第2章简单事件的概率期末专项练习
九年级数学上期末复习第二章简单事件的概率试卷(浙教版含解析)

期末复习:浙教版九年级数学学上册第二章简单事件的概率一、单选题(共10题;共30分)1.抛掷一枚均匀的硬币一次,出现正面朝上的概率是()A. B. C. D. 12.从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是()A. B. C. D.3.某电视台体育直播节目从接到的5000条短信(每人只许发一条短信)中,抽取10名“幸运观众”.小明给此直播节目发了一条短信,他成为“幸运观众”的概率是()A. B. C. D.4.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A. B. C. 1 D.5.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A. B. C. D.6.甲乙两人玩一个游戏,判定这个游戏公平不公平的标准是()A. 游戏的规则由甲方确定B. 游戏的规则由乙方确定C. 游戏的规则由甲乙双方商定D. 游戏双方要各有50%赢的机会7.今年我市约有36000名学生参加初中毕业会考,为了了解这36000名学生的数学成绩,准备从中随机抽取1200 名学生的数学成绩进行统计分析,那么你的数学成绩被抽中的概率为()A. B. C. D.8.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是( )A. B. C. D.9.小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是()A. 此规则有利于小玲B. 此规则有利于小丽C. 此规则对两人是公平的D. 无法判断10.小亮和小刚按如下规则做游戏:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.从概率的角度分析,游戏者事先选择()获胜的可能性较大.A. 5B. 6C. 7D. 8二、填空题(共10题;共30分)11.一水塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过多次捕捞实验后发现,鲤鱼、鲫鱼出现的频率分别是31%和42%,则这个水塘里大约有鲢鱼________尾.12.一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是________.13.某厂生产了1200件衬衫,根据以往经验其合格率为0.95左右,则这1200件衬衫中次品(不合格)的件数大约为________.14.某口袋中装有红色、黄色、蓝色三种颜色的小球(小球出颜色外完全相同)共60个.通过多次摸球实验后,发现摸到红球、黄球的频率分别是30%和45%,由此估计口袋中蓝球的数目约为________ 个.15.一个袋中装有6个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到________球的可能性最大.16.某口袋中有红色、黄色、蓝色玻璃共60个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有________ 个.17.一个不透明的袋子中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入20个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球实验后发现,摸到白球的频率是,则袋中红球约为 ________个.18.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ________.19.口袋中装有除颜色外完全相同的红球3个,白球n个,如果从袋中任意摸出1个球,摸出红球的概率是,那么n= ________个.20.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数5的概率是________.三、解答题(共8题;共60分)21.现有小莉,小罗,小强三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所抽血的血型均为O型的概率.(要求:用列表或画树状图的方法解答)22.小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.23.用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗?画树状图或列表说明理由.24.泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从,两个景点中任意选择一个游玩,下午从、、三个景点中任意选择一个游玩,用列表或画树状图的方法列出所有等可能的结果.并求小明恰好选中景点和的概率.25.一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为.(1)求袋子里2号球的个数.(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.26.甲、乙两同学用一副扑克牌中牌面数字分别是:3,4,5,6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.27.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?28.小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?答案解析部分一、单选题1.【答案】A【考点】概率公式【解析】【分析】列举出所有情况,看硬币正面朝上的情况数占总情况数的多少即可.【解答】共抛掷一枚均匀的硬币一次,有正反两种情况,有一次硬币正面朝上,所以概率为.故选A.【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到至少有一次硬币正面朝上的情况数是解决本题的关键.2.【答案】B【考点】概率公式【解析】【分析】让是3的倍数的数的个数除以数的总个数即为所求的概率.【解答】∵1、2、3、4、5、6、7、8、9、10这十个数中,3的倍数的有3、6、9共3个数,∴取出的数是3的倍数的概率是:.故选B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.【答案】B【考点】概率公式【解析】【分析】5000条短信有5000名不同的观众发出,每个观众被抽到的机会是相同的,让“幸运观众”数除以短信总条数即为所求概率.【解答】抽取一名幸运观众有5000个结果,小明成为“幸运观众”只要成为所抽的10名中的一个就可以,因而有10个可能结果,所以P(小明成为“幸运观众)==.故选B【点评】本题的解决关键是理解列举法求概率的条件,事件有有限个结果,每个结果出现的机会相等.用到的知识点为:概率=所求情况数与总情况数之比.4.【答案】A【考点】概率公式【解析】【分析】概率的求法:概率=所求情况数与总情况数之比.因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选A.【点评】本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.5.【答案】C【考点】概率公式【解析】【分析】∵共8球在袋中,其中5个红球,∴其概率为,故选C.6.【答案】D【考点】游戏公平性【解析】【解答】解:根据游戏是否公平不在于谁定游戏规则,游戏共是否公平的取决于游戏双方要各有50%赢的机会,∴A.游戏的规则由甲方确定,故此选项错误;B.游戏的规则由乙方确定,故此选项错误;C.游戏的规则由甲乙双方商定,故此选项错误;D.游戏双方要各有50%赢的机会,故此选项正确.故选:D.【分析】根据游戏共是否公平的取决于游戏双方要各有50%赢的机会,游戏是否公平不在于谁定游戏规则,分别判定即可.7.【答案】D【考点】概率公式【解析】【解答】解:因为有36000名学生要抽1200名学生,所以被抽中的概率为:.故选D.8.【答案】C【考点】概率公式【解析】【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
浙教版九年级上册数学第2章 简单事件的概率含答案(考试真题)

浙教版九年级上册数学第2章简单事件的概率含答案一、单选题(共15题,共计45分)1、下列命题:(1 )一组数据a1, a2,…an的方差为s2,则另一组数据2a1,2a2,…2an的方差为2s2.(2 )三角形中线能将该三角形的面积平分.(3 )相似三角形的面积比等于相似比的平方.(4 )圆绕圆心旋转37.5°后也能与原来图形重合.(5 )极可能发生的事件可以看作是必然事件.(6 )关于x的方程x2+3ax﹣9=0一定有两个不相等的实数根.其中正确的个数是()A.3个B.4个C.5个D.6个2、数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是()A. B. C. D.3、下列事件是必然事件的是()A.同旁内角互补B.任何数的平方都是正数C.两个数的绝对值相等,则这两个数一定相等D.任意写一个两位数,个位数字是的概率是4、“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )A. B. C. D.5、在一个暗箱里放入除颜色外其它都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到是红球的概率是( )A. B. C. D.6、下列说法正确的是()A.“经过有交通信号的路口,遇到红灯,”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.处于中间位置的数一定是中位数D.方差越大数据的波动越大,方差越小数据的波动越小7、一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有71次摸到红球.请你估计这个口袋中白球的数量为( )个.A.29B.30C.3D.78、下列事件为确定事件的是()A.6张相同的小标签分别标有数字1~6,从中任意抽取一张,抽到3号签 B.抛掷1枚质地均匀的硬币反面朝上 C.射击运动员射击一次,命中靶心 D.长度分别是4,6,8的三条线段能围成一个三角形9、书包里有数学书3本,英语书2本,语文书5本,从中任意抽取一本,是数学书的概率是()A. B. C. D.10、在一副52张的扑g牌中(没有大、小王)任意抽取一张,抽出的这张牌是K的可能性是()A. B. C. D.11、下列说法正确的是()A.调查某班学生的身高情况,适宜采用抽样调查B.“若m、n互为相反数,则mn=0”,这一事件是必然事件C.小南抛挪两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1D.“1,3,2,1的中位数一定是2”,这一件是不可能事件12、在一个10万人的小镇,随机调查了3000人。
浙教版九年级上册数学第2章 简单事件的概率含答案(历年真题)

浙教版九年级上册数学第2章简单事件的概率含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.一颗质地均匀的骰子已连续抛投了2015次,其中抛掷出5点的次数最少,则第2016次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等2、一个骰子,六个面上的数字分别为1、2、3、4、5、6,连续投掷两次,两次向上的面出现数字之和为偶数的概率是()A. B. C. D.3、下列事件中,是必然事件的是()A.直角三角形的两个锐角互余.B.买一张电影票,座位号是偶数号. C.投掷一个骰子,正面朝上的点数是7. D.打开“酷狗音乐盒”,正在播放歌曲《我和我的祖国》.4、一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A. B. C. D.5、如图,是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是()A. B. C. D.6、在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③7、在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2B.12C.18D.248、下列说法正确的是()A.打开电视,它正在播天气预报是不可能事件B.要考察一个班级中学生的视力情况适合用抽样调查C.抛掷一枚均匀的硬币,正面朝上的概率是,若抛掷10次,就一定有5次正面朝上. D.甲、乙两人射中环数的方差分别为,,说明乙的射击成绩比甲稳定9、在下列事件中,随机事件是()A.通常温度降到0℃以下,纯净的水会结冰B.随意翻到一本书的某页,这页的页码是奇数C.明天的太阳从东方升起D.在一个不透明的袋子里装有完全相同的6个红色小球,随机抽取一个白球10、对一批衬衣进行抽检,统计合格衬衣的件数,得到如下的频数表:抽查件数(件)100 150 200 500 800 1000合格频数85 141 176 445 724 900根据表中数据,下列说法错误的是()A.抽取100件的合格频数是85B.任抽取一件衬衣是合格品的概率是0.8 C.抽取200件的合格频率是0.88 D.出售1200件衬衣,次品大约有120件11、下列事件是必然事件的是( )A.打开电视机,任选一个频道,屏幕上正在播放天气预报B.到电影院任意买一张电影票,座位号是奇数C.在地球上,抛出去的篮球会下落D.掷一枚均匀的骰子,骰子停止转动后偶数点朝上12、在一个不透明的口袋里装有2个白球、3个黑球和3个红球,它们除了颜色外其余都相同.现随机从袋里摸出1个球,则摸出白球的概率是()A. B. C. D.13、桌上放着25粒棋子,小明和小刚两人轮流拿,一次可以拿走1粒棋子、2粒棋子或者3粒棋子,但不可以不拿,拿到最后一粒棋子的算输,该游戏()A.公平B.不公平C.对小明有利D.不确定14、一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A. B. C. D.15、下列事件中,是随机事件的是()A.抛出的篮球会下落B.爸爸买彩票中奖了C.地球绕着太阳转 D.一天有24小时二、填空题(共10题,共计30分)16、在中,给出以下4个条件:⑴ ;⑵ ;⑶ ;⑷ ;从中任取一个条件,可以判定出是直角三角形的概率是________.17、四张完全相同的卡片上,分别画有等边三角形、平行四边形、矩形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为________.18、事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是________19、某事件发生的可能性是99.9%.下面的三句话:①发生的可能性很大,但不一定发生;②发生的可能性较小;③肯定发生.以上三句话对此事件描述正确的是________(选填序号).20、从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是________.21、从1、﹣1、0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是________.22、四个实数,,,π中,任取一个数是无理数的概率为________.23、若我们把十位上的数字比个位和百位上的数字都小的三位数称为凹数,如:768,645.则由1,2,3这三个数字构成的,数字不重复的三位数是“凹数”的概率是________ .24、一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为,则袋中应再添加红球________个(以上球除颜色外其他都相同).25、某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是________ .三、解答题(共5题,共计25分)26、在四编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中机抽取一张.我们知道,满足的三个正整数a,b,c成为勾股数,请用“列表法”或“树状图法”求抽到的两张卡片上的数都是勾股数的概率(卡片用A,B,C,D表示).27、某公司举行一个游戏,规则如下:有4张背面相同的卡片,分别对应1000元、600元、400元、200元的奖金,现将4张纸牌洗匀后背面朝上摆放到桌上,让员工抽取,每人有两次抽奖机会,两次抽取的奖金之和作为公司发的奖金.现有两种抽取的方案:①小芳抽取方案是:直接从四张牌中抽取两张.②小明抽取的方案是:先从四张牌中抽取一张后放回去,再从四张中再抽取一张.你认为是小明抽到的奖金不少于1000元的概率大还是小芳抽取到的奖金少于1000元的概率大?请用树形图或列表法进行分析说明.28、小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1-4的四个球(除编号不同外其它都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜.这个游戏对双方公平吗?请说明理由.29、一个不透明盒子中放有三张除所标数字不同外其余均相同的卡片,卡片上分别标有数字1,2,从盒子中随机抽取一张卡片,记下数字后放回,再次随机抽取一张一记下数字,请用画树状图或列表的方法,求第二次抽取的数字大于第一次抽取的数字的概率.30、某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向一个区域内为止),然后,将两次记录的数据相乘.(1)请利用画树状图或列表格的方法,求出乘积结果为负数的概率.(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?参考答案一、单选题(共15题,共计45分)1、D2、B4、C5、B6、B7、C8、D9、B10、B11、C12、D13、B14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、29、30、。
浙教版初三数学上册第2章简单事件的概率测试卷

浙教版初三数学上册第2章 简单事件的概率测试卷一、选择题(每小题5分,共25分)1.“若a 是实数,则|a|≥0”这一事件是( ) A .必定事件 B .不确定事件 C .不可能事件 D .随机事件 2.下列事件中,不可能事件是( ) A .抛掷一枚骰子,显现4点向上 B .五边形的内角和为540° C .实数的绝对值小于0 D .改日会下雨3.1个袋中有5个绿球,m 个白球,从中任取一个,恰好为白球的概率是23,则m 的值为( )A .16B .10C .20D .184.在-2,-1,0,1,2这五个数中任取两数m ,n ,则抛物线y =(x -m)2+n 的顶点在坐标轴上的概率为( )A.25B.15C.14D.125.袋内装有标号分别为1,2,3,4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为那个两位数的个位数字,则组成的两位数是3的倍数的概率为( )A.14B.516C.716D.12二、填空题(每小题5分,共30分)6.在一个不透亮的布袋中装有红球6个,白球3个,黑球1个,这些球除颜色外没有任何区别,从中任意取出一球为红球的概率是________.7.一个不透亮的袋中装有除颜色外其他均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中.通过大量重复摸球试验后,发觉摸到红球的频率稳固于0.4,由此可估量袋中约有红球________个.8.随机掷一枚质地平均的正方体骰子,骰子的六个面上分别刻有1到6的点数,则那个骰子向上的一面点数是奇数的概率为________.9.已知四个点的坐标分别是(-1,1),(2,2),(23,32),(-5,-15),从中随机选取一个点,该点在反比例函数y =1x 图象上的概率是________.10.在一个不透亮的盒子中装着4个分别标有数字1,2,3,4的小球,它们除数字不同外其余完全相同,搅匀后从盒子中随机取出1个小球,将该小球上的数字作为a 的值,则使关于x 的不等式组⎩⎪⎨⎪⎧x>2a -1,x ≤a +2只有一个整数解的概率为________.图2-Z -111.如图2-Z -1,在3×3的方格中,A ,B ,C ,D ,E ,F 分别位于格点上,从C ,D ,E ,F 四点中任取一点,与点A ,B 连结作三角形,则所作三角形为等腰三角形的概率是________.三、解答题(共45分)12.(8分)在一只不透亮的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m 个白球,这时从袋子中随机摸出一个球是黑球的事件为“必定事件”,则m 的值为________;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋子中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.13.(10分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)从中随机抽取一个球,是黑球的概率是多少?(2)若往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个球,恰好是白球的概率是14,求y 与x 之间的函数表达式.14.(12分)为了决定谁将获得仅有的一张科普报告入场券,甲和乙两人设计了如下的一个游戏:口袋中有编号分别为1,2,3的红球3个和编号为4的白球1个,4个球除了颜色和编号不同外,没有其他任何区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.甲先摸两次,每次摸出1个球;把甲摸出的2个球同时放回口袋后,乙再摸,乙只摸1个球.假如甲摸出的2个球差不多上红色,甲得1分,否则,甲得0分.假如乙摸出的球是白色,乙得1分,否则,乙得0分.得分高的获得入场券,假如得分相同,游戏重来.(1)运用列表或画树状图的方法求甲得1分的概率;(2)那个游戏是否公平?请说明理由.15.(15分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,某中学举行“汉字听写”竞赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图2-Z-2所示的条形统计图和扇形统计图,但均不完整.图2-Z-2请你依照统计图解答下列问题:(1)参加竞赛的学生共有________名;(2)在扇形统计图中,m的值为________,表示“D等级”的扇形的圆心角为________度;(3)组委会决定从本次竞赛获得A等级的学生中选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.1.A[解析] 当a是正数时,|a|>0;当a是负数时,|a|>0;当a=0时,|a|=0,因此“若a是实数,则|a|≥0”这一事件是必定事件.故选A.2.C 3.B 4.A5.B[由表格可知,所有等可能的结果共有16种,而是3的倍数的结果有5种,即12,21,24,42,33,因此组成的两位数是3的倍数的概率为516.6.35 [解析] ∵袋中装有红球6个,白球3个,黑球1个,共10个,∴任意摸出1球,摸到红球的概率是610=35.7.8 8.12 9.12 10.1411.34 [解析] 依照从C ,D ,E ,F 四个点中任取一点,一共有4种可能,选取点D ,C ,F 时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=34.12.解:(1)2共有12种结果,每种结果的可能性相同,两次摸到的球颜色相同的结果有4种,因此两次摸到的球颜色相同的概率为412=13.13.解:(1)任意取出一个球恰好是黑球的概率P =47.(2)∵随机取出一个球,恰好是白球的概率P =3+x7+x +y ,∴3+x 7+x +y=14,∴12+4x =7+x +y , ∴y 与x 之间的函数表达式为y =3x +5. 14.解:(1)或画树状图如下:∴P(甲得1分)=612=12.(2)那个游戏不公平.理由如下:∵P(乙得1分)=14,∴P(甲得1分)≠P(乙得1分), ∴那个游戏不公平. 15.解:(1)20 (2)40 72 (3)所有等可能的结果共有6种,其中恰好是一名男生和一名女生的结果有4种,因此所选2名学生恰好是一名男生和一名女生的概率为46=23.。
第2章简单事件的概率(易错40题5个考点)(原卷版)

第2单元简单的事件概率(易错40题5个考点)一.可能性的大小(共1小题)1.在如图所示的转盘中,转出的可能性最大的颜色是()A.红色B.黄色C.白色D.黑色二.概率的意义(共15小题)2.连续掷一枚硬币100次,前99次都是正面向上,则第100次出现正面向上的概率为()A.1B.C.D.3.某商店开展“有奖销售活动”:凡购物满100元,就可以获得一次抽奖机会,中奖的可能性是85%,也就是说抽奖()A.100个人抽奖必有85个人中奖B.抽100次必有85次中奖C.一定中奖D.有可能中奖4.下列说法中,正确的是()A.为了保证大家端午节吃上放心的粽子,质监部门对长沙市市场上的粽子质量实行全面调查B.一组数据﹣1,2,5,7,7,7,4的众数是7,中位数是7C.明天的降水概率为60%,则明天60%的时间下雨D.若平均数相同的甲、乙两组数据,s甲2=0.3,s乙2=0.02,则乙组数据更稳定5.先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是()A.B.C.D.6.小敏同学连续抛了两次硬币,都是正面朝上,那么他第三次抛硬币时,出现正面朝上的概率是()A.0B.1C.D.7.抛掷一枚均匀的硬币,前4次都是正面朝上,第5次正面朝上的概率()A.大于B.等于C.小于D.不能确定8.下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖9.抛掷一枚质地均匀的硬币2021次,正面朝上最有可能接近的次数为()A.800B.1000C.1200D.140010.气象台预报“本市明天降水概率是90%”.对此信息,下列说法正确的是()A.本市明天将有90%的时间降水B.本市明天降水的可能性比较大C.本市明天肯定下雨D.本市明天将有90%的地区降水11.含盐率为0.8%,表示盐占水的0.8%.(判断对错)12.小明抛掷一枚质地均匀的硬币,连续抛掷9次,7次正面朝上,则他抛掷第10次时,正面朝上的概率是.13.如果事件A是“上学时,在路上遇到班主任”,事件B是“上学时,在路上遇到同班同学”,那么P(A)P(B).(填“>”、“<”或“=”)14.某家庭,打进的响第一声时被接的概率为0.1,响第二声被接的概率为0.2,响第三声或第四声被接的概率都是0.25,则在响第五声之前被接的概率为.15.一则广告声称本次活动的中奖率为20%,其中一等奖的中奖率为1%.小明看到这则广告后,想:“我抽5张就会有1张中奖,抽100张就会有1张中一等奖.”你认为小明的想法对吗?16.一鲜花店根据一个月(30天)某种鲜花的日销售量与销售天数统计如表,将日销售量落入各组的频率视为概率.日销售量x(枝)0≤x <50 50≤x <100 100≤x <150 150≤x <200 200≤x <250 销售天数 2天 3天 13天 8天 4天(1)试求这30天中日销售量低于100枝的概率;(2)若此花店在日销售量低于100枝的时候选择2天作促销活动,求这2天恰好是在日销售量低于50枝时的概率.三.概率公式(共19小题)17.用6个球设计一个摸球的游戏,小明想出了下面四个方案,你认为不能成功的是( )A .摸到黄球的概率是,摸到红球的概率是B .摸到黄球的概率是,摸到红球、白球的概率是C .摸到黄球、红球、白球的概率是D .摸到黄球的概率是,摸到红球的概率是,摸到白球的概率是18.一个不透明的袋中装有11个只有颜色不同的球,其中4个白球,5个红球,2个黄球.从中任意摸出1个球是红球的概率为( )A .B .C .D .19.如图,任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是( )A .B .C .D .20.袋中有红球4个,白球若干,抽到红球的概率为,则白球有( )个.A .8B .6C .4D .221.福彩“五位数”玩法规定所购买的彩票的5位数字与开奖结果的5位数字相同,则中一等奖,则购买一张彩票中一等奖的概率是()A.B.C.D.22.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.B.C.D.23.如图,当关闭开关K1,K2,K3中的两个,能够让灯泡发光的概率为()A.B.C.D.24.某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号、7号题,第3位选手抽中8号题的概率是()A.B.C.D.25.一个均匀的立方体各面上分别标有数字:1,2,3,4,6,8,其表面展开图是如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面上的数字的2倍的概率是()A.B.C.D.26.一个不透明袋子中装有若干个除颜色外完全相同的小球,其中白球有5个,要让摸得红球的概率大于摸得白球的概率,红球最少有()个.A.4B.5C.6D.727.六一儿童节期间,小丁去“杭州乐园”的概率是,小李、小聪去“杭州乐园”的概率分别为、,假定三人的行动相互之间没有影响,那么这段时间内三人中至少有1人去“杭州乐园”的概率为()A.B.C.D.28.张老汉今年春天在自家池塘里放入1000尾鱼苗,成活率为95%,为了了解鱼的生长情况,他在夏天捕捞出50条称重,并做了记号,然后再放回,到了秋天,他又准备捕捞出一部分,为了确保能够捞出5条做记号的鱼,他这一次至少应捕捞()A.6条B.95条C.110条D.120条29.现有4种物质:①HCl;②NaOH;③H2O;④NaCl,任取两种混合能发生化学变化的概率为()A.B.C.D.30.现有某种产品100件,其中5件次品,从中随意抽出1件,恰好抽到次品的概率是.31.从﹣3.﹣1,π,0,3这五个数中随机抽取一个数,恰好是负数的概率是.32.在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b且,a,b是0,1,2,3四个数中的其中某一个,若|a﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为.33.张家界国际乡村音乐周活动中,来自中、日、美的三名音乐家准备在同一节目中依次演奏本国的民族音乐,若他们出场先后的机会是均等的,则按“美﹣日﹣中”顺序演奏的概率是.34.为了能够帮助武汉疫情,某公司通过武汉市慈善总会二维码给武汉捐款,根据捐款情况制成不完整的扇形统计图(图1)、条形统计图(图2).(1)根据以上信息可知参加捐款总人数为,m=,捐款金额中位数为,请补全条形统计图;(2)若从捐款的人中,随机选一人代表公司去其它公司做捐款宣传,求选中捐款不低于150元的人的概率;(3)若其它公司有几人参与了捐款活动,把新捐款数与原捐款数合并成一组新数据,发现众数发生改变,请求出至少有几人参与捐款.35.在一个不透明的袋子中装有三个小球,分别标有数字﹣2、2、3,这些小球除数字不同外其余均相同,现从袋子中随机摸出一个小球记下数字后放回,搅匀后再随机摸出一个小球,用画树状图或列表的方法,求两次摸出的小球上数字之和是正数的概率.四.游戏公平性(共1小题)36.小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A棋1只,B棋2只,C棋3只,D棋4只.“字母棋”的游戏规则为:①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回;②A棋胜B棋、C棋;B棋胜C棋、D棋;C棋胜D棋;D棋胜A棋;③相同棋子不分胜负.(1)若小玲先摸,问小玲摸到C棋的概率是多少?(2)已知小玲先摸到了C棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?(3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?五.利用频率估计概率(共4小题)37.某射击运动员在同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158321801“射中9环以上”的频率0.750.8250.780.790.80250.801则该运动员“射中9环以上”的概率约为(结果保留一位小数)()A.0.7B.0.75C.0.8D.0.938.近年来,洞庭湖区环境保护效果显著,南迁的候鸟种群越来越多.为了解南迁到该区域某湿地的A种候鸟的情况,从中捕捉40只,戴上识别卡并放回;经过一段时间后观察发现,200只A种候鸟中有10只佩有识别卡,由此估计该湿地约有只A种候鸟.39.在课外实践活动中,甲、乙、丙、丁四个小组用投掷啤酒瓶盖的方法估计落地时瓶盖“正面朝上”的概率,其试验次数分别为10次、50次、100次、500次,其中试验相对科学的是组.40.下面是某学校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:50010001500200030004000试验的种子数n4719461425189828533812发芽的粒数m发芽频率0.9420.946x0.949y0.953(1)求表中x,y的值;(2)任取一粒这种植物种子,估计它能发芽的概率约是多少?(精确到0.01)(3)若该学校劳动基地需要这种植物幼苗7600棵,试估算需要准备多少粒种子进行发芽培育.。
第二章 简单事件的概率 章末检测(解析版)

初中数学浙教版九年级上册第二章简单事件的概率章末检测一、单选题1.下列事件中,是随机事件的是()A. 任意画一个三角形,其内角和是360°B. 任意抛一枚图钉,钉尖着地C. 通常加热到100℃时,水沸腾D. 太阳从东方升起2.下列语句描述的事件中,是随机事件的为()A. 水能载舟,亦能覆舟B. 只手遮天,偷天换日C. 瓜熟蒂落,水到渠成D. 心想事成,万事如意3.下列说法中,正确的是()A. 不可能事件发生的概率为0B. 随机事件发生的概率为C. 概率很小的事件不可能发生D. 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次4.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下列事件中,发生可能性最大的是()A. 摸出的是白球B. 摸出的是黑球C. 摸出的是红球D. 摸出的是绿球5.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A. 连续抛掷2次必有1次正面朝上B. 连续抛掷10次不可能都正面朝上C. 大量反复抛掷每100次出现正面朝上50次D. 通过抛掷硬币确定谁先发球的比赛规则是公平的6.下列计算①②③④⑤,其中任意抽取一个,运算结果符合题意的概率是()A. B. C. D.7.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是()A. B. C. D.8.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A. 掷一枚质地均匀的正六面体的骰子,向上的一面点数是1点的概率B. 抛一枚质地均匀的硬币,出现正面朝上的概率C. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率D. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率9.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白色棋子()A. 8颗B. 6颗C. 4颗D. 2颗10.甲乙两人轮流在黑板上写下不超过的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字()时有必胜的策略.A. 10B. 9C. 8D. 6二、填空题11.在线段AB上任取三点x1、x2、x3,则x2位于x1与x3之间的可能性________(填写“大于”、“小于”或“等于”)x2位于两端的可能性.12.一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为________.13.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC不是直角三角形的概率是________.14.若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,任意抽取一个数,抽到偶数的概率为________.15.若质量抽检时任抽一件西服成品为合格品的概率为0.9,则200件西服中大约有________合格品.三、综合题16.下列事件,哪些是必然发生的事件?哪些是不可能发生的事件?哪些是随机事件?(1)有一副洗好的只有数字1~10的10张扑克牌。
【期末复习提升卷】浙教版2022-2023学年九上数学第2章 简单事件的概率 测试卷2

【期末复习提升卷】浙教版2022-2023学年九上数学第2章简单事件的概率测试卷2考试时间:120分钟满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列事件为必然事件的是()A.打开电视,正在播放广告B.抛掷一枚硬币,正面向上C.挪一枚质地均匀的般子,向上一面的点数为7D.实心铁块放入水中会下沉2.为了解某市九年级男生的身高情况,随机抽取了该市100名九年级男生,他们的身高x(cm)统计A.28500B.17100C.10800D.15003.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出两个小球,则摸出的两个小球标号之和大于4的概率是()A.38B.12C.58D.234.“小明过学校门口的马路遇到红灯”这个事件是()A.确定事件B.不确定事件C.不可能事件D.必然事件5.下列事件中,属于必然事件的是()A.射击运动员射击一次,命中10环B.打开电视,正在播广告C.投掷一枚普通的骰子,掷得的点数小于10D.在一个只装有红球的袋中摸出白球6.如图是一个游戏转盘.自由转动转盘,当转盘停止转动后,指针落在数字1,2,3,4所示区域内可能性最大的是()A.1号B.2号C.3号D.4号7.下列说法正确的是()A.可能性很小的事件不可能发生B.可能性很大的事件必然发生C.必然事件发生的概率为1D.不确定事件发生的概率为138.台球盒中有7个红球与1个黑球,从中随机摸出一个台球,则下列描述符合的是() A.一定摸到黑球B.不可能摸到黑球C.很可能摸到黑球D.不大可能摸到黑球9.下列各选项的事件中,发生的可能性大小相等的是()A.小明去某个路口,碰到红灯、黄灯和绿灯B.任意抛掷一枚图钉,落地后钉尖“朝上”和“朝下”C.小亮在沿着Rt△ABC三边行走,他出现在AB,AC与BC边上D.小红任意抛掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”10.抛掷一枚质地均匀的硬币2021次,正面朝上最有可能接近的次数为()A.800B.1000C.1200D.1400二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.小明随意抛掷一枚点数从1−6,质地均匀的正方体骰子,前面8次中有5次3点朝上. 则执第9次时,3点朝上的概率为.12.一个布袋里有3个只有颜色不同的球,其中2个红球,1个白球.从布袋里摸出1个球不放回,再摸出1个球,摸出的2个球都是红球的概率是.13.如图所示,图①和图②中所有的正方形都全等,将图①中的正方形放在图②中的①②③④的某一位置,所组成的图形恰好是正方体展开图的概率是.14.十一国庆期间,小明爸爸从金塘收费站出发到舟山市人民政府办事,导航显示有两条路径可以选择,L1:经过东西快速路;L2:经过海天大道。
第2章简单事件的概率期末专项练习(解析版)

简单事件的概率期末专项练习参考答案与试题解析一.选择题(共10小题)1.四张完全相同的卡片上,分别画有圆、平行四边形、等腰三角形、矩形,现从中随机抽取一张,恰好抽到轴对称图形的概率是()A.B.C.D.1【分析】卡片共有四张,轴对称图形有圆、等腰三角形、矩形,根据概率公式即可得到卡片上所画图形恰好是轴对称图形的概率.【解答】解:∵四张完全相同的卡片中,轴对称图形有圆、等腰三角形、矩形,∴恰好抽到轴对称图形的概率是;故选:C.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.2.在一个不透明的口袋中,红色,黑色,白色的小球共有50个,除颜色外其它完全相同,乐乐通过多次摸球试验后发现,摸到红色球,黑色球的频率分别稳定在和,则口袋中白色球的个数可能为()A.20B.15C.10D.5【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【解答】解:∵多次摸球试验后发现其中摸到红色球,黑色球的频率分别稳定在和,∴摸到红色球、黑色球的概率分别为0.26和0.44,∴摸到白球的概率为1﹣0.26﹣0.44=0.3,∴口袋中白色球的个数可能为0.3×50=15.故选:B.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.3.抛掷一枚质地均匀的硬币,“反面朝上”的概率为,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是()A.每两次必有1次反面朝上B.可能有50次反面朝上C.必有50次反面朝上D.不可能有100次反面朝上【分析】概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现,据此逐项判断即可.【解答】解:抛掷一枚质地均匀的硬币,“反面朝上”的概率为,那么抛掷一枚质地均匀的硬币100次,可能有50次反面朝上,故选:B.【点评】此题主要考查了概率的意义和应用,要熟练掌握,解答此题的关键是要明确:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.4.计算机的“扫雷”游戏是在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.若游戏时先踩中一个小方格,显示数字3,它表示与这个方格相邻的8个小方格中埋藏着3颗地雷.如图,是小明某次游戏时随机点开一个方块所显示的数字,小明接下来在数字“2”的周围随机点开一个方块,没有踩中地雷的概率为()A.B.C.D.【分析】根据概率公式直接求解即可.【解答】解:∵8个位置有2颗地雷,则没有地雷的有6颗,∴没有踩中地雷的概率为=;故选:D.【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.5.小明在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则最可能符合这一结果的实验是()A.掷一枚骰子,出现4点的概率B.抛一枚硬币,出现反面的概率C.任意写一个整数,它能被3整除的概率D.从一副扑克中任取一张,取到“大王”的概率【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、掷一枚骰子,出现4点的概率为;B、掷一枚硬币,出现正面朝上的概率为;C、任意写出一个正整数,能被3整除的概率为;D、从一副扑克中任取一张,取到“大王”的概率.故选:C.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.6.从﹣2、﹣1、0、1、2这5个数中任取一个数,作为函数y=mx2﹣4x+2的m值(m为常数),则使函数图象与x轴有两个交点的概率是()A.B.C.D.1【分析】用使函数图象与x轴有两个交点的个数除以总个数即可得出答案.【解答】解:∵在﹣2、﹣1、0、1、2这5个数中,使函数图象与x轴有两个交点的有3个数,∴使函数图象与x轴有两个交点的概率是;故选:C.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.7.2020年五一期间,某消费平台推出“购物满200元可参与抽奖”的活动,中一等奖的概率为,用科学记数法表示为()A.2×10﹣4B.5×10﹣5C.5×10﹣6D.2×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示5×10﹣6,故选:C.【点评】本题考查了概率公式和用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.关于随机事件A发生的频率与概率,下列说法正确的是()A.事件A发生的频率就是它发生的概率B.在n次试验中,事件A发生了m次,则比值称为事件A发生的频率C.事件A发生的频率与它发生的概率无关D.随着试验次数大量增加,事件A发生的频率会在P(A)附近摆动【分析】根据频率、概率的意义,逐项进行判断即可.【解答】解:在n次试验中,事件A发生了m次,则比值称为事件A发生的频率,因此选项B不符合题意;概率则是经过无数次试验,随着试验次数的增加,事件A发生的频率越稳定在某个常数附近摆动,这个常数称为事件A发生的概率,因此选项A不符合题意;概率和频率是有一定关系的,一般地,事件A发生的概率越大,其试验的频率也越大,因此选项C不符合题意;根据概率和频率的关系可得选项D符合题意;故选:D.【点评】本题考查随机事件发生的概率和频率,理解频率和概率的意义和关系是正确判断的前提.9.某商场开业举行庆祝活动,凡是到商场的人均可参加“意外惊喜”的游戏,游戏规则为:一个袋中装有白球和红球共20个(这些小球除颜色外都相同),任意摸出一个球,如果摸到红球就可获得商场免费提供的一份礼品.据统计,当天参加活动的人数约5000人,商场发放了1000份礼品,试估计袋中红球的个数为()A.10B.8C.5D.4【分析】设袋中红球的个数为x,根据概率公式列出算式,求出x的值即可得出答案.【解答】解:设袋中红球的个数为x,根据题意得:=,解得:x=4,答:估计袋中红球的个数为4个;故选:D.【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.10.从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a ﹣8=0有实数解,又要使关于x的分式方程+=3有正数解,则符合条件的概率是()A.B.C.D.【分析】先利用判别式的意义得到a≠0且△=(2a﹣4)2﹣4•a•(a﹣8)>0,再解把分式方程化为整式方程得到x=,利用分式方程有正数解可得到关于a的不等式组,则可求得a的取值范围,则可求得满足条件的整数a的个数.【解答】解:∵方程ax2+(2a﹣4)x+a﹣8=0有两个不相等的实数根,∴a≠0且△=(2a﹣4)2﹣4•a•(a﹣8)>0,解得:a>﹣1且a≠0,分式方程+=3,去分母得x+a﹣2a=3(x﹣1),解得x=,∵分式方程+=3有正数解,∴>0且≠1,解得a<3且a≠1,∴a的范围为a<3且a≠0,a≠1,∴从﹣2,0,1,2,3中任取一个数作为a,符合条件的整数a的值是2,即符合条件的a只有1个,故符合条件的概率是.故选:A.【点评】本题主要考查根的判别式及分式方程的解法,求得a的取值范围是解题的关键.二.填空题(共7小题)11.一个不透明的袋中装有6个黄球,m个红球,n个白球,每个球除颜色外都相同.把袋中的球搅匀,从中任意摸出一个球,摸出黄球记为事件A,摸出的球不是黄球记为事件B,若P(A)=2P(B),则m与n的数量关系是m+n=3.【分析】根据概率公式求出摸到黄球和摸不到黄球的概率,再根据P(A)=2P(B),列出关系式,然后求解即可得出答案.【解答】解:∵一个不透明的袋中装有6个黄球,m个红球,n个白球,∴任意摸出一个球,是黄球的概率P(A)=,摸出的球不是黄球的概率P(B)=,∵P(A)=2P(B),∴=2×,∴m+n=3;故答案为:m+n=3.【点评】此题考查了概率公式的应用.注意掌握概率=所求情况数与总情况数之比.12.已知a,b可以取﹣2,﹣1,1,2中的任意一个值(a≠b),则直线y=ax+b经过第一、二、四象限的概率是.【分析】列表得出所有等可能的结果数,找出a与b都为正数,即为直线y=ax+b经过第一、二、四象限的情况数,即可求出所求的概率.【解答】解:列表如下:﹣2﹣112﹣2(﹣1,﹣2)(1,﹣2)(2,﹣2)﹣1(﹣2,﹣1)(1,﹣1)(2,﹣1)1(﹣2,1)(﹣1,1)(2,1)2(﹣2,2)(﹣1,2)(1,2)所有等可能的情况数有12种,其中直线y=ax+b经过第一、二、四象限的情况数有4种,则P==.故答案为:.【点评】此题考查了列表法与树状图法,以及一次函数图象与系数的关系,用到的知识点为:概率=所求情况数与总情况数之比.13.有六张正面分别标有数字﹣1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,则抽取的卡片上的数字为不等式组的解的概率为.【分析】先求出不等式组的整数解,再由概率公式可求解.【解答】解:∵不等式组,∴1<x≤4,∴不等式组的整数解为2,3,4,∴抽取的卡片上的数字为不等式组的解的概率==,故答案为.【点评】此题考查了概率公式的应用及解一元一次不等式组.用到的知识点为:概率=所求情况数与总情况数之比.14.从﹣3,0,,1,2这5个数中任取一个数记为m,则能使二次函数y=(x﹣2)2+m 的顶点在x轴上方的概率为.【分析】根据概率公式直接求解即可.【解答】解:∵在﹣3,0,,1,2这5个数中,能使二次函数y=(x﹣2)2+m的顶点在x轴上方的3个,分别是,1,2,∴能使二次函数y=(x﹣2)2+m的顶点在x轴上方的概率为;故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.15.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到白球的频率稳定在20%附近,则估计口袋中的球大约有5个.【分析】设袋子中白球有n个,根据摸到白球的频率稳定在20%附近得出=20%,解之求出n的值,从而得出答案.【解答】解:设袋子中白球有n个,根据题意,得:=20%,解得n=1,经检验n=1是分式方程的解,所以估计口袋中的球大约有4+1=5个,故答案为:5.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.16.从﹣1,0,1,2,3这五个数中,随机取出一个数,记为a,那么使关于x的方程=1有解,且使关于x的一元二次方程x2﹣3x+a=0有两个不相等的实数根的概率为.【分析】由题意得使关于x的方程=1有解,且使关于x的一元二次方程x2﹣3x+a =0有两个不相等的实数根的a的值有4个,由概率公式即可得出答案.【解答】解:∵使关于x的方程=1有解,∴a可取﹣1,0,1,2,3这五个数,∵一元二次方程x2﹣3x+a=0有两个不相等的实数根,∴△=(﹣3)2﹣4×1×a=9﹣4a>0,解得:a<,∴a可取﹣1、0、1、2,共有四个,∴从﹣1,0,1,2,3这五个数中,随机取出一个数,符合条件的有4个,∴使关于x的方程=1有解,且使关于x的一元二次方程x2﹣3x+a=0有两个不相等的实数根的概率为,故答案为:.【点评】此题考查了概率公式的应用、根的判别式以及一元一次方程的解.用到的知识点为:概率=所求情况数与总情况数之比.17.2020年3月12日是我国第42个植树节,某林业部门要考察一种幼树在一定条件下的移植成活率,幼树移植过程中的一组统计数据如表:幼树移植数(棵)1002500400080002000030000幼树移植成活数(棵)872215352070561758026430幼树移植成活的频率0.8700.8860.8800.8820.8790.881(结果精确到0.01)请根据统计数据,估计这种幼树在此条件下移植成活的概率是0.88.【分析】利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可.【解答】解:∵根据表中数据,试验频率逐渐稳定在0.88左右,∴这种幼树在此条件下移植成活的概率是0.88;故答案为:0.88.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.三.解答题(共6小题)18.在一个不透明的袋子里装有2个白球,3个黄球,每个球除颜色外均相同,现将同样除颜色外都相同的黄球和白球若干个(白球个数是黄球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是白球的概率是,求后放入袋中的黄球的个数.【分析】设放入袋中的黄球的个数为x个,根据概率公式列出算式,再进行计算即可得出答案.【解答】解:设放入袋中的黄球的个数为x个,根据题意得:2+2x=(2+3+x+2x)解得:x=1,答:放入袋中的黄球的个数有1个.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.19.某大型企业为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量使用情况(1)从该企业的员工中随机抽取1人,求该员工手机月平均使用流量不超过900M的概率.(2)据了解,某网络运营商推出两款流量套餮,详情如下套餐名称月套餐费(单位:元)月套餐流量(单位:M)A20700B301000流量套餐的规则是:每月1日收取套餐费.如果手机实际使用流量超出套餐流量,则需要购买流量叠加包,每一个叠加包(包含200M的流量)需要10元,可以多次购买,如果当月流量有剩余,将会被清零.该企业准备订购其中一款流量套餐,每月为员工支付套餐费,以及购买流量叠加包所需月费用.若以人均所需费用为决策依据,该企业订购哪一款套餐更经济?【分析】(1)直接根据概率公式求解即可;(2)根据平均数的计算公式先分别求出A套餐人均所需费用和B套餐人均所需费用,再进行比较,即可得出答案.【解答】解:(1)由题意得,样本中月平均使用流量不超过900M的频数为:100﹣2﹣8=90,则该员工手机月平均使用流量不超过900M的概率是=;(2)A套餐人均所需费用为:28(元),B套餐人均所需费用为:=30.2(元),∵28<30.2,∴该企业订购A套餐更经济.【点评】本题考查了概率的知识和频数(率)分布直方图.用到的知识点为:概率=所求情况数与总情况数之比.20.今年疫情期间,为防止疫情扩散,人们见面的机会少了,但是随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷,为此,孙老师设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种)进行调查.将统计结果绘制了下面两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次参与调查的共有2000人;在扇形统计图中,表示“微信”的扇形圆心角的度数为144°;其它沟通方式所占的百分比为13%.(2)将条形统计图补充完整;(3)如果我国有13亿人在使用手机.①请估计最喜欢用“微信”进行沟通的人数;②在全国使用手机的人中随机抽取一人,用频率估计概率,求抽取的恰好使用“QQ”的概率是多少?【分析】(1)根据喜欢电话沟通的人数与百分比即可求出共抽查人数,求出使用“微信”的百分比即可求出“微信”的扇形圆心角度数.(2)计算出短信与微信的人数即可补全统计图.(3)用样本中喜欢用微信进行沟通的百分比来估计13亿人中喜欢用微信进行沟通的人数即可求出答案.【解答】解:(1)∵喜欢用电话沟通的人数为400,所占百分比为20%,∴此次共抽查了:400÷20%=2000人表示“微信”的扇形圆心角的度数为:,其它沟通方式所占的百分比为:,故答案为:2000;144°;13%.(2)如图:(3)①由(2)知:参与调查的人中喜欢用“微信”进行沟通的人数有800人,所以在全国使用手机的13亿人中,估计最喜欢用“微信”进行沟通的人数有(亿人).②由(1)可知:参与这次调查的共有2000人,其中喜欢用“QQ”进行沟通的人数为440人,所以,在参与这次调查的人中随机抽取一人,抽取的恰好使用“QQ”的频率是=22%.所以,用频率估计概率,在全国使用手机的人中随机抽取一人,抽取的恰好使用“QQ”的概率是22%.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.由于空气污染严重,某工厂生产了两种供人们外出时便于携带的呼吸装置,其质量按测试指标划分:指标大于等于88为优质产品,现随机抽取这两种装置各100件进行检测,检测结果統计如表:测试指标分组[70,76)[76,82)[82,88)[88,94)[94,100]频数装置甲81240328装置乙71840296(1)试分别估计装置甲、装置乙为优质品的概率;(2)设该厂生产一件产品的利润率y与其质量指标的关系式为,根据以上统计数据,估计生产一件装置乙的利润率大于0的概率,若投资100万生产装置乙,请估计该厂获得的平均利润;(3)若投资100万,生产装置甲或装置乙中的一种,请分析生产哪种装置获得的利润较大?【分析】(1)根据频数求比值,得到估计装置甲、装置乙为优质品的概率;(2)根据题意得到变量对应的数字,结合变量对应的事件写出变量对应的概率,进而可估计该厂获得的平均利润;(3)比较生产装置甲或装置乙获得的利润,即可得出结论.【解答】解:(1)装置甲为优质品的概率:=0.4;装置乙为优质品的概率:=0.35;(2)设装置乙的利润率为w,则w的可能取值为﹣2,2,4,∵当t<76时,即w=﹣2时,P==0.07,当76≤t<88时,即w=2时,P==0.58,当t≥88时,即w=4时,P=0.35,∴估计生产一件装置乙的利润率大于0的概率为P=0.58+0.35=0.93;∵w=﹣2×0.07+2×0.58+4×0.35=2.42,∴投资100万生产装置乙,估计该厂获得的平均利润为242万;(3)设装置甲的利润率为m,则m的可能取值为﹣2,2,4,∵当t<76时,即w=﹣2时,P=0.08,当76≤t<88时,即w=2时,P=0.52,当t≥88时,即w=4时,P=0.4,∴w=﹣2×0.08+2×0.52+4×0.4=2.48,∵w>m,∴生产甲装置获得的利润较大.【点评】本题考查了利用频率估计概率、频数分布表、加权平均数,解决本题的关键是利用频率估计概率.22.某商场为了吸引顾客,设立了一个如图可以自由转动的转盘,并规定:顾客每购买200元的商品就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、绿或黄色区域,顾客就可以获得100元、50元,20元的购物券,(转盘被等分成20个扇形),已知甲顾客购物220元.(1)他获得购物券的概率是多少?(2)他得到100元、50元、20元购物券的概率分别是多少?(3)若要让获得20元购物券的概率变为,则转盘的颜色部分怎样修改?(直接写出修改方案即可).【分析】(1)根据题意直接利用概率公式求出答案;(2)根据题意直接利用概率公式求出答案;(3)利用概率公式找到改变方案即可.【解答】解:(1)∵共有20种等可能事件,其中满足条件的有11种,∴P(中奖)=;(2)由题意得:共有20种等可能结果,其中获100元购物券的有2种,获得50元购物券的有4种,获得20元购物券的有5种,∴P(获得100元)==;P(获得50元)==;P(获得20元)==;(3)直接将3个无色扇形涂为黄色.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.23.疫情防控期间,随着人们健康意识的不断提升,洗手液需求量剧增.某商场计划引进多个品牌的洗手液进行销售.现邀请生产洗手液的甲、乙两个厂家进场试销10天.两个厂家提供的返利方案如下:甲厂家每天固定返利70元,且每卖出一件产品厂家再返利2元;乙厂家无固定返利,卖出40件以内(含40件)的产品,每件产品厂家返利4元,超出40件的部分每件返利6元.两个厂家销售情况如下表:甲厂家销量(件)3839404142天数24211乙厂家销量(件)3839404142天数12241(1)现从乙厂家试销的10天中随机抽取1天,求这1天的返利不超过160元的概率;(2)商场拟甲、乙两个厂家中选择一个长期销售,如果仅从日返利额的角度考虑,请利用所学的统计学知识为商场作出选择,并说明理由.【分析】(1)计算乙厂家10天中,获利不超过160元的天数,即可求出相应的概率;(2)计算甲、乙厂家每一天的销售的件数,根据件数,计算每一天的获利,做出选择即可.【解答】解:(1)乙厂家,销售件数不超过40件,其获利就不超过160元,不超过40件的天数由5天,∴;(2),甲每天获利70+39.5×2=149(元),乙每天的获利=162(元),∵149<162,∴选择乙厂家.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单事件的概率期末专项练习
一.选择题(共10小题)
1.四张完全相同的卡片上,分别画有圆、平行四边形、等腰三角形、矩形,现从中随机抽取一张,恰好抽到轴对称图形的概率是()
A.B.C.D.1
2.在一个不透明的口袋中,红色,黑色,白色的小球共有50个,除颜色外其它完全相同,乐乐通过多次摸球试验后发现,摸到红色球,黑色球的频率分别稳定在和,则口袋中白色球的个数可能为()
A.20B.15C.10D.5
3.抛掷一枚质地均匀的硬币,“反面朝上”的概率为,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是()
A.每两次必有1次反面朝上
B.可能有50次反面朝上
C.必有50次反面朝上
D.不可能有100次反面朝上
4.计算机的“扫雷”游戏是在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.若游戏时先踩中一个小方格,显示数字3,它表示与这个方格相邻的8个小方格中埋藏着3颗地雷.如图,是小明某次游戏时随机点开一个方块所显示的数字,小明接下来在数字“2”的周围随机点开一个方块,没有踩中地雷的概率为()
A.B.C.D.
5.小明在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则最可能符合这一结果的实验是()
A.掷一枚骰子,出现4点的概率
B.抛一枚硬币,出现反面的概率
C.任意写一个整数,它能被3整除的概率
D.从一副扑克中任取一张,取到“大王”的概率
6.从﹣2、﹣1、0、1、2这5个数中任取一个数,作为函数y=mx2﹣4x+2的m值(m为常数),则使函数图象与x轴有两个交点的概率是()
A.B.C.D.1
7.2020年五一期间,某消费平台推出“购物满200元可参与抽奖”的活动,中一等奖的概率为,用科学记数法表示为()
A.2×10﹣4B.5×10﹣5C.5×10﹣6D.2×10﹣5
8.关于随机事件A发生的频率与概率,下列说法正确的是()
A.事件A发生的频率就是它发生的概率
B.在n次试验中,事件A发生了m次,则比值称为事件A发生的频率
C.事件A发生的频率与它发生的概率无关
D.随着试验次数大量增加,事件A发生的频率会在P(A)附近摆动
9.某商场开业举行庆祝活动,凡是到商场的人均可参加“意外惊喜”的游戏,游戏规则为:一个袋中装有白球和红球共20个(这些小球除颜色外都相同),任意摸出一个球,如果摸到红球就可获得商场免费提供的一份礼品.据统计,当天参加活动的人数约5000人,商场发放了1000份礼品,试估计袋中红球的个数为()
A.10B.8C.5D.4
10.从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a ﹣8=0有实数解,又要使关于x的分式方程+=3有正数解,则符合条件的概率是()
A.B.C.D.
二.填空题(共7小题)
11.一个不透明的袋中装有6个黄球,m个红球,n个白球,每个球除颜色外都相同.把袋中的球搅匀,从中任意摸出一个球,摸出黄球记为事件A,摸出的球不是黄球记为事件B,若P(A)=2P(B),则m与n的数量关系是.
12.已知a,b可以取﹣2,﹣1,1,2中的任意一个值(a≠b),则直线y=ax+b经过第一、
二、四象限的概率是.
13.有六张正面分别标有数字﹣1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,则抽取的卡片上的数字为不等式
组的解的概率为.
14.从﹣3,0,,1,2这5个数中任取一个数记为m,则能使二次函数y=(x﹣2)2+m 的顶点在x轴上方的概率为.
15.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到白球的频率稳定在20%附近,则估计口袋中的球大约有
个.
16.从﹣1,0,1,2,3这五个数中,随机取出一个数,记为a,那么使关于x的方程=1有解,且使关于x的一元二次方程x2﹣3x+a=0有两个不相等的实数根的概率为.
17.2020年3月12日是我国第42个植树节,某林业部门要考察一种幼树在一定条件下的移植成活率,幼树移植过程中的一组统计数据如表:
幼树移植数(棵)1002500400080002000030000
幼树移植成活数(棵)872215352070561758026430
幼树移植成活的频率0.8700.8860.8800.8820.8790.881
请根据统计数据,估计这种幼树在此条件下移植成活的概率是.(结果精确到0.01)三.解答题(共6小题)
18.在一个不透明的袋子里装有2个白球,3个黄球,每个球除颜色外均相同,现将同样除颜色外都相同的黄球和白球若干个(白球个数是黄球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是白球的概率是,求后放入袋中的黄球的个数.
19.某大型企业为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量使用情况(1)从该企业的员工中随机抽取1人,求该员工手机月平均使用流量不超过900M的概率.
(2)据了解,某网络运营商推出两款流量套餮,详情如下
套餐名称月套餐费(单位:元)月套餐流量(单位:M)
A20700
B301000流量套餐的规则是:每月1日收取套餐费.如果手机实际使用流量超出套餐流量,则需
要购买流量叠加包,每一个叠加包(包含200M的流量)需要10元,可以多次购买,如果当月流量有剩余,将会被清零.该企业准备订购其中一款流量套餐,每月为员工支付套餐费,以及购买流量叠加包所需月费用.若以人均所需费用为决策依据,该企业订购哪一款套餐更经济?
20.今年疫情期间,为防止疫情扩散,人们见面的机会少了,但是随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷,为此,孙老师设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种)进行调查.将统计结果绘制了下面两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次参与调查的共有人;在扇形统计图中,表示“微信”的扇形圆心角的度数为;其它沟通方式所占的百分比为.
(2)将条形统计图补充完整;
(3)如果我国有13亿人在使用手机.
①请估计最喜欢用“微信”进行沟通的人数;
②在全国使用手机的人中随机抽取一人,用频率估计概率,求抽取的恰好使用“QQ”的
概率是多少?
21.由于空气污染严重,某工厂生产了两种供人们外出时便于携带的呼吸装置,其质量按测试指标划分:指标大于等于88为优质产品,现随机抽取这两种装置各100件进行检测,检测结果統计如表:
测试指标分组[70,76)[76,82)[82,88)[88,94)[94,100]
频数装置甲81240328
装置乙71840296(1)试分别估计装置甲、装置乙为优质品的概率;
(2)设该厂生产一件产品的利润率y与其质量指标的关系式为,根
据以上统计数据,估计生产一件装置乙的利润率大于0的概率,若投资100万生产装置乙,请估计该厂获得的平均利润;
(3)若投资100万,生产装置甲或装置乙中的一种,请分析生产哪种装置获得的利润较大?
22.某商场为了吸引顾客,设立了一个如图可以自由转动的转盘,并规定:顾客每购买200元的商品就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、绿或黄色区域,顾客就可以获得100元、50元,20元的购物券,(转盘被等分成20个扇形),已知甲顾客购物220元.
(1)他获得购物券的概率是多少?
(2)他得到100元、50元、20元购物券的概率分别是多少?
(3)若要让获得20元购物券的概率变为,则转盘的颜色部分怎样修改?(直接写出修改方案即可).
23.疫情防控期间,随着人们健康意识的不断提升,洗手液需求量剧增.某商场计划引进多个品牌的洗手液进行销售.现邀请生产洗手液的甲、乙两个厂家进场试销10天.两个厂家提供的返利方案如下:甲厂家每天固定返利70元,且每卖出一件产品厂家再返利2元;
乙厂家无固定返利,卖出40件以内(含40件)的产品,每件产品厂家返利4元,超出40件的部分每件返利6元.两个厂家销售情况如下表:
甲厂家销量(件)3839404142
天数24211
乙厂家销量(件)3839404142
天数12241
(1)现从乙厂家试销的10天中随机抽取1天,求这1天的返利不超过160元的概率;
(2)商场拟甲、乙两个厂家中选择一个长期销售,如果仅从日返利额的角度考虑,请利用所学的统计学知识为商场作出选择,并说明理由.。