半导体制造之封装技术
半导体激光器 制造 封装

TO封装技术
❖ TO封装,即Transistor Outline 或者Throughhole封装技术,原来是晶体管器件常用的封装形式, 在工业技术上比较成熟。TO封装的寄生参数小、工艺 简单、成本低,使用灵活方便,因此这种结构广泛用 于 2.5Gb/s以下LED、LD、光接收器件和组件的封装。 TO管壳内部空间很小,而且只有四根引线,不可能安 装半导体致冷器。由于在封装成本上的极大优势,封 装技术的不断提高,TO封装激光器的速率已经可以达 到 10Gb/s。
半导体LD的特点及与LED区别
特点:效率高、体积小、重量轻、 可 靠 , 结构简 单 ; 其缺点是输出功率较小。目前半导体激光器 可选择的波长主要局限在红光和红外区域。
LD 和LED的主要区别 LD发射的是受激辐射光。 LED发射的是自发辐射光。 LED的结构和LD相似,大多是采用双异质结
(DH)芯片,把有源层夹在P型和N型限制层中间, 不同的是LED不需要光学谐振腔,没有阈值。
2二次外延生长
生长:
1.低折射率层 2.腐蚀停止层 3.包层 4.帽层:接触层
DFB-LD
3一次光刻
❖ 一次光刻出双 沟图形
DFB-LD
4脊波导腐蚀
选择性腐蚀到四元 停止层
DFB-LD
5套刻
PECVD生长SiO2 自对准光刻 SiO2腐蚀
DFB-LD
6三次光刻:电极图形
DFB-LD
7欧姆接触
半导体激光器的制作工艺、 封装技术和可靠性
目录
1.半导体材料选择 2.制作工艺概述 3.DFB和VCSEL激光器芯片制造 4.耦合封装技术
1.半导体激光器材料选择
❖ 半导体激光器材料主要选 取Ⅲ-Ⅴ族化合物(二元、 三元或四元),大多为直 接带隙材料,发光器件的 覆盖波长范围从0.4μm到 10μm。
半导体的封装技术有哪些

半导体的封装技术有哪些
半导体的封装技术主要包括以下几种:
11 DIP封装(Dual Inline Package)
这是一种双列直插式封装技术。
引脚从封装两侧引出,封装材料通
常采用塑料或陶瓷。
其特点是成本较低,易于插拔,但封装密度相对
较低。
111 SOP封装(Small Outline Package)
也称为小外形封装。
引脚从封装两侧引出呈海鸥翼状。
它比DIP封
装更薄、更小,适用于对空间要求较高的应用。
112 QFP封装(Quad Flat Package)
四侧引脚扁平封装。
引脚从芯片的四个侧面引出,呈鸥翼形或J形。
具有较高的引脚数量和封装密度。
113 BGA封装(Ball Grid Array)
球栅阵列封装。
在封装底部以球形引脚取代了传统的引脚。
这种封
装提供了更高的引脚密度和更好的电气性能。
114 CSP封装(Chip Scale Package)
芯片级封装。
其尺寸接近裸芯片的尺寸,具有更小的体积、更薄的
厚度和更短的引脚。
115 Flip Chip封装
倒装芯片封装。
芯片正面朝下,通过凸点与基板直接连接,减少了信号传输的路径和电感,提高了性能。
不同的封装技术具有各自的特点和适用场景,在半导体制造和应用中,需要根据具体的需求选择合适的封装技术,以实现最佳的性能、成本和可靠性平衡。
微纳制造导论-封装技术

二、传统封装
在封装开始前必须被减薄。较薄的硅片更容易划成小芯片并改 善散热,也减小最终集成电路管壳的外形尺寸和重量。 2.1.1碱性腐蚀液(KOH)腐蚀硅 2.1.2化学机械平坦化(CMP)
20世纪80年代后期,IBM开发了化学机械平坦化(CMP) 的全局平坦化方法。它成为20世纪90年代高密度半导体制造 中平坦化的标准。化学机械平坦化(CMP)是一种表面全局 平坦化技术,是实现多层集成的关键工艺。它通过硅片和一个 抛光头
Hale Waihona Puke 划片机性能:刀片类型 硬刀
适用材料 硅
切割深度 (um)
<90
刀痕宽 最大切割尺
(um)
寸
<40 ≤6inch
树脂刀 硅玻璃键合片
<230 ≤6inch
软刀 金属刀 玻璃
<3500 <230 ≤6inch
电铸刀 化合物
<230 ≤6inch
2015/12/13
二、传统封装
2.2.2工艺
划片机工艺参照参数:
2.3.2环氧树脂粘贴 环氧树脂粘贴是将芯片粘贴到管壳上最常用的方法。环氧
树脂通过贴片机的点胶系统被滴在管壳的中心,贴片机将芯片 背面放在环氧树脂上,固化环氧树脂。
2015/12/13
二、传统封装
2.4引线键合
2.4.1原理 引线键合是将芯片表面的压点和管壳上的电极进行电连接
最常用的方法。键合线或是Au或是Al线,因为它在芯片压点 和管壳电极形成良好键合,通常引线直径是在25到75um之间。 引线键合的方法有超声楔键合和超声球键合。
封装工艺
MEMS封装工艺
封装工艺培训
主要内容
01
封装概述与封装层次
02
传统封装
半导体注塑封装工艺

半导体注塑封装工艺1.引言1.1 概述半导体注塑封装工艺是一种将半导体芯片封装到塑料封装体中的技术。
半导体芯片在制造过程中需要进行封装以便保护和连接电路,而注塑封装工艺通过将半导体芯片固定在塑料封装体中,提供了一种可靠的封装方案。
半导体注塑封装工艺主要包括以下几个步骤:首先,将半导体芯片放置在导线架上,并通过焊接或者其他方式将芯片与导线架连接起来。
然后,在注塑机中加热并熔化塑料原料,将熔化的塑料注塑到导线架上,形成封装体的外壳。
最后,对注塑封装后的半导体芯片进行测试和包装,以确保其质量和可靠性。
半导体注塑封装工艺具有以下几个优点:首先,注塑封装工艺可以实现对多个芯片的批量封装,提高生产效率。
其次,注塑封装可以为芯片提供很好的机械和环境保护,提高芯片的可靠性和稳定性。
此外,注塑封装还可以为芯片提供良好的导热性能,有利于芯片的散热和使用寿命的延长。
半导体注塑封装工艺在电子产品的制造中有着广泛的应用。
例如,在消费类电子产品中,如智能手机、平板电脑等,注塑封装常用于对集成电路的封装。
此外,注塑封装也广泛应用于汽车电子、医疗电子、工业控制等领域的电子产品制造中。
总之,半导体注塑封装工艺是一种重要的封装技术,通过将半导体芯片封装到塑料封装体中,可以为芯片提供机械、环境和导热保护,并广泛应用于各种电子产品制造中。
随着科技的发展和需求的增加,注塑封装工艺在未来将会有更广阔的应用前景。
1.2 文章结构本文共分为三个部分,即引言、正文和结论。
在引言部分,首先对半导体注塑封装工艺进行了概述,介绍了其基本原理和主要应用。
然后,说明了本文的目的,即对半导体注塑封装工艺进行深入的分析和探讨。
接下来,正文部分将详细介绍半导体注塑封装工艺的基本原理。
主要包括工艺过程中所涉及的材料、设备和技术要点等内容。
通过对注塑封装工艺中各个环节的分析,揭示了其工作原理和技术特点。
正文的第二部分将主要讨论半导体注塑封装工艺的主要应用。
其中包括半导体器件封装、电子元器件封装以及其他领域的应用等。
半导体dfn封装的中文术语

半导体dfn封装的中文术语半导体dfn封装是电子行业中的一种封装技术,它被广泛应用于集成电路的制造过程中。
该封装技术能够有效地保护电子器件,提高其稳定性和可靠性。
下面我将从不同角度对半导体dfn封装进行描述。
一、半导体dfn封装的定义和特点半导体dfn封装是一种采用无引脚底部焊盘和封装材料对芯片进行封装的技术。
与传统的封装技术相比,dfn封装具有以下特点:1. 封装尺寸小:dfn封装可以实现芯片的高集成,尺寸更小,适用于电子设备的微型化和轻量化。
2. 低功耗:dfn封装的无引脚底部焊盘设计减少了电阻和电感,降低了功耗,提高了芯片的性能。
3. 优良的散热性能:dfn封装采用底部焊盘散热设计,能够更好地散热,提高芯片的工作稳定性。
4. 高可靠性:dfn封装采用无引脚设计,减少了焊接点,降低了故障率,提高了芯片的可靠性。
二、半导体dfn封装的应用领域半导体dfn封装广泛应用于电子设备的制造和通信领域。
具体包括:1. 手机和平板电脑:dfn封装的小尺寸和低功耗特性非常适合手机和平板电脑等移动设备的需求。
2. 无线通信设备:dfn封装的高可靠性和优良散热性能使其成为无线通信设备中关键部件的首选。
3. 汽车电子:dfn封装能够满足汽车电子产品对小尺寸、高可靠性和低功耗的要求。
4. 工业控制设备:dfn封装具有抗震、抗干扰等特点,适用于工业控制设备等恶劣环境下的应用。
三、半导体dfn封装的未来发展趋势随着电子技术的不断进步,半导体dfn封装也在不断发展。
未来,dfn封装有望实现以下发展趋势:1. 封装尺寸进一步缩小:随着芯片尺寸的减小和集成度的提高,dfn封装尺寸将进一步缩小,实现更高的集成性。
2. 更高的功耗效率:随着材料和工艺的进步,dfn封装将实现更低的功耗和更高的电子器件性能。
3. 更好的散热设计:随着散热技术的不断发展,dfn封装将实现更好的散热效果,提高芯片的工作稳定性。
4. 更广泛的应用领域:随着电子设备的普及和需求的增加,dfn封装将在更多领域得到应用,如物联网、人工智能等。
半导体封装流程 ppt课件

Logo
半导体封装流程
Customer 客户
IC Design IC设计
SMT IC组装
Wafer Fab 晶圆制造
Logo
半导体封装流程
第一,保护:半导体芯片的生产车间都有非常严格的生产 条件控制,恒定的温度(230±3℃)、恒定的湿度(50±10% )、严格的空气尘埃颗粒度控制(一般介于1K到10K)及严格 的静电保护措施,裸露的装芯片只有在这种严格的环境控制下 才不会失效。但是,我们所生活的周围环境完全不可能具备这 种条件,低温可能会有-40℃、高温可能会有60℃、湿度可能 达到100%,如果是汽车产品,其工作温度可能高达120℃以上 ,为了要保护芯片,所以我们需要封装。
Logo
半导体封装流程
【Lead Frame】引线框架
➢提供电路连接和Die的固定作用; ➢主要材料为铜,会在上面进行镀银、
NiPdAu等材料; ➢L/F的制程有Etch和Stamp两种; ➢易氧化,存放于氮气柜中,湿度小 于40%RH; ➢除了BGA和CSP外,其他Package都会采用Lead Frame,
Logo
半导体封装流程
Logo
半导体封装流程
一、概念
半导体芯片封装是指利用膜技术及细微加工 技术,将芯片及其他要素在框架或基板上布局、 粘贴固定及连接,引出接线端子并通过可塑性绝 缘介质灌封固定,构成整体立体结构的工艺。此 概念为狭义的封装定义。更广义的封装是指封装 工程,将封装体与基板连接固定,装配成完整的 系统或电子设备,并确保整个系统综合性能的工 程。将前面的两个定义结合起来构成广义的封装 概念。
半导体制造之封装技术

封装发展的阶段
第二阶段:20世纪80年代中期(表面贴装时代)。 表面贴装封装的主要特点是引线代替针脚,引线为翼形或丁形,两边或四边引出,节距为 1.27到0.4mm,适合于3-300条引线,表面贴装技术改变了传统的PTH插装形式,通过细微 的引线将集成电路贴装到PCB板上。主要形式为SOP(小外型封装)、PLCC(塑料有引线片 式载体)、PQFP(塑料四边引线扁平封装)、J型引线QFJ和SOJ、LCCC(无引线陶瓷芯片载 体)等。 它们的主要优点是引线细、短,间距小,封装密度提高;电气性能提高;体积小,重 量轻;易于自动化生产。它们所存在的不足之处是在封装密度、I/O数以及电路频率方面还 是难以满足ASIC、微处理器发展的需要。
封装发展的阶段
半导体行业对芯片封装技术水平的划分存在不同的标准,目前国内比较通行 的标准是采取封装芯片与基板的连接方式来划分,总体来讲,集成电路封装封装 技术的发展可分为四个阶段: 第一阶段:20世纪80年代以前(插孔原件时代)。 封装的主要技术是针脚插装(PTH),其特点是插孔安装到PCB上,主要形式有 SIP、DIP、PGA,它们的不足之处是密度、频率难以提高,难以满足高效自动化 生产的要求。
封装的性能要求
封装
电源分配信号分配散热 Nhomakorabea道机械支撑
环境保护
封装的技术层次
三级封装 母板 第四层次:将数个子系统组装成为一个完整电子产品的工艺过程。
二级封装
PWB或卡
第三层次:将数个第二层次完成的封装组成的电路卡组合成在一个主电路版上使之成为一个部 件或子系统的工艺。
一级封装
多芯片组件
第二层次:将数个第一层次完成的封装与其他电子元器件组成一个电子卡的工艺。
PCB置于传送链上,经某一特定的角度以及一定的进入深度穿过焊料波峰而实现焊点的焊接过程。
半导体封装工艺流程

半导体封装工艺流程半导体封装工艺是指将完成芯片制造后的芯片元件封装到包含引脚的封装结构之中,以便在电路板上使用和焊接。
半导体封装工艺流程是一系列复杂的步骤,以下是一般的半导体封装工艺流程的简要描述。
首先是芯片的前处理。
在这一阶段,芯片会经过几个步骤进行处理和准备。
首先,芯片会进行外观检测,以确保没有表面缺陷和破损。
然后,在一个净化的环境中,芯片会被清洗和去除污染物,以确保封装过程的成功。
接着是封装材料的准备。
封装材料通常由有机和无机材料混合而成。
这些材料通常是聚合物、金属和陶瓷等。
封装材料会经过混合、粉碎和涂敷等步骤进行制备,以获得适合封装的材料。
然后是封装工艺的核心阶段——封装过程。
在这一阶段,芯片被放置在封装结构的底部。
然后,封装结构的顶部会覆盖在芯片上,形成一个封装容器。
这个过程通常通过粘合、焊接或者注塑等方法完成。
此外,封装结构的内部还会添加填充材料,以增强封装结构的机械稳定性,并保护芯片免受外界环境的干扰。
封装过程还会涉及到引脚和连接器的安装,以便将芯片与其他电路板连接。
完成封装过程后,还需要进行后处理。
后处理是为了验证封装结构的质量。
该阶段通常包含外观检验、尺寸测量和性能测试。
外观检验用于检查封装结构有无瑕疵和缺陷,尺寸测量则用于确认封装结构的几何参数是否符合要求。
性能测试则用于验证封装芯片的电性能和可靠性。
最后一步是封装产品的包装和出货。
在这一阶段,封装产品会通过贴纸、泡沫箱等方式进行包装,以防止在运输过程中的损坏。
然后,封装产品会进行标记和校验,以确保正确的产品被发送给客户。
最后,封装产品会按照客户的订单进行发货和交付。
以上就是一般的半导体封装工艺流程的简要描述。
封装工艺的流程严谨而复杂,需要高度的技术和专业知识。
随着半导体技术的发展,封装工艺也在不断创新和改进,以满足市场对小型化、高性能和可靠性的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
零级封装
芯片互连
第一层次:芯片层次的封装,是指把集成电路芯片与封装基板或引脚架之间的粘贴固定电路连 线与封装保护的工艺,使之成为易于取放输送,并可与下一层次的组装进行连接的模块元件。
封装的分类
1、按照封装中组合集成电路芯片的数目,芯片封装可分为:单芯片封装与多芯片封装两大类; 2、按照密封的材料区分,可分为:高分子材料和陶瓷为主的种类; 3、按照器件与电路板互连方式,封装可区分为:引脚插入型和表面贴装型两大类; 4、按照引脚分布形态区分,封装元器件有:单边引脚,双边引脚,四边引脚,底部引脚四种。 5、常见的单边引脚有:单列式封装与交叉引脚式封装; 6、双边引脚元器件有:双列式封装小型化封装; 7、四边引脚有四边扁平封装; 8、底部引脚有金属罐式与点阵列式封装。
封装发展的阶段
第四阶段:进入21世纪,迎来了微电子封装技术堆叠式封装时代,它在封装观念上发 生了革命性的变化,从原来的封装元件概念演变成封装系统。
3D晶片堆叠技术
堆叠式存储模块
目前,以全球半导体封装的主流正处在第三阶段的成熟期,PQFN和BGA等主要封装技 术进行大规模生产,部分产品已开始在向第四阶段发展。
信号分配
散热通道
机械支撑
环境保护
封装的技术层次
三级封装
母板
第四层次:将数个子系统组装成为一个完整电子产品的工艺过程。
二级封装
PWB或卡
第三层次:将数个第二层次完成的封装组成的电路卡组合成在一个主电路版上使之成为一个部 件或子系统的工艺。
一级封装
多芯片组件 第二层次:将数个第一层次完成的封装与其他电子元器件组成一个电子卡的工艺。
封装发展的阶段
第二阶段:20世纪80年代中期(表面贴装时代)。 表面贴装封装的主要特点是引线代替针脚,引线为翼形或丁形,两边或四边引出,节距为 1.27到0.4mm,适合于3-300条引线,表面贴装技术改变了传统的PTH插装形式,通过细微 的引线将集成电路贴装到PCB板上。主要形式为SOP(小外型封装)、PLCC(塑料有引线片 式载体)、PQFP(塑料四边引线扁平封装)、J型引线QFJ和SOJ、LCCC(无引线陶瓷芯片载 体)等。
封装发展的阶段
半导体行业对芯片封装技术水平的划分存在不同的标准,目前国内比较通行 的标准是采取封装芯片与基板的连接方式来划分,总体来讲,集成电路封装封装 技术的发展可分为四个阶段:
第一阶段:20世纪80年代以前(插孔原件时代)。 封装的主要技术是针脚插装(PTH),其特点是插孔安装到PCB上,主要形式有 SIP、DIP、PGA,它们的不足之处是密度、频率难以提高,难以满足高效自动化 生产的要求。
它们的主要优点是引线细、短,间距小,封装密度提高;电气性能提高;体积小,重 量轻;易于自动化生产。它们所存在的不足之处是在封装密度、I/O数以及电路频率方面还 是难以满足ASIC、微处理器发展的需要。
封装发展的阶段
第三阶段:20世纪90年代出现了第二次飞跃,进入了面积阵列封装时代。 该阶段主要的封装形式有焊球阵列封装(BGA)、芯片尺寸封装(CSP)、无引线四边 扁平封装(PQFN)、多芯片组件(MCM)。BGA技术使得在封装中占有较大体积和重量的 管脚被焊球所替代,芯片与系统之间的连接距离大大缩短,BGA技术的成功开发,使得一 直滞后于芯片发展的封装终于跟上芯片发展的步伐。CSP技术解决了长期存在的芯片小而 封装大的根本矛盾,引发了一场集成电路封装技术的革命。
电子封装工程:将基板、芯片封装体和分立器件等要素,按电子整机要求进行 连接和装配,实现一定电气、物理性能,转变为具有整机或系统形式的整机装 置或设备。
封装的作用:集成电路封装能保护芯片不受或者少受外界环境的影响,并为之 提供一个良好的工作条件,以使集
半导体制造之封装技术
YDD 2018/8/30
微电子器件成本占比
说明:封装测试占微电 子器件成本的三分之一
芯片设计 芯片生产 封装测试
封装定义:最初的定义是保护电路芯片免受周围环境的影响(包括物理、化学 的影响)。
芯片封装:利用(膜技术)及(微细加工技术),将芯片及其他要素在框架或 基板上布置、粘贴固定及连接,引出接线端子并通过可塑性绝缘介质灌封固 定,构成整体结构的工艺。
微机电系统(MEMS)芯片就是采用堆叠式的三维封装。
封装工艺流程
封装工艺流程
1.封装工艺流程 一般可以分为两个部分,用塑料封装之前的工艺步骤成为前段操作,在成型之后的工 艺步骤成为后段操作 2.芯片封装技术的基本工艺流程 硅片减薄 硅片切割 芯片贴装,芯片互联 成型技术 去飞边毛刺 切筋成 型 上焊锡打码等工序 3.硅片的背面减薄技术主要有磨削,研磨,化学机械抛光,干式抛光,电化学腐蚀,湿法腐蚀,等离 子增强化学腐蚀,常压等离子腐蚀等 4.先划片后减薄:在背面磨削之前将硅片正面切割出一定深度的切口,然后再进行背面磨削。 5.减薄划片:在减薄之前,先用机械或化学的方式切割处切口,然后用磨削方法减薄到一定厚度之后 采用ADPE腐蚀技术去除掉剩余加工量实现裸芯片的自动分离。 6.芯片贴装的方式四种:共晶粘贴法,焊接粘贴法,导电胶粘贴法,和玻璃胶粘贴法。 共晶粘贴法:利用金-硅合金(一般是69%Au,31%的Si),363度时的共晶熔合反应使IC芯片粘贴固 定。
封装工艺流程
7.为了获得最佳的共晶贴装所采取的方法,IC芯片背面通常先镀上一层金的薄膜或在基板的芯片承载 座上先植入预芯片 8.芯片互连常见的方法有,打线键合,载在自动键合(TAB)和倒装芯片键合。 9.打线键合技术有,超声波键合,热压键合,热超声波键合。 10.TAB的关键技术:1芯片凸点制作技术2TAB载带制作技术3载带引线与芯片凸点的内引线焊接和载带 外引线焊接技术。 11.凸点芯片的制作工艺,形成凸点的技术:蒸发/溅射涂点制作法,电镀凸点制作法置球及模板印刷 制作,焊料凸点发,化学镀涂点制作法,打球凸点制作法,激光法。 12.塑料封装的成型技术,1转移成型技术,2喷射成型技术,3预成型技术但最主要的技术是转移成型 技术,转移技术使用的材料一般为热固性聚合物。 13.减薄后的芯片有如下优点:1、薄的芯片更有利于散热;2、减小芯片封装体积;3、提高机械性 能、硅片减薄、其柔韧性越好,受外力冲击引起的应力也越小;4、晶片的厚度越薄,元件之间的连 线也越短,元件导通电阻将越低,信号延迟时间越短,从而实现更高的性能;5、减轻划片加工量减 薄以后再切割,可以减小划片加工量,降低芯片崩片的发生率。