半导体封装工艺介绍
半导体封装焊接工艺

半导体封装焊接工艺一、引言半导体封装焊接工艺是半导体器件制造过程中不可或缺的一环。
焊接工艺直接影响到半导体器件的可靠性、性能以及寿命。
本文将介绍半导体封装焊接工艺的基本原理、工艺流程以及常见的焊接方式。
二、基本原理半导体封装焊接工艺的基本原理是通过热力作用将芯片与封装基板之间的金属引线连接起来,形成完整的电路。
焊接工艺一般包括预处理、引线焊接、封装填充和封盖封装等步骤。
三、工艺流程1. 预处理:在焊接之前,需要对芯片和封装基板进行清洁处理,以去除表面的杂质和氧化物。
常用的方法有超声波清洗、溶剂清洗和气体清洗等。
2. 引线焊接:引线焊接是焊接工艺的关键步骤之一。
目前常用的引线焊接方式有球形焊接和金线焊接。
球形焊接是将焊锡球预先加在芯片的金属引线上,然后通过热压将引线与封装基板焊接在一起。
金线焊接则是将金线先焊接在芯片和基板上,再通过热压将金线连接起来。
3. 封装填充:引线焊接完成后,需要将芯片和封装基板之间的空隙填充上封装胶。
封装胶可以提高封装的可靠性和密封性,同时还能提供机械支撑和保护。
4. 封盖封装:最后一步是将封装胶固化后,将封装基板与封盖进行封装。
封盖通常是由金属或塑料制成,具有良好的密封性和导热性能,可以有效保护芯片免受外界环境的干扰。
四、常见的焊接方式1. 烙铁焊接:烙铁焊接是最常见的手工焊接方式,适用于小批量的焊接作业。
它通过将烙铁加热至一定温度,然后将焊锡与焊接部位接触,使焊锡熔化并与金属引线或焊盘形成焊点。
2. 热风焊接:热风焊接是利用热风枪或热风笔将焊接部位加热至一定温度,使焊锡熔化并与引线或焊盘形成焊点。
热风焊接适用于大面积焊接和复杂形状的器件。
3. 焊膏焊接:焊膏焊接是将焊膏涂覆在焊接部位,然后加热使焊膏熔化并与引线或焊盘形成焊点。
焊膏焊接具有高度自动化和高效率的特点,适用于大规模生产。
五、封装焊接工艺的发展趋势随着半导体器件的不断发展,封装焊接工艺也在不断演进。
未来的封装焊接工艺将更加注重高可靠性、高密度和高速度。
半导体封装工艺流程

半导体封装工艺流程
《半导体封装工艺流程》
半导体封装是将芯片封装在塑料或陶瓷外壳中,以保护芯片不受损坏并方便连接电路和外部器件的过程。
在半导体工艺中,封装是非常重要的一环,其工艺流程可分为以下几个步骤:
1. 芯片测试:在封装之前,需要对芯片进行测试,以确保其正常工作和性能稳定。
测试包括功能测试、电气特性测试和外观检查等。
2. 芯片准备:芯片准备包括清洁、切割、薄化和镀金等步骤,以便使芯片和封装材料之间能够完美连接。
3. 封装设计:根据芯片的尺寸、功耗和功能等要求,设计合适的封装结构和材料。
常见的封装结构有QFN、BGA和LGA 等。
4. 封装材料准备:选择合适的封装材料,通常是塑料或陶瓷。
对封装材料进行成型和切割,并在表面进行处理,以便与芯片连接。
5. 芯片封装:将芯片放置在封装材料中,并通过焊接、粘接或压合等方式,将芯片与封装材料牢固地连接在一起。
6. 封装后加工:对封装好的芯片进行清洗、干燥和外观检查,确保封装质量符合标准。
7. 封装测试:对封装好的芯片进行电气参数测试、外观检查和功能验证,以确保封装后的芯片质量可靠。
半导体封装工艺流程的每个步骤都至关重要,需要严格控制各个环节的工艺参数,以确保封装品质稳定可靠。
随着半导体技术的不断发展,封装工艺也在不断创新和改进,以满足越来越复杂的芯片封装需求。
半导体封装工艺流程

半导体封装工艺流程
半导体封装工艺是指将芯片封装在塑料、陶瓷或金属封装体中,并连接外部引脚,以保护芯片并方便与外部电路连接的过程。
封装
工艺对半导体器件的性能、稳定性和可靠性都有着重要的影响。
下
面将详细介绍半导体封装工艺的流程。
首先,半导体封装工艺的第一步是准备封装材料。
封装材料通
常包括封装基板、封装胶、引线等。
封装基板的选择需根据芯片的
尺寸和功耗来确定,封装胶需要具有良好的导热性和机械性能,引
线则需要具有良好的导电性能和焊接性能。
接下来是芯片的贴合和焊接。
在这一步骤中,先将芯片放置在
封装基板上,并使用焊接设备将芯片与基板焊接在一起。
这一步需
要非常精密的操作,以确保芯片与基板之间的连接牢固可靠。
然后是封装胶的注射和固化。
封装胶需要在封装基板上均匀注射,并经过固化工艺,使其在封装过程中能够牢固地粘合芯片和基板,同时具有良好的导热性能。
紧接着是引线的焊接和整形。
引线需要与外部引脚连接,这需
要通过焊接设备将引线与外部引脚焊接在一起,并进行整形处理,以确保引线的连接牢固可靠,并且外观美观。
最后是封装体的封装和测试。
将封装体覆盖在芯片和基板上,并进行密封处理,以保护芯片不受外部环境的影响。
同时需要进行封装测试,确保封装后的芯片性能符合要求。
总的来说,半导体封装工艺流程包括准备封装材料、芯片的贴合和焊接、封装胶的注射和固化、引线的焊接和整形,以及封装体的封装和测试。
这一系列工艺流程需要精密的操作和严格的质量控制,以确保封装后的半导体器件性能稳定可靠。
封装半导体dp工序

封装半导体是一种重要的制造工艺,它涉及到将芯片和其他电子元件封装在一个保护性外壳中,以确保其性能和稳定性。
封装半导体工艺包括许多步骤,其中一种关键工序是dp工序。
下面将详细介绍封装半导体dp工序的原理、操作步骤、注意事项以及可能的风险和应对措施。
一、dp工序原理dp工序是将半导体芯片上的引脚或焊盘进行焊接或压接的过程。
通过这个过程,芯片可以被固定在支架上,同时引脚或焊盘可以被连接到外部电路。
dp工序的目的是提高芯片的可靠性和稳定性,同时确保其性能和功能得以充分发挥。
二、操作步骤1. 准备工作:清理工作区域,确保无尘和无污染源。
准备好所需的工具和材料,如焊台、压接机、支架等。
2. 放置芯片:将待焊接芯片放置在特定的夹具中,确保芯片位置正确。
3. 焊接:使用焊台将芯片的引脚或焊盘与支架焊接在一起。
焊接过程中,需要注意控制温度和时间,以避免损坏芯片或造成焊接不良。
4. 清洁:使用吸尘器清理工作区域和残留物。
5. 放置电路板:将电路板放置在支架上,确保其位置正确并与芯片连接良好。
6. 压接:使用压接机将电路板与芯片的引脚或焊盘压接在一起,确保连接可靠。
7. 检查:使用万用表等工具检查焊接和压接是否良好,如有异常及时处理。
8. 包装:将完成封装的产品进行包装,确保其质量不受环境影响。
三、注意事项1. 确保工作区域无尘,避免灰尘和杂质对产品质量的影响。
2. 焊接和压接过程中,要控制好温度和时间,避免损坏芯片或造成不良连接。
3. 操作过程中要小心谨慎,避免烫伤和机械伤害。
4. 检查过程中要认真仔细,确保产品质量符合要求。
四、可能的风险和应对措施1. 焊接不良:焊接过程中温度和时间控制不当可能导致焊接不良。
应对措施:加强温度和时间控制,确保焊接质量。
2. 压接不良:压接过程中压力控制不当可能导致连接不良。
应对措施:使用合适的压接机并控制好压力,确保压接质量。
3. 机械损伤:操作过程中可能发生机械损伤,如烫伤、划伤等。
半导体封装技术

半导体封装技术1半导体封装技术半导体封装技术是电子元器件封装技术中的一种,主要用来将半导体器件封装到有机绝缘材料上,以提高封装器件的功能、保护性和可靠性。
其也被称为半导体封装,是电子元器件装配工艺的重要环节。
随着半导体技术的发展,半导体封装技术也得到了不断改进和发展,已广泛应用到电子产品的生产、集成电路的封装、数字电路和模拟电路等。
由于半导体封装技术提供了有关电路连接、数据交互、功耗分配和保护等服务,因此半导体封装技术对现代电子装配工厂至关重要。
1.1工艺流程半导体封装的基本工艺流程包括基板预处理、半导体器件的清洁、表面处理、焊接和布线等,可以按照不同的封装形式来实现,常见的有针脚封装、贴片、圆鼓封装形式。
针脚封装通常用于大型内存芯片,它会将芯片连接到电路板上。
贴片封装有多种形式,常见的有BGA(抛锭球栅封装)和LGA(椭圆针栅封装)等。
圆鼓封装则可以将两个电路封装在一起,如IC晶片封装。
1.2优点半导体封装技术具有许多优点:(1)提高器件的可靠性和功能。
通过将器件与基板连接,减少因腐蚀引起的故障,提高器件的功能和可靠性。
(2)保护电路板的环境。
采用封装技术,可有效防止杂质、水汽、湿度等对芯片的破坏和电路板的污染。
(3)简化设计和安装过程。
器件封装后,无需进行安装,可以直接实现电子设备产品的生产,简化设计和安装过程。
1.3缺点半导体封装也有一定的缺点,其主要是可行的封装尺寸较小,不能封装大型元器件,也存在封装成本较高的问题。
另外,随着封装密度的增加,半导体封装技术是否能够满足绝缘、耐用和耐温等要求,也是存在挑战的地方。
半导体封装技术为电子装配提供了一种灵活的、可完成的、简单的解决方案,目前在许多电子产品中已经得到成功应用,取得了显著的效果和投资回报。
半导体封装简介

EOL– Molding(注塑)
L/F L/F
Cavity
Molding Tool(模具)
➢EMC(塑封料)为黑色块状,低温存储,使用前需先回温。其特 性为:在高温下先处于熔融状态,然后会逐渐硬化,最终成型。
➢Molding参数:
Molding Temp:175~185°C;Clamp Pressure:3000~4000N; Transfer Pressure:1000~1500Psi;Transfer Time:5~15s; Cure Time:60~120s;
半导体封装简介
一、半导体封装介绍 二、封装主要原材料 三、封装工艺流程—IC芯片 四、封装工艺流程—功率模块
一、半导体封装介绍
1.1 半导体工艺流程
目前半导体材料已经发展到第三代,第一代以硅(Si)为代表材料;第二代以砷化镓(GaAs)为代表材料; 第三代以碳化硅(SiC)和氮化镓(GaN)为主流材料。目前Si仍然是半导体行业使用最多的材料。
二、封装原材料简介 2.1 wafer(晶圆)
【Wafer】晶圆
2.2 【Lead Frame】引线框架
➢提供电路连接和Die的固定作用; ➢主要材料为铜,会在上面进行镀银、NiPdAu等材料; ➢L/F的制程有Etch和Stamp两种; ➢易氧化,存放于氮气柜中,湿度小 于40%RH; ➢除了BGA和CSP外,其他Package都会采用Lead Frame,BGA采用的是Substrate;
➢磨片时,需要在正面(Active Area)贴胶带保护电路区域, 同时 研磨背面。研磨之后,去除胶带,测量厚度;
FOL– Wafer Saw晶圆切割
Wafer Mount 晶圆安装
Wafer Saw 晶圆切割
半导体封装技术后固化工艺流程介绍

一、介绍半导体封装技术半导体封装技术是将芯片和其它元件封装在一起,以保护芯片不受外界影响,并便于安装和使用的技术。
其主要步骤包括前固化、粘合、后固化、切割等。
二、半导体封装技术后固化工艺的重要性后固化工艺是半导体封装技术中不可或缺的一部分,它直接影响到封装件的质量和性能。
掌握后固化工艺流程至关重要。
三、半导体封装技术后固化工艺流程介绍1. 探针测试在封装过程中,需要对芯片进行探针测试,以确保其正常工作。
探针测试是一种非常关键的测试工艺,可发现芯片的问题,保证最终封装件的质量。
2. 后固化材料选择选择合适的后固化材料对封装件的性能至关重要。
适合的后固化材料能够增强封装件的耐热性、防潮性和绝缘性能,提高其可靠性。
3. 后固化温度和时间控制后固化的温度和时间对封装件的性能影响很大。
合理的固化温度和时间能够确保封装件在使用过程中不会出现老化、断裂等问题。
4. 后固化工艺监控通过对后固化工艺进行监控和调整,可以确保封装件的质量稳定。
监控指标包括固化温度、时间、环境湿度等。
及时发现问题并进行调整,是保证封装件质量的重要手段。
5. 器件存放和包装封装件固化后,需要进行适当的存放和包装,以防止其受潮和污染。
良好的存放和包装措施可以有效延长封装件的使用寿命。
四、结语后固化工艺流程对半导体封装技术起着至关重要的作用,只有严格控制后固化工艺流程,才能保证封装件的质量和性能。
希望本文对您了解半导体封装技术后固化工艺流程有所帮助。
后固化工艺是半导体封装技术的重要环节,它不仅影响到封装件的质量和性能,还直接关系到整个封装过程的稳定性和可靠性。
在半导体封装行业中,后固化工艺流程是一个至关重要的部分。
接下来,我们将更详细地讨论后固化工艺流程的相关内容。
1. 后固化温度和时间的控制后固化的温度和时间是确保封装件质量稳定的关键参数。
在后固化的过程中,需要对温度和时间进行严格的控制和监测。
通常情况下,固化的温度和时间会根据所使用的后固化材料和封装件的具体要求而有所不同。
半导体封装工艺

半导体封装工艺
半导体封装工艺是将芯片封装成可使用的电子元件的过程,是半导体制造中不可或缺的一环。
在半导体封装工艺中,主要包括芯片切割、封装材料应用、焊接和测试等步骤。
芯片切割是半导体封装工艺的第一步。
它是将一个大片的芯片切割成小块,以便后续的封装处理。
芯片切割采用切割机器,通过高速旋转的切割刀,将大片的芯片切割成若干个小块。
切割后的芯片形状和大小不同,取决于不同的应用需求。
封装材料应用是半导体封装工艺的第二步。
在封装过程中,需要使用多种材料,如塑料、金属、陶瓷等,将芯片和外部环境隔离。
封装材料的选择取决于应用需求和生产成本。
常用的封装材料包括塑料封装、铅插封装和球栅阵列封装等。
焊接是半导体封装工艺的第三步。
焊接是将芯片和外部引脚连接在一起的过程。
焊接方法可以分为焊盘焊接和球栅阵列焊接。
其中,焊盘焊接是将芯片上的引脚焊接在封装基板上的焊盘上,而球栅阵列焊接则是将芯片上的焊球焊接在基板上的焊盘上。
测试是半导体封装工艺的最后一步。
测试是为了确保封装后的芯片可以正常工作。
测试过程包括功能测试、可靠性测试和尺寸测试等。
功能测试是为了检测芯片是否可以按照设计要求正常工作,可靠性测试是为了检测芯片的寿命和可靠性,尺寸测试是为了检测芯片的
尺寸是否符合设计要求。
总体来说,半导体封装工艺是一个复杂的过程,需要严谨的操作和高精度的设备。
随着半导体技术的不断发展,封装工艺也在不断创新和改进,以满足更加复杂的应用需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PTH
SMT
PTH-Pin Through Hole, 通孔式;
SMT
SMT-Surface Mount Technology ,表面贴装式。
目前市面上大部分IC均采为SMT式 的
IC Package (IC的封装形式)
• 按封装外型可分为: SOT 、QFN 、SOIC、TSSOP、QFP、BGA、CSP等;
FOL– Wire Bonding 引线焊接
※利用高纯度的金线(Au) 、铜线(Cu)或铝线(Al)把 Pad 和 Lead通过焊接的方法连接起来。Pad是芯片上电路的外接 点,Lead是 Lead Frame上的 连接点。 W/B是封装工艺中最为关键的一部工艺。
FOL– Wire Bonding 引线焊接
EOL– Molding(注塑)
Molding Cycle
-L/F置于模具中,每 个Die位于Cavity中 ,模具合模。 -块状EMC放入模具 孔中
-高温下,EMC开始 熔化,顺着轨道流 向Cavity中
-从底部开始,逐渐 覆盖芯片
-完全覆盖包裹完毕 ,成型固化
EOL– Laser Mark(激光打字)
Epoxy Storage: 零下50度存放;
Epoxy Aging: 使用之前回温,除 去气泡;
Epoxy Writing: 点银浆于L/F的Pad 上,Pattern可选;
FOL– Die Attach 芯片粘接
芯片拾取过程: 1、Ejector Pin从wafer下方的Mylar顶起芯片,使之便于 脱离蓝膜; 2、Collect/Pick up head从上方吸起芯片,完成从Wafer 到L/F的运输过程; 3、Collect以一定的力将芯片Bond在点有银浆的L/F 的Pad上,具体位置可控; 4、Bond Head Resolution: X-0.2um;Y-0.5um;Z-1.25um; 5、Bond Head Speed:1.3m/s;
Wafer Saw 晶圆切割
Wire Bond 引线焊接
3rd Optical 第三道光检
FOL– Back Grinding背面减薄
Taping 粘胶带 Back Grinding 磨片 De-Taping 去胶带
将从晶圆厂出来的Wafer进行背面研磨,来减薄晶圆达到 封装需要的厚度(8mils~10mils); 磨片时,需要在正面(Active Area)贴胶带保护电路区域 同时研磨背面。研磨之后,去除胶带,测量厚度;
EOL/中段
Plating/电镀
EOL/后段
Final Test/试
FOL– Front of Line前段工艺
Wafer 2nd Optical 第二道光检 Die Attach 芯片粘接
Back Grinding 磨片
Wafer Wash 晶圆清洗
Epoxy Cure 银浆固化
EOL
Wafer Mount 晶圆安装
FOL– Wire Bonding 引线焊接
Wire Bond的质量控制:
Wire Pull、Stitch Pull(金线颈部和尾部拉力) Ball Shear(金球推力)
Wire Loop(金线弧高)
Ball Thickness(金球厚度) Crater Test(弹坑测试)
Thickness Size
EOL– Molding(注塑)
L/F
L/F
Cavity
Molding Tool(模具)
EMC(塑封料)为黑色块状,低温存储,使用前需先回温。其特 性为:在高温下先处于熔融状态,然后会逐渐硬化,最终成型。 Molding参数: Molding Temp:175~185°C;Clamp Pressure:3000~4000N; Transfer Pressure:1000~1500Psi;Transfer Time:5~15s; Cure Time:60~120s;
De-flash/ Plating 去溢料/电镀
4th Optical 第四道光检
Note: Just For TSSOP/SOIC/QFP package
Laser Mark 激光打字
PMC 高温固化
EOL– Molding(注塑)
Before Molding
After Molding
※为了防止外部环境的冲击,利用EMC 把Wire Bonding完成后的产品封装起 来的过程,并需要加热硬化。
FOL– Wire Bonding 引线焊接
EFO打火杆在 磁嘴前烧球
Cap下降到芯片的Pad 上,加Force和Power 形成第一焊点
Cap牵引金 线上升
Cap运动轨迹形成 良好的Wire Loop
Cap下降到Lead Frame形成焊接
Cap侧向划开,将金 线切断,形成鱼尾
Cap上提,完成一次 动作
• QFN—Quad Flat No-lead Package 四方无引脚扁平封装 • SOIC—Small Outline IC 小外形IC封装 • TSSOP—Thin Small Shrink Outline Package 薄小外形封装 • QFP—Quad Flat Package 四方引脚扁平式封装 • BGA—Ball Grid Array Package 球栅阵列式封装 • CSP—Chip Scale Package 芯片尺寸级封装
Before After
在产品(Package)的正面或者背面 激光刻字。内容有:产品名称,生产 日期,生产批次等;
艾
Introduction of IC Assembly Process IC封装工艺简介
IC Process Flow
Customer 客 户
IC Design IC设计 SMT IC组装
Wafer Fab 晶圆制造
Wafer Probe 晶圆测试
Assembly& Test IC 封装测试
IC Package (IC的封装形式)
Raw Material in Assembly(封装 原材料)
【Gold Wire】焊接金线
实现芯片和外部引线框架的电性和物 理连接;
金线采用的是99.99%的高纯度金;
同时,出于成本考虑,目前有采用铜 线和铝线工艺的。优点是成本降低, 同时工艺难度加大,良率降低; 线径决定可传导的电流;0.8mil, 1.0mil,1.3mils,1.5mils和2.0mils;
FOL– Wafer Saw晶圆切割
Wafer Mount 晶圆安装 Wafer Saw 晶圆切割 Wafer Wash 清洗
将晶圆粘贴在蓝膜(Mylar)上,使得即使被切割开后,不会散落;
通过Saw Blade将整片Wafer切割成一个个独立的Dice,方便后面的 Die Attach等工序;
IC Package Structure(IC结构 图)
Lead Frame 引线框架 Die Pad 芯片焊盘 Gold Wire 金线 Epoxy 银浆
TOP VIEW
Mold Compound 环氧树脂
SIDE VIEW
Raw Material in Assembly(封装 原材料)
【Wafer】晶圆
封装形式和工艺逐步高级和复杂
• 决定封装形式的两个关键因素: 封装效率。芯片面积/封装面积,尽量接近1:1; 引脚数。引脚数越多,越高级,但是工艺难度也相应增加; 其中,CSP由于采用了Flip Chip技术和裸片封装,达到了 芯片面积/封装面积=1:1,为目前最高级的技术;
IC Package (IC的封装形式)
Package--封装体:
指芯片(Die)和不同类型的框架(L/F)和塑封料(EMC) 形成的不同外形的封装体。 IC Package种类很多,可以按以下标准分类:
• 按封装材料划分为: 金属封装、陶瓷封装、塑料封装 • 按照和PCB板连接方式分为: PTH封装和SMT封装 • 按照封装外型可分为: SOT、SOIC、TSSOP、QFN、QFP、BGA、CSP等;
Wafer Wash主要清洗Saw时候产生的各种粉尘,清洁Wafer;
FOL– Wafer Saw晶圆切割
Saw Blade(切割刀片): Wafer Saw Machine Life Time:900~1500M; Spindlier Speed:30~50K rpm: Feed Speed:30~50/s;
FOL– Die Attach 芯片粘接
Epoxy Write: Coverage >75%;
Die Attach: Placement<0.05mm;
FOL– Epoxy Cure 银浆固化
Die Attach质量检查: 银浆固化: 175°C,1个小时; N2环境,防止氧化: Die Shear(芯片剪切力)
Raw Material in Assembly(封装 原材料)
【Mold Compound】塑封料/环氧树脂
主要成分为:环氧树脂及各种添加剂(固化剂,改性剂,脱 模剂,染色剂,阻燃剂等); 主要功能为:在熔融状态下将Die和Lead Frame包裹起来, 提供物理和电气保护,防止外界干扰; 存放条件:零下5°保存,常温下需回温24小时;
IC Package (IC的封装形式)
• 按封装材料划分为:
塑料封装
陶瓷封装
金属封装主要用于军工或航天技术,无 商业化产品; 陶瓷封装优于金属封装,也用于军事产 品,占少量商业化市场; 塑料封装用于消费电子,因为其成本低 ,工艺简单,可靠性高而占有绝大部分 的市场份额;
金属封装
IC Package (IC的封装形式)
FOL– 2nd Optical Inspection二光 检查