半导体封装技术
半导体器件封装技术

半导体器件封装技术半导体器件封装技术是指将裸露的半导体芯片封装在适当的封装材料中,以保护芯片不受外界环境的影响,并提供适当的电气和机械连接接口,以便于与其他电路元件进行连接和集成。
封装技术在半导体器件制造中扮演着至关重要的角色,它不仅直接影响着设备的性能和可靠性,而且对于整个电子行业的发展也具有重要意义。
半导体器件封装技术能够提供良好的电气连接。
芯片封装后,通过引脚与外部电路进行连接。
这些引脚需要具有良好的导电性和可靠的连接性,以确保信号的正常传输和电流的稳定传输。
常见的半导体器件封装技术包括直插式封装(DIP)、表面贴装封装(SMT)以及无引脚封装(WLP)等。
这些封装技术通过适当的引脚设计和接触材料的选择,实现了与外部电路的可靠连接。
半导体器件封装技术能够提供良好的机械保护。
半导体芯片通常非常脆弱,容易受到外界环境的影响而损坏。
封装技术通过将芯片封装在坚固的封装材料中,如塑料、陶瓷或金属等,能够提供良好的机械保护,防止芯片受到机械应力、湿度、温度和化学物质等的侵害。
此外,封装材料还能够防止芯片受到灰尘、杂质和电磁干扰等的影响,确保芯片的稳定运行。
第三,半导体器件封装技术能够提供良好的散热性能。
在半导体器件工作过程中,会产生大量的热量,如果不能及时有效地散发,会导致器件温度过高,影响器件的性能和寿命。
因此,在封装过程中,需要考虑适当的散热设计,如引入散热片、散热胶等。
这些散热元件能够提高器件的散热效率,保持器件的正常工作温度。
半导体器件封装技术还能够提供良好的电磁兼容性。
封装材料的选择和封装结构的设计能够有效地屏蔽和抑制电磁辐射和电磁干扰,减少器件对外界电磁信号的敏感性,保证器件的正常工作。
同时,封装技术还能够提供适当的电磁波导路径,以便于器件内部电磁信号的传输和隔离,确保不同功能模块之间的电磁兼容性。
半导体器件封装技术是半导体制造中不可或缺的一环。
它能够提供良好的电气连接、机械保护、散热性能和电磁兼容性,保证芯片的正常工作和可靠性。
半导体先进封装技术

半导体先进封装技术半导体先进封装技术是近年来发展迅速的一项新技术。
该技术主要针对半导体芯片的封装,为其提供更好的性能和更广泛的应用。
本文将从概念、发展历程和技术特点三个方面,详细介绍半导体先进封装技术的相关信息。
一、概念半导体封装技术是将芯片连接到外部世界的必要步骤。
通过封装,芯片可以在工业、科学和家庭中得到广泛应用。
半导体先进封装技术是针对芯片的高密度、高性能、多功能、多芯片封装以及三维封装技术。
它已成为半导体工业中最具前景和应用价值的发展方向之一。
二、发展历程上世纪60年代,半导体芯片封装用的是双面线性封装(DIP)技术,随后发展为表面安装技术(SMT)。
到了21世纪初,半导体封装技术已经进入了六面体、四面体、三面体、2.5D、3D等多种复杂封装形式的时代,先进封装技术呈现出快速发展的趋势。
例如球形BGA (Ball Grid Array)、LGA(Land Grid Array)与CSP(Chip Scale Packaging)等,显示出线宽线距逐渐减小,芯片尺寸逐渐缩小以及集成度越来越高等特点。
三、技术特点1.尺寸小半导体先进封装技术封装的芯片尺寸比较小,能够在有限空间内实现高度复杂的电路功能,同时满足小型化和超大规模集成(ULSI)的发展趋势。
2.多芯片封装可以将多个芯片封装在一个芯片包裹里,可以大幅度减小封装尺寸,降低系统成本,提高系统性能和可靠性。
3.高密度高密度集成度意味着处理器芯片可以在一个很小的封装中实现超高性能,将更多的晶体管集成在芯片上,最终提高片上系统的性能。
4.三维封装技术三维封装是指在小空间中增加第三个方向的封装技术,采用多个芯片的Stacking,可以在有限的空间内增大电路,实现更高的功能。
以上就是半导体先进封装技术的相关信息。
可以看出,该技术的日益成熟和发展,正在推动半导体芯片的应用领域有了更多的可能性。
半导体的封装技术有哪些

半导体的封装技术有哪些
半导体的封装技术主要包括以下几种:
11 DIP封装(Dual Inline Package)
这是一种双列直插式封装技术。
引脚从封装两侧引出,封装材料通
常采用塑料或陶瓷。
其特点是成本较低,易于插拔,但封装密度相对
较低。
111 SOP封装(Small Outline Package)
也称为小外形封装。
引脚从封装两侧引出呈海鸥翼状。
它比DIP封
装更薄、更小,适用于对空间要求较高的应用。
112 QFP封装(Quad Flat Package)
四侧引脚扁平封装。
引脚从芯片的四个侧面引出,呈鸥翼形或J形。
具有较高的引脚数量和封装密度。
113 BGA封装(Ball Grid Array)
球栅阵列封装。
在封装底部以球形引脚取代了传统的引脚。
这种封
装提供了更高的引脚密度和更好的电气性能。
114 CSP封装(Chip Scale Package)
芯片级封装。
其尺寸接近裸芯片的尺寸,具有更小的体积、更薄的
厚度和更短的引脚。
115 Flip Chip封装
倒装芯片封装。
芯片正面朝下,通过凸点与基板直接连接,减少了信号传输的路径和电感,提高了性能。
不同的封装技术具有各自的特点和适用场景,在半导体制造和应用中,需要根据具体的需求选择合适的封装技术,以实现最佳的性能、成本和可靠性平衡。
半导体封装及测试技术

半导体封装及测试技术半导体封装及测试技术是指将芯片进行外包装,并进行测试以确保其性能符合设计要求的过程。
半导体封装技术主要包括封装结构设计、封装材料选择和封装工艺等方面,而半导体测试技术主要包括封装后测试和片上测试两个环节。
本文将详细介绍半导体封装及测试技术的相关内容。
首先,半导体封装技术是将芯片进行封装,增加其机械强度、保护芯片以及方便与外部连接等功能的过程。
封装结构的设计既要满足电性能要求,又要考虑成本、尺寸和工艺等因素。
封装材料的选择要考虑材料的导热性能、电绝缘性能、耐候性、耐高温性能等。
常用的封装材料有塑料、陶瓷和金属等。
封装工艺主要包括芯片倒装、焊接、封胶等工艺步骤。
其次,半导体测试技术主要包括封装后测试和片上测试两个环节。
封装后测试是指封装完成后对芯片进行功能测试和可靠性测试,以保证芯片性能符合设计要求,并且能够在不同的工作条件下稳定可靠地工作。
封装后测试主要包括电气性能测试、功能性能测试和可靠性测试等。
电气性能测试主要是测试芯片的电气参数,如工作电流、工作电压、功耗等。
功能性能测试主要是测试芯片的功能是否正常,如逻辑电路的正确性、模拟电路的灵敏度和精度等。
可靠性测试主要是测试芯片在不同的工作条件下的可靠性,如温度变化、湿度变化以及机械振动等。
片上测试是指在芯片封装之前对芯片进行测试,以确保芯片的质量和性能。
片上测试主要通过测试芯片的电气参数来判断芯片的好坏,如芯片的工作电流、工作电压、功耗等。
片上测试技术主要包括设计和制造测试机、测试方法和测试流程等方面。
设计和制造测试机是指根据芯片的特点和测试要求,设计和制造测试机来对芯片进行测试。
测试方法是指采用不同的测试手段和测试设备来进行测试。
测试流程是指按照一定的顺序和步骤来进行测试,以提高测试效率和准确性。
半导体封装及测试技术在半导体产业中起着重要作用。
通过封装可以提高芯片的稳定性和可靠性,保护芯片不受外界环境的干扰,从而提高整个产品的可靠性和性能。
先进封装 名词

先进封装名词先进封装(Advanced Packaging)是一种半导体封装技术,用于将芯片或集成电路(IC)封装在一个外壳中,以提供保护、连接和散热等功能。
它是半导体制造过程中的关键环节之一,对于提高芯片性能、降低成本和实现小型化至关重要。
先进封装技术的发展是为了满足不断增长的芯片集成度和性能要求。
随着半导体工艺技术的演进,芯片的尺寸越来越小,引脚数量越来越多,同时对功耗、速度和可靠性的要求也越来越高。
传统的封装技术已经难以满足这些需求,因此需要采用更先进的封装技术。
先进封装技术包括以下几种主要类型:1. 系统级封装(System-in-Package,SiP):将多个芯片和其他组件集成在一个封装中,形成一个完整的系统。
这种封装方式可以减小尺寸、降低功耗并提高系统性能。
2. 晶圆级封装(Wafer-Level Packaging):在晶圆制造过程中进行封装,将芯片直接封装在晶圆上,而不是在单个芯片上进行封装。
这种方法可以提高生产效率和降低成本。
3. 三维封装(3D Packaging):采用多层堆叠技术,将芯片垂直堆叠在一起,以实现更高的集成度和性能。
这种封装方式可以减小芯片尺寸并提高信号传输速度。
4. 倒装芯片封装(Flip-Chip Packaging):将芯片的有源面朝下,通过焊点直接连接到封装基板上。
这种封装方式可以提供更好的散热性能和更短的电路路径。
先进封装技术的发展推动了半导体行业的进步,使得芯片在更小的尺寸、更高的性能和更低的成本下实现更复杂的功能。
它对于手机、平板电脑、计算机、通信设备等各种电子产品的发展至关重要。
随着技术的不断创新,先进封装将继续在半导体领域发挥重要作用。
半导体封测技术的发展历程

半导体封测技术的发展历程半导体封装测试(简称封测)作为半导体产业链的重要环节,其技术进步与市场发展对整个半导体产业具有深远的影响。
随着科技的日新月异,半导体封测技术也经历了从简单到复杂,从粗糙到精细的发展历程。
本文将详细探讨半导体封测技术的演进过程,并分析其背后的技术推动力和市场需求。
一、初期发展阶段:基础封装技术的形成半导体封测技术的初期发展阶段主要集中在20世纪60年代至70年代。
在这一时期,半导体器件主要以分立器件和小规模集成电路为主,封装形式相对简单。
常见的封装类型包括金属圆形封装(TO)、双列直插封装(DIP)等。
这些封装技术主要满足了当时电子设备对半导体器件的基本需求,如电气连接、机械支撑和环境保护等。
二、中期成长阶段:多样化封装技术的崛起随着大规模集成电路(LSI)和超大规模集成电路(VLSI)的快速发展,半导体器件的集成度和复杂度不断提高,对封装技术也提出了更高的要求。
在这一背景下,20世纪80年代至90年代,半导体封装技术迎来了多样化的发展阶段。
这一时期,表面贴装技术(SMT)逐渐取代了传统的穿孔插装技术,成为主流封装形式。
同时,各种新型封装技术如塑料有引线芯片载体(PLCC)、小外形封装(SOP)、四方扁平封装(QFP)等也应运而生。
这些封装技术不仅提高了半导体器件的封装密度和可靠性,还降低了封装成本,推动了半导体产业的快速发展。
三、当前发展阶段:先进封装技术的突破进入21世纪以来,随着半导体工艺的不断进步和市场需求的不断变化,半导体封装技术也迎来了新的发展阶段。
在这一时期,先进封装技术成为研究的热点和产业发展的重点。
先进封装技术主要包括系统级封装(SiP)、三维封装(3D Packaging)、晶圆级封装(WLP)等。
这些技术通过采用新的封装结构和工艺方法,实现了更高密度的集成、更短的互连距离和更低的功耗。
同时,先进封装技术还具备更好的热管理、电磁屏蔽和可靠性等性能,满足了现代电子设备对高性能、小型化和低成本的需求。
半导体封装技术大全

半导体封装技术大全1、BGA(ball grid array)球形触点陈列,表面贴装型封装之一。
在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。
也称为凸点陈列载体(PAC)。
引脚可超过200,是多引脚LSI 用的一种封装。
封装本体也可做得比QFP(四侧引脚扁平封装)小。
例如,引脚中心距为1.5mm 的360 引脚BGA仅为31mm 见方;而引脚中心距为0.5mm 的30 4 引脚QFP 为40mm 见方。
而且BGA不用担心QFP 那样的引脚变形问题。
该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。
最初,BGA的引脚(凸点)中心距为1.5mm,引脚数为225。
现在也有一些LSI 厂家正在开发500 引脚的BGA。
BGA的问题是回流焊后的外观检查。
现在尚不清楚是否有效的外观检查方法。
有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。
美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为GPAC(见OMPAC 和GPAC)。
2、BQFP(quad flat package with bumper)带缓冲垫的四侧引脚扁平封装。
QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。
美国半导体厂家主要在微处理器和ASIC 等电路中采用此封装。
引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。
3、碰焊PGA(butt joint pin grid array) 表面贴装型PGA 的别称(见表面贴装型PGA)。
4、C-(ceramic)表示陶瓷封装的记号。
例如,CDIP 表示的是陶瓷DIP。
是在实际中经常使用的记号。
5、Cerdip用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。
半导体封装技术

半导体封装技术1半导体封装技术半导体封装技术是电子元器件封装技术中的一种,主要用来将半导体器件封装到有机绝缘材料上,以提高封装器件的功能、保护性和可靠性。
其也被称为半导体封装,是电子元器件装配工艺的重要环节。
随着半导体技术的发展,半导体封装技术也得到了不断改进和发展,已广泛应用到电子产品的生产、集成电路的封装、数字电路和模拟电路等。
由于半导体封装技术提供了有关电路连接、数据交互、功耗分配和保护等服务,因此半导体封装技术对现代电子装配工厂至关重要。
1.1工艺流程半导体封装的基本工艺流程包括基板预处理、半导体器件的清洁、表面处理、焊接和布线等,可以按照不同的封装形式来实现,常见的有针脚封装、贴片、圆鼓封装形式。
针脚封装通常用于大型内存芯片,它会将芯片连接到电路板上。
贴片封装有多种形式,常见的有BGA(抛锭球栅封装)和LGA(椭圆针栅封装)等。
圆鼓封装则可以将两个电路封装在一起,如IC晶片封装。
1.2优点半导体封装技术具有许多优点:(1)提高器件的可靠性和功能。
通过将器件与基板连接,减少因腐蚀引起的故障,提高器件的功能和可靠性。
(2)保护电路板的环境。
采用封装技术,可有效防止杂质、水汽、湿度等对芯片的破坏和电路板的污染。
(3)简化设计和安装过程。
器件封装后,无需进行安装,可以直接实现电子设备产品的生产,简化设计和安装过程。
1.3缺点半导体封装也有一定的缺点,其主要是可行的封装尺寸较小,不能封装大型元器件,也存在封装成本较高的问题。
另外,随着封装密度的增加,半导体封装技术是否能够满足绝缘、耐用和耐温等要求,也是存在挑战的地方。
半导体封装技术为电子装配提供了一种灵活的、可完成的、简单的解决方案,目前在许多电子产品中已经得到成功应用,取得了显著的效果和投资回报。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脱模薄膜
QFN的PKG塑封状况比较
采用脱模薄膜时
November 2002
不采用脱模薄膜时
TOWA-Confidential
Top Gate Mold
适用范围(PKG)
细长型金丝(φ20μm以下 L5mm以上) 基板上不允许设置浇道的特殊PKG (如EBGA,BOC等)
效果
因注胶一致性好,可减少冲金丝及针孔的发生。 大幅度增加了基板设计的自由度从而降低成本
注胶时间过长 树脂在常温下的有效时间极短
在晶片偏大,而球体偏小时无法进行封装
树脂的可靠性低
Cringe
Flip Chip Package
Chip Solder bump
树脂成本明显偏高 包封体边框形状变形
Needle Liquid resin Substrate
TOWA的局部封装技术
F-M塑封技术 采用脱模薄膜的塑封技术
可调式出气口的设置 晶片反面扶持机构的采用
防止低粘度树脂溢漏的模杆设计 可确保基板稳定性的浮动式模具结构
November 2002
TOWA-Confidential
可根据目的、用途自由选择
Adjustment block Main cavity
Holder base
Spur gear
Worm gear
Servo motor
November 2002
TOWA-Confidential
Transfer Underfill Mold(TUF)
传统滴浇方式存在的问题Fra bibliotek特点 消除针孔 (将产生针孔的水蒸气及气体瞬时间排出) 采用特殊的密封薄膜
80 60 40 20 0 A B C D E F G H I J K
Organic gas
8 6 4 2 0
Various compounds
树脂内部含水量不同状况下针孔发生数量的比较
200
Number of voids/100PKG
November 2002
TOWA-Confidential
PKG及其封装技术的运用
Necessary Mold Technology Packages Structure Current Mold Method Future Mold Method
Vacuum Release Film
Transfer Underfill
半导体封装技术研讨会
November 2002
TOWA-Confidential
PKG及L/F的变迁
1990 2000 2005
QFN SOP,TSOP
Stacked CSP
W.L.CSP BGA QFP,TQFP DIP Flip Chip BGA
Leadframe
Substrate
Single Cavity Matrix Cavity
Top Gate
Floating Die
SOP / QFP
Transfer molding
Transfer molding
―
―
―
―
―
μBGA
Potting
〃
○
○
―
○
○
BOC
〃
〃
○
○
―
○
○
QFN
Transfer molding
〃
―
○
Adhesion Tape
―
―
○
Heart-Sink BGA
Potting
Number of voids/100PKG
采用减压罐,短时间内达到高真空状态
100
STD molding F-M molding
10
Release Film Molding
效果
可防止树脂的溢漏和溢料的产生 脱模时可降低对基板的冲击以保护球体粘胶、 防止PKG与基板脱落
抽气口
模具无需脱模杆和镶件
上模
可严防基板背面溢料的产生
中模
下模
November 2002
TOWA-Confidential
Floating Die
课题:克服BGA基板的问题
溢料
料筒部位残胶 多层基板的通用问题 基板龟裂
TOWA浮动式模具(模板厚度可调)
采用托盘式弹簧装置
汽缸式 马达駆動方式方式(自动测量模板厚度)
Solid BGA Sawing System “SB-S”
November 2002
TOWA-Confidential
PKG表面亚光加工处理 小口径料饼多冲杆模塑封系统的开发
只需更换模具及工装即可实现多品种生产的创新设计
塑封系统的模组化设计 真空塑封技术的开发(F-M: Fine Molding)
November 2002
Single Cavity Matrix Cavity
Map Cavity Map Unit Cavity
TOWA-Confidential
TOWA主导设备示意图
Flip Chip Bonding System “FC-BⅢ”
Auto Molding System “Y-PS”
〃
○
―
―
○
○
Flip Chip
Potting (Capillarity action)
〃
○
○
○
○
○
Wafer Level CSP
Compression molding
○
○
―
―
―
November 2002
TOWA-Confidential
Fine Mold(F-M塑封)
真空塑封与普通塑封状况下针孔数量的比较
150
100
STD molding F-M molding
50
0 0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7
FM塑封 November 2002
普通塑封
Moisture(wt%)
TOWA-Confidential
Comparison of organic gas volume (Based on GC peak area)