1⎧⎨⎩乙看错了方程②中的b ,得到方程组的解为x=5y=4⎧⎨⎩若按正确的a 、b 为计算,求原方程组的解x 与y 的差.6.若a+b4b 与3a+b 是同类二次根式,求a 、b 的值.7.已知关于x ,y 的方程组2x-y=32kx+(k+1)y=10⎧⎨⎩的解互为相反数,则k 的值是多少?8.甲、乙两人解同一个二元一次方程组,甲正确地得出解x=3,y=-2,乙因把这个方程组中的第二个方程X 的系数抄错了,得到一个错误的解为x=-2,y=2.他们解先后,原方程组的三个系数又被污染而看不清楚,变成下面的形式:请你把原方程组的三个被污染的系数填上.考点2:方程组的实际应用 一、考点讲解:方程组解决实际问题:应用方程组解决实际问题的关键在于正确找出问题中的两个等量关系,列出方程并组成方程组,同时注意检验解的合理性. 二、经典考题剖析: 【考题2-1】(2004、宁安)某商品按进价的100%加价后出售.经过一段时间,商家为了减少库存,决定5折销售,这时每件商品( )A .赚50%B .赔50%C .赔25%D .不赔不赚【考题2-2】(2004、南山区正题3分)如图1-7-1,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是( )A .9015x y x y +=⎧⎨=-⎩ B .90215x y x y +=⎧⎨=-⎩ C .90152x y x y+=⎧⎨=-⎩ D .290215x x y =⎧⎨=-⎩【考题2-3】(2004、宁安)如图,如果横行上的两个数字之和相等,竖列上的两个数字之和相等,那么a 、b 、c 、d 依次可为 。
初二数学必备知识点:二元一次方程

初二数学必备知识点:二元一次方程如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解。
下面是店铺收集整理的初二数学《二元一次方程》的必备知识点以供大家学习。
初二数学必备知识点:二元一次方程1.二元一次方程的定义含有两个未知数,并且未知项的次数是1,系数不是O,这样的整式方程,叫做二元一次方程.二元一次方程指的是有两个未知数的,而且未知数的质数都是1的方程式。
由二元一次方程衍生出了二元一次方程组、二元一次方程的解等方面的知识,一般来说,解二元一次方程都需要把方程中的未知数的个数减少,然后再解,它的方程式是X-Y=1。
2.二元一次方程的一般形式ax+by=c(其中x、y少是未知数,a、b、c是字母已知数,且ab≠O).3.判断一个方程是二元一次方程,它必须同时满足下列四个条件(l)含有两个未知数;(2)未知项的次数都是1;(3)未知项的系数都不是仇(4)等号两边的代数式是整式,即方程是整式方程.二元一次方程解题技巧:每个人初学二元一次方程的时候,总是会觉得十分难解的,但是只要你掌握了解题技巧,自然而然就能解开。
首先要想解开一个二元一次方程,就应该是解开二元一次方程组,第一步做的就是把第一个和第二个方程组合并,然后把需要解开的项移到一旁,然后合并同类项,最后就可以将解得的一个未知数带入原先的方程中,就可以得知两个未知数的值。
通常求一个二元一次方程解的方法是:用含有一个未知数的代数式表示另一个未知数,如3x-x/2=7变形为y=2(3x-7),给出二的一个值,就可以求出少的对应值,这样就得到了一个方程的解。
适合一个二元一次方程的每一对未知数的值叫做二元一次方程的一个解.由于任何一个二元一次方程,让其中一个未知数取任意一个值,都可以求出与其对应的另一个未知数的值,因此,任何一个二元一次方程都有无数多个解.但若对未知数的取值附加某些条件限制时,方程的解可能只有有限个。
初中数学专题之二元一次方程组知识点

1.二元一次方程的概念含有两个未知数,并且两个未知数项的次数都是1的方程叫做二元一次方程。
2.二元一次方程判定条件①方程两边的代数式都是整式——分母中不能含有字母。
②有两个未知数——“二元”。
③含有未知数的项的最高次数为1——“一次”。
④含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0)。
3.二元一次方程的解使二元一次方程两边的值相等的两个未知数的一组取值叫做二元一次方程的解。
在写二元一次方程解的时候我们用大括号联立表示。
4.二元一次方程组的概念由几个一次方程组成并且一共含有两个未知数的方程组叫做二元一次方程组。
5.二元一次方程组的解二元一次方程组中所有方程(一般为两个)的公共解叫做二元一次方程组的解。
易错难点1.考点二元一次方程的概念和解,二元一次方程组的概念和解。
2.易错点②也是二元一次方程组。
②是上一点中方程组的解,解必须进行联立。
③二元一次方程组的解必须同时满足所有方程,即将解代入方程组的每一个方程时,等号两边的值都相等。
必会题型1.下列方程中,是二元一次方程的是()A.x+y=5B.3x+y2=1C.x+3=2xD.1/x+y=22.若(a-2)x+3y|a|-1=1是关于x、y的二元一次方程,则a的值为()A.1B.2C.-2D.2和-2答案解析1.判定一个方程是二元一次方程必须同时满足三个条件:方程两边的代数式都是整式;有两个未知数;含有未知数的项的最高次数为1。
A是二元一次方程,B是二元二次方程,C是一元一次方程,D是分式方程,选A。
2.由题意得|a|-1=1,a-2≠0,解得a=-2,选C。
八年级上册第五章二元一次方程组知识点整理

(数学教研组)八年级上册 第五章 二元一次方程组 知识点整理一、本章知识点梳理:知识点1:二元一次方程(组)的定义 知识点2:二元一次方程组的解定义知识点3:二元一次方程组的解法 知识点4:一次函数与二元一次方程(组) 知识点5:实际问题与二元一次方程组二、各知识点分类讲解知识点1:二元一次方程(组)的定义1、二元一次方程的概念含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程 注意:1、(1)方程中的元指的是未知数,即二元一次方程有且只有两个未知数. (2)含有未知数的项的次数都是1.(3)二元一次方程的左右两边都必须是等式. (三个条件完全满足的就是二元一次方程)2.含有未知数的项的系数不等于零,且两未知数的次数为1。
即若ax m+by n=c 是二元一次方程,则a ≠0,b ≠0且m=1,n=1例1:已知(a -2)x -by|a|-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.例2:下列方程为二元一次方程的有_________①y x =-52,②14=-x ,③2=xy ,④3=+y x ,⑤22=-y x ,⑥22=-+y x xy ,⑦71=+y x⑧y x 23+,⑨1=++c b a 【巩固练习】下列方程中是二元一次方程的是( ) A .3x-y 2=0 B .2x +1y =1 C .3x -52y=6 D .4xy=3 2、二元一次方程组的概念由两个二元一次方程所组成的方程组叫二元一次方程组注意:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1。
③方程组中每个方程均为整式方程。
例:下列方程组中,是二元一次方程组的是( )A 、228423119 (237)54624x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩【巩固练习】1、 已知下列方程组:(1)32x y y =⎧⎨=-⎩,(2)324x y y z +=⎧⎨-=⎩,(3)1310x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,(4)30x y x y +=⎧⎨-=⎩,其中属于二元一次方程组的个数为( )A .1 B. 2 C . 3 D . 4 2、 若753313=+--m n m y x是关于x 、y 二元一次方程,则m =_________,n =_________。
八年级数学二元一次方程组知识点

八年级数学二元一次方程组知识点一元一次方程组是由两个一元一次方程组成的方程组。
一元一次方程是指只含有一个未知数,且该未知数的最高次数是1的方程。
例如:2x + 3 = 7。
二元一次方程组是指含有两个未知数的一次方程组。
一般形式为:ax + by = cdx + ey = f其中,a、b、c、d、e、f都是已知的实数,且a、b、d、e不同时为0。
二元一次方程组的解是同时满足两个方程的数对(x, y)。
解二元一次方程组的方法有多种,常用的有代入法、消元法和等式法。
- 代入法:从一个方程中解出一个变量,然后将其代入另一个方程中求解另一个变量。
- 消元法:通过适当的方式使得方程组中的一个未知数消失,然后解得另一个未知数,最后再带回求解另一个未知数。
- 等式法:将两个方程中相同的未知数系数相等,得到一个新的方程,然后解这个方程得到一个未知数的值,再带回求解另一个未知数。
解二元一次方程组时,可能有以下几种情况:- 有唯一解:两个方程的图象相交于一点,此时方程组有一个唯一解。
- 无解:两个方程的图象平行或重合,此时方程组无解。
- 无穷多解:两个方程的图象完全重合,此时方程组有无穷多个解。
在解二元一次方程组时,可以利用以下技巧:- 对方程组的两个方程进行加减运算,使得一个未知数的系数相等的绝对值,然后求解另一个未知数。
- 对方程组的两个方程进行倍乘运算,使得两个方程中一个未知数的系数相等(或相差为1),然后消元求解。
- 求解时可以利用分式方程的性质,将一个未知数的系数除以另一个未知数的系数,得到一个分式,再进行简化运算。
除了上述基本知识点外,还需了解线性方程组的应用问题,如解题思路和实际应用等相关内容。
2023年北师版八年级上册数学二元一次方程组知识点及练习题

学易佳教育中心八年级上册第五章二元一次方程组基础知识1.二元一次方程具有两个未知数, 并且所含未知数旳项旳次数都是1旳整式方程叫做二元一次方程。
2.二元一次方程旳解适合一种二元一次方程旳一组未知数旳值, 叫做这个二元一次方程旳一种解。
3.二元一次方程组具有两个未知数旳两个一次方程所构成旳一组方程, 叫做二元一次方程组。
4二元一次方程组旳解二元一次方程组中各个方程旳公共解, 叫做这个二元一次方程组旳解。
5.二元一次方程组旳解法(1)代入(消元)法(2)加减(消元)法6.一次函数与二元一次方程(组)旳关系:(1)一次函数与二元一次方程旳关系:直线y=kx+b上任意一点旳坐标都是它所对应旳二元一次方程kx- y+b=0旳解(2)一次函数与二元一次方程组旳关系:二元一次方程组 旳解可看作两个一次函数和 旳图象旳交点。
当函数图象有交点时, 阐明对应旳二元一次方程组有解;当函数图象(直线)平行即无交点时, 阐明对应旳二元一次方程组无解。
【基础训练】1.下列方程是二元一次方程旳有: ___________________(只填序号)①093=-+y x ②012232=+-y x ③202=+y x ④113=-yx ⑤3A-4B=70 ⑥x 2+10=02.甲种物品每个4kg, 乙种物品每个7kg 。
既有甲种物品x 个, 乙种物品y 个, 共76kg.(1)列出有关x,y 旳二元一次方程组_____________________________(2)若x=12,则y=___________(3)若有乙种物品8个, 则甲种物品有_________个。
3、小明从邮局买了面值50分和80分旳邮票共9枚, 花了6.3元, 小明买了50分邮票枚, 买了80分邮票枚, 则根据题意可列方程组:___________________⎩⎨⎧=+=+222111c y b x a c y b x a 22122b c x b a y +-=4.、下列四组数值中, 哪些是二元一次方程旳解_______________(1)⎩⎨⎧=-=;6,2y x (2)⎩⎨⎧==;4,3y x (3)⎩⎨⎧==;3,4y x (4)⎩⎨⎧-==.2,6y x 5.、二元一次方程组旳解是( )(A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x(D )⎩⎨⎧==.2,4y x 6.用代入消元法解下列方程组:1. 2、7、用加减消元法解下列方程组:1. 2、3. 4.【巩固提高】一、填空题:1. 已知/是有关x,y 旳二元一次方程, 则m = .2.假如/是一种二元一次方程, 那么数/= , /= .3.假如/是同类项, 那么 /= , /= .4.请写出方程x+2y=7旳一种正整数解是 .5./中, 若/则/_______.6.由/_______, /_______.7.假如那么_______. 8. 已知二元一次方程/当/时, y = .9. /是二元一次方程2x +by =-2旳一种解, 则b 旳值等于 .10. 已知/和/都是ax +by =7旳解, 则a = , b = .11. 已知/, 则x +y = .12. 若方程组/旳解是/, 则/.13. 某年级有学生246人, 其中男生比女生人数旳2倍少3人, 问男女学生各多少人, 设女生人数为x 人, 男生人数为y 人, 可列方程组为 .⎩⎨⎧=-=+.232,12y x y x =-+-+3962242y x y x14.购面值各为20分, 30分旳邮票共27枚, 用款6.6元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级二元一次方程知识点在初中数学中,二元一次方程是一个非常重要的知识点,需要在八年级阶段系统地学习掌握。
本文将为大家介绍二元一次方程的相关知识点。
一、二元一次方程的定义
二元一次方程是指一个含有两个未知数的方程,并且每个未知数的最高次数都是一次。
一般的形式如下:
ax + by = c
其中,a、b、c为已知数,x、y为未知数。
二、二元一次方程的解法
1. 消元法
消元法是二元一次方程最常用的解法之一,具体步骤如下:
将其中一个未知数用另一个未知数的系数和常数表示出来,代
入原方程中,得到只含有一个未知数的方程,解出该未知数的值,再代入原方程中求出另一个未知数的值。
2. 代入法
代入法也是常用的解法之一,具体步骤如下:
将其中一个方程中的一个未知数用另一个未知数的值替换,将
该未知数的值代入另一个方程中,得到只含有一个未知数的方程,解出该未知数的值,再代入原方程中求出另一个未知数的值。
3. Cramer法则
Cramer法则是一种比较笨拙的解法,但是对于学习线性代数的
同学还是很有用的。
其具体步骤如下:
设线性方程组的系数矩阵为A,变量矩阵为X,常数列矩阵为B,则有
AX=B
设行列式为D,有
D=│A│
则
X1=│A1│/D,X2=│A2│/D
其中A1和A2即为将B列向量替换对应列向量所得的新矩阵的行列式。
三、二元一次方程的应用
二元一次方程的应用非常广泛,主要用于解决实际生活中的问题。
下面我们就来看一些例子:
1. 小明有20元人民币和5元人民币各n张,他一共有50元钱,那么他有多少张20元人民币和多少张5元人民币?
解:设小明有x张20元人民币,y张5元人民币,则有以下两
个方程:
20x + 5y = 50
x + y = n
将第二个方程中的y用n-x代入第一个方程中,可得
20x + 5(n-x) = 50
化简可得
x = 2
代入第二个方程可得
y = n-2
因此,小明有2张20元人民币和n-2张5元人民币。
2. 赛跑时,两人分别以a m/s和b m/s的速度起跑,在t秒后,
一个人比另一个人领先了d米,那么t秒后两人分别跑了多少距离?
解:设两人距离起点位置的距离分别为x1和x2,则有以下两
个方程:
x1 = at + d
x2 = bt
将第一个方程中的t用(x1-d)/a代入第二个方程中,可得
x2 = bx1/a - bd/a
代入第一个方程可得
x1 = a(x1-d)/a + d
化简可得
x1 = (ad)/(a-b)
x2 = (bd)/(a-b)
因此,t秒后第一个人跑了(ad)/(a-b)米,第二个人跑了(bd)/(a-b)米。
四、注意事项
1. 在二元一次方程中,未知数的系数和常数都必须是实数,不能是复数或其他数。
2. 在解二元一次方程时,要注意消元的正确性,一般来说,如果系数a、b不为0且a/b不等于c/d,那么两个方程中不是同一线性方程,此时方程有解。
以上就是关于八年级二元一次方程知识点的介绍。
通过对二元一次方程的学习和掌握,可以进一步提高我们的数学能力,也为以后的学习奠定坚实的基础。