材料磨损失效分析简述

合集下载

工程力学中的材料损伤和磨损分析

工程力学中的材料损伤和磨损分析

工程力学中的材料损伤和磨损分析在工程领域中,材料的损伤和磨损是一个不可忽视的问题。

它们不仅会影响到设备的性能和寿命,还可能导致安全隐患和经济损失。

因此,深入研究工程力学中的材料损伤和磨损现象,对于提高工程结构的可靠性和耐久性具有重要意义。

材料损伤是指材料在外部载荷、环境等因素的作用下,其内部微观结构发生变化,导致性能下降的现象。

这种损伤可能是由于塑性变形、疲劳裂纹的萌生和扩展、蠕变等原因引起的。

塑性变形是材料损伤的常见形式之一。

当材料受到的应力超过其屈服强度时,就会发生塑性变形。

在塑性变形过程中,材料的晶粒会发生滑移和孪晶,导致晶体结构的破坏和位错的积累。

随着塑性变形的增加,材料的强度和硬度可能会提高,但同时其韧性和延展性会下降。

疲劳裂纹的萌生和扩展也是导致材料损伤的重要原因。

在交变载荷的作用下,材料表面或内部的微观缺陷处会产生应力集中,从而引发疲劳裂纹。

这些裂纹会随着载荷循环次数的增加而逐渐扩展,直到材料发生断裂。

疲劳损伤是许多机械零部件失效的主要原因,如飞机发动机的叶片、汽车的传动轴等。

蠕变是指材料在高温和恒定载荷作用下,随时间的延长而发生缓慢塑性变形的现象。

蠕变会导致材料的强度降低、尺寸变化,甚至会引发结构的破坏。

在航空航天、能源等领域,高温环境下的材料蠕变问题尤为突出。

与材料损伤密切相关的是材料的磨损。

磨损是指材料表面在相对运动过程中,由于摩擦和机械作用而导致的材料损失现象。

磨损的类型多种多样,常见的有粘着磨损、磨粒磨损、疲劳磨损和腐蚀磨损等。

粘着磨损通常发生在两个接触表面在高压力和相对滑动速度较低的情况下。

由于表面的微观凸峰接触,局部产生高温和高压,导致材料发生粘着和转移,从而形成磨损。

磨粒磨损则是由于硬颗粒或硬突起物在材料表面刮擦和切削而引起的磨损。

这种磨损在矿山机械、农业机械等领域较为常见。

疲劳磨损是在循环接触应力的作用下,材料表面或亚表面产生疲劳裂纹,并不断扩展最终导致材料剥落的磨损形式。

材料失效分析

材料失效分析

材料失效分析——金属的疲劳破坏1.1材料失效简介材料失效分析在工程上正得到日益广泛的应用和普遍的重视。

失效分析对改进产品设计、选材等提供依据,并可防止或减少断裂事故的发生;可以提高机械产品的信誉,并能起到技术反馈作用,明显提高经济效益。

大力开展失效分析研究,无论对工业、民生、科技发展,都具有极其重要的作用。

所谓失效——主要指机械构件由于尺寸、形状或材料的组织与性能发生变化而引起的机械构件不能完满地完成指定的功能。

亦可称为故障或事故。

一个机械零部件被认为是失效,应根据是否具有以下三个条件中的一个为判据:(1)零件完全破坏,不能工作;(2)严重损伤,继续工作不安全;(3)虽能暂时安全工作,但已不能满意完成指定任务。

上述情况的任何一种发生,都认为零件已经失效。

机械零部件最常见的失效形式有以下几种: 1.断裂失效:通常包括塑性(韧性)断裂失效;低应力脆性断裂失效;疲劳断裂失效; 蠕变断裂失效;应力腐蚀断裂失效。

2.表面损伤失效:通常包括磨损失效;腐蚀失效;表面疲劳失效 3.变形失效:包括塑性变形失效;弹性变形失效,同一种零件可有几种不同失效形式。

一个零件失效,总是由一种形式起主导作用,很少以两种形式主导失效的。

但它们可以组合为更复杂的失效形式,例如腐蚀磨损、腐蚀疲劳等。

2.1疲劳破坏飞机、船舶、汽车、动力机械、工程机械 、冶金、石油等机械以及铁路桥梁等的主要零件和构件,大多在循环变化的载荷下工作,疲劳是其主要的失效形式。

金属疲劳是指材料、零构件在循环应力或循环应变作用下,在一处或几处逐渐产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程。

当材料和结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料和结构的破坏现象,就叫做金属的疲劳破坏。

2.2疲劳断裂的特征 1、疲劳断裂应力1σ(周期载荷中的最大应力 max σ)远比静载荷下材料的抗拉强度b σ低,甚至比屈服强度s σ也低得多。

第6章 磨损与腐蚀失效分析汇总

第6章 磨损与腐蚀失效分析汇总

金属表面 发生局部 塑性变形
磨粒嵌入金属 表面,切割金 属表面
表面被 划伤
特点 • 普遍存在于机件中; • 磨损速度较大,0.5~5 μm/h 防止措施 • 提高表面硬度(从选材方面); • 减少磨粒数量(从工作状况方面)。
(3)疲劳磨损的特征及判断。 它会引起表面金属小片状脱落,在金属表 面形成一个个麻坑,麻坑的深度多在几微 米到几十微米之间。 特点 产生接触疲劳的零件表面上出现许多针状 或痘状的凹坑,称麻点,故得名麻点磨损, 亦称疲劳磨损。 接触疲劳是裂纹形成和扩展的过程。
• 在化工、石油化工、轻工、能源、交通等 行业中,约60%的失效与腐蚀有关。化工与 石油化工行业腐蚀失效所占比例更高一些。 如近年来(1995 ~ 2000年)国内先后四次对石 化企业的压力容器使用情况进行调查,其中 对失效原因调查统计认为,在使用中因腐蚀 产生严重缺陷及材质劣化,是近年来引起容 器报废的主要原因。
6.2 腐蚀失效分析
6.2.1 腐蚀及腐蚀失效 1. 腐蚀的概念
腐 蚀 介 质
耐 蚀 金 属
(1)腐蚀的定义。 • 金属与环境介质发生化学或电化学作用,导致金 属的损坏或变质。OR在一定环境中,金属表面或界 面上进行的化学或电化学多相反应,结果使金属转 入氧化或离子状态。 (2)腐蚀介质。 • 通常不把所有的介质都称为腐蚀介质。例如,空 气、淡水、油脂等虽然对金属材料均有一定的腐蚀 作用,但并不称为腐蚀介质。一般仅把腐蚀性较强 的酸、碱、盐的溶液称为腐蚀介质。
• 腐蚀不仅损耗了地球的资源,而且因腐蚀而造成 的生产停顿、产品质量下降,甚至人身事故等损 失,更是无法估量。分析、材料腐蚀及控制的研究 给予了前所未有的关注。 (2)腐蚀介质。 • 通常不把所有的介质都称为腐蚀介质。例如,空 气、淡水、油脂等虽然对金属材料均有一定的腐蚀 作用,但并不称为腐蚀介质。一般仅把腐蚀性较强 的酸、碱、盐的溶液称为腐蚀介质。

材料的磨损失效分析论文

材料的磨损失效分析论文

材料的磨损失效分析论文摘要:磨损失效是各种机械设备和工业系统中经常面对的问题,工程材料的磨损失效分析研究已经成为材料科学领域中的一个重要分支。

本文主要从材料磨损失效的定义、磨损机理、影响因素等方面进行论述,同时也介绍了各种常用的磨损试验和磨损机制的分析方法。

一、引言材料磨损失效是材料科学领域中的关键问题之一,也是各种机械设备和工业系统中经常面对的问题。

磨损失效对于材料的性能、寿命以及工程系统的运行稳定性等都有着重要的影响。

因此,材料的磨损失效分析研究已经成为材料学家和工程师们在实践中面对的一个重要课题。

二、定义磨损失效是指材料表面经过一段时间的磨擦、摩擦或冲击等作用后,发生的表面金属被剥蚀、脱落或破裂等现象。

磨损失效的产生会引起零件的尺寸变化、功能失效等,并且会导致机械设备的整体质量下降、效率降低,甚至直接影响设备的安全性。

三、磨损机理材料的磨损失效产生的原因是多种多样的,主要包括机械磨损、化学磨损和疲劳磨损等。

机械磨损:是指当材料表面受到摩擦或磨擦力的作用时,表面会出现磨损或剥落,这是最常见的磨损机理之一。

化学磨损:是指当材料表面发生化学反应时,会产生一定的磨损现象。

例如,酸性溶液中的金属腐蚀就是一种典型的化学磨损现象。

疲劳磨损:是指当材料表面受到重复的载荷作用时,会产生一定的磨损现象。

例如,当材料表面反复承受机械振动或冲击时就会产生疲劳磨损现象。

四、影响因素磨损失效的产生不仅与材料本身的性能有关,还与外界环境、工作条件等相关因素有关。

主要影响因素包括:材料硬度:材料硬度高时,耐磨性能较强,相反,材料硬度低则耐磨性能较弱。

材料的组织结构:材料的组织结构越细致,材料的强度和硬度越高,抗磨性能也就越强。

载荷和速度:当外部载荷或速度增大时,耐磨性能也会随之减弱。

工作环境:物理性能、化学性质以及工作环境的pH值等因素都会对材料的耐磨性能产生影响。

五、磨损试验磨损试验是磨损失效分析的重要部分,目的在于了解材料的磨损失效性能,并开展磨损机理和降低磨损失效的研究。

发动机主要零件磨损失效分析

发动机主要零件磨损失效分析
Байду номын сангаас
()温 度 是粘着 磨损最 重 要 的因素 。活塞环 区 2 域温 度 的升高 使得润 滑 油的粘 度降低 ,润 滑条件 变
坏, 这样就 容 易产 生粘 着接触和 活塞 卡死 的危 险 。 ( )发动机 转 矩 ( 3 即平 均有 效压 力 ) 加及 转速 增
增 加 ( 即活 塞速 度 增加 )会 导致 温 度提 高 而使 磨 也 , 损 增加 。 ()汽 油机 的浓混 合气会 造成 润滑 油大量 稀 释 4 和 粘度 的下降 ,从 而减 小流体 动 力润滑 的范 围 。例 如, 节气 门使 用不 当会 显著地 增加粘 着磨 损 。 而稀 混 合 气会 产生 过 多的氧 ,特别 是在 柴油机 中会使 与 燃 气接触 的零件 表面 氧化 ,促 使造成 腐蚀 磨损 的酸 性 燃 烧产 物 的形 成 。 ( )内燃机在 起动 时 由于润 滑条件 不好 ,此 时 5
因而它与缸壁 、 活塞环的温度有关 , 也与冷介质的温
度有关 。
凸轮 挺柱 摩 擦 副在 很 高 的接 触 压 力 下 工作 , 其 磨损 形式 主要 有以下 几种 : 1 着 磨损 。凸轮 挺 柱摩 擦 副 的粘 着磨 损 通常 . 粘 由瞬 时高温 引起 。 在整 个挺 柱升 起 的过程 中 , 表面 两
活塞 和活塞 环对 缸套 的磨擦 几乎 为干摩 擦 ,以致 造
封 不严之处 时 ,大量 含有 灰尘 的空气 未 经滤清 器 即
被 吸 入气缸 中 , 造成 磨损 。 故障 之处在 于 进气管 与气 缸体 贴合平 面 上有伤 痕 , 其 间隔进 入异 物 , 气管 或 进
垫损 坏或进 气管 座 固定螺 栓折 断 、 动等 , 松 都会 造 成
四、 装配 不 当

第十二讲 腐蚀和磨损失效分析

第十二讲 腐蚀和磨损失效分析

刹车片宏观图片
(制动盘为灰铸铁) (制动片为钢纤维增强复合材料)
制动盘的微观形貌图
ZHENGZHOU UNIVERSITY
③疲劳磨损的特征及判断 表面金属小片状脱落,在金属表面形成一个个麻坑,在
麻坑的前沿或者根部,有表面疲劳裂纹或者二次裂纹。
齿面硬度偏低和冶金缺陷导致的接触疲劳 (大量的麻坑、局部剥落和磨损痕迹)
2
ZHENGZHOU UNIVERSITY
(1)磨损失效分析的步骤 ①现场调查及宏观分析:详细了解零件的服役条件和使用工 况,了解零件的设计依据、选材依据及制造工艺。确定分析 部位并提取分析样品,包括摩擦副、磨屑、润滑剂及沉积物 等。记录表面划伤、沟槽、结疤、蚀坑、剥落、锈蚀及裂纹 等形貌特征,初步判断磨损失效的模式。 ②测量磨损失效情况 :确定磨损表面的磨损曲线,查明磨损 变化规律、最大磨损量及其所处部位。确定磨损速率,分析 磨损情况是否正常,是否属于允许的范围。
连铸辊
浆料循环泵
2
冲蚀磨损宏观图片
ZHENGZHOU UNIVERSITY
布料溜槽宏观图片
连铸辊宏观图片
ZHENGZHOU UNIVERSITY
5.1.3 磨损失效的预防措施 (1)改进结构设计及制造工艺
摩擦副的结构要有利于摩擦副间表面保持膜的形成和 恢复、压力的均匀分布、摩擦热的散失和磨屑的排出,以 及防止外界磨料、灰尘的进入等。
2
粘着磨损宏观图片
ZHENGZHOU UNIVERSITY
辊子和辊道粘着磨损宏观图片
ZHENGZHOU UNIVERSITY
②磨料磨损的特征及判断 表面存在与滑动方向或硬质点运动方向相一致的沟槽
或划痕。在磨料硬而尖锐的条件下,如果材料塑性较好, 磨损表面的沟槽清晰、规则、沟边产生毛刺;如果韧性较 差,沟槽比较光滑。

工程材料失效分析方案

工程材料失效分析方案

工程材料失效分析方案背景工程材料在使用过程中可能会发生失效,这不仅会影响项目的进度和质量,还会导致经济损失。

因此,需要建立一套完整的工程材料失效分析方案,对失效原因进行深入研究,提高工程材料的使用效率和质量。

目的本文旨在建立一套全面的工程材料失效分析方案,从失效原因、检测方法和预防措施等方面进行探讨,以提高工程材料的使用效率和质量,减少因材料失效而导致的风险和损失。

失效原因工程材料失效的原因很多,常见的有以下几种:1.化学腐蚀:当工程材料与环境中的化学物质发生反应时,可能会导致材料的腐蚀和失效。

2.热失效:高温会使材料的结构发生变化,从而影响其性能和使用寿命。

3.疲劳失效:工程材料在长时间的交替载荷作用下,可能会产生疲劳裂纹,导致材料失效。

4.水蚀划伤:工程材料在长时间的水蚀和划伤作用下,可能会导致表面的蚀刻和严重磨损,从而失效。

5.震动磨损:当工程材料在振动环境下使用时,可能会出现局部疲劳、磨损和裂纹等问题,导致失效。

6.动态荷载失效:当工程材料暴露在动态荷载下时,可能会造成材料变形、疲劳和断裂等失效现象。

以上仅列出了部分失效原因,实际上还有很多其他的因素可能会导致工程材料失效,因此,我们需要建立一套完整的分析方案和检测方法。

检测方法为了准确判断工程材料是否遭受了失效,需要采用一些科学的检测方法,这样可以大大提高失效分析的准确性和可靠性。

以下是几种常用的检测方法:1.金相分析:通过对工程材料的金相组织进行观察和分析,可以推断出材料的组成、结构和工艺特征,从而判断材料是否发生了失效。

2.热失效检测:通过显微结构和物理性能测试等方法,揭示高温下材料的变形和失效现象。

这种检测方法适用于温度较高的材料,如钢材、合金等。

3.疲劳测试:通过在工程材料上施加循环载荷,模拟实际使用环境,从而判断材料的疲劳性能和使用寿命。

疲劳测试可分为高周疲劳和低周疲劳两种。

4.化学分析:通过对环境中的化学成分进行测试,推断出材料是否与环境发生了化学反应,从而判断材料的耐腐蚀性。

磨损失效分析

磨损失效分析

粘着磨损模型
类型
破坏现象
破坏原因
轻微磨损 涂抹 擦伤 撕脱 咬死
剪切破坏发生在粘着结合 面上,表面转移的材料极 轻微。
剪切破坏发生离粘着结合 面不远的软金属层内,软 金属涂抹在硬金属表面。
粘着结合强度比摩擦副的基体金 属都弱。
粘着结合强度大于较软金属的剪 切强度。
剪切发生在较软金属的亚 表层内,有时硬金属表面 也有划痕。
磨损失效分析
磨损失效分析
• 磨损失效----就是由于材料磨损引起的机械产品 丧失应有的功能。
• 特点: 断裂失效:突发性 后果灾难性 有一定偶然性 磨损失效:渐进性 非灾难性 必然性
• 磨损失效分析: • 重要性往往被忽视
意义重大-----具有重大的经济效益和社会效益。 美国曾有统计:每年因磨损造成的经济损失占 其国民生产总值的4%。在我国,磨损造成的经 济损失在1000亿人民币以上。
第一节 摩擦和磨损的基本概念
• 当两个相互接触的物体或物体与介质之间在外 力作用下,发生相对运动,或者具有相对运动 的趋势时,在接触表面上所产生的阻碍作用称 为摩擦。这种阻碍相对运动的阻力称为摩擦力。
• 摩擦按照接触面运动方式的不同,可以分为滑 动摩擦、滚动摩擦。
• 相互接触的一对金属表面相对运动时,表面金 属不断发生损耗或产生残余塑性变形,使金属 表面状态和尺寸改变的现象称为磨损。
过屈服极限,因而发生局部塑性变形, 引起残余应力。 • 热应力—两接触面相对滑动时要产生摩 擦,使接触区局部温度瞬时升高。 • 润滑 • 接触面的几何形状
第四节 磨损过程
磨损过程大致可分成三个阶段。
第五节 粘着磨损
• 相对运动的物体接触表面发生了固相粘 着,使材料从一个表面转移到另一个表 面的现象,称为粘着磨损。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料磨损失效分析简述摘要:综述了磨损失效的常见类型及该磨损失效的的影响因素,包括材料的磨损失效过程,指出了降低材料磨损失效的措施,为预防工程领域材料的磨损失效提供了方向。

关键词:磨损失效;类型;影响因素;过程;预防措施The Review Of Wear Failure Analysis In Materials Abstract:The common types and its influencing factors was summarized. Including the process of wear failure of materials.And the measures of how to reduce wear failure was pointed out.Pointed directions how to preventing wear failure in engineering material field.Key words:wear, failure; classify; influencing factor;process; precautionary measures引言磨损失效是机械设备和零部件的三种主要失效形式———断裂、腐蚀和磨损失效形式之一。

世界一次能源的三分之一、机电设备的70%—80%是由于各种形式的磨损而产生故障[1]。

磨损不仅造成大量的材料浪费,而且可能直接导致灾难性后果。

因此,研究磨损失效的原因,制定抗磨对策、减少磨损耗材、提高机械设备和零件的安全寿命是极为有必要的。

1 常见磨损失效类型及其影响因素1.1粘着磨损当一对磨擦副的两个磨擦表面的显微凸起端部相互接触时,即使法向负载很小,但因为凸起端部实际接触的面积很小,所以接触应力很大。

如果接触应力大到足以使凸起端部的材料发生塑性变形而且接触表面非常干净,彼此又具有很好的适应性,那么在磨擦界面上很可能形粘着点。

当磨擦面发生相对滑动时,粘着占在剪应力作用下变形以致断裂,使材料从一个表面迁移到另一个表面。

通常,金属的这种迁移是由较软的磨擦面迁移到较硬的磨擦面上。

根据磨损试验后对磨擦面进行金相检验发现,迁移的金属往往呈颗粒状粘附在表面[2]。

这是反复的滑动磨擦,使粘着点扩大并在剪应力作用下在粘着点后根部开裂,进而形成磨粒的结果。

这就是粘着磨损。

粘着磨损过程十分复杂,以上所述只是对复杂现象作了简单的描述。

影响粘着磨损性能因素有[3]:(1)润滑条件或环境。

在真空条件下金属的磨损极为严重。

除了金以外,在大气条件下,金属经过切削或磨削加工,洁净的表面产生氧化膜,它在防止粘着磨损方面有重要的作用。

而良好的润滑条件更是降低粘着磨损的重要保障。

(2)摩擦副的硬度。

材料的硬度越高,耐磨性越好。

材料体系一定时,可采用涂层或其他表面处理工艺来降低粘着磨损。

(3)晶体结构和晶体的互溶性。

其它条件相同时,晶体结构为hcp的材料摩擦系数最低,fcc次之,bcc最高。

冶金上互溶性好的金属摩擦副摩擦系数和磨损率高。

(4)温度。

温度对材料粘着磨损的影响是间接的。

温度升高,材料硬度下降,摩擦副互溶性增加,磨损加剧。

1.2 磨粒磨损在磨擦系统中,经常见到另一种磨损形式是磨粒磨损。

磨粒磨损的现象很多,归纳起来,主要有以下两种形式。

第一种工是在工业生产中常常遇到的,如切削和磨削加工。

磨粒可嵌在基体上,如磨粒嵌埋在树脂中的砂轮用来磨削金属表面。

每个磨粒在被磨金属表面切割出一条沟槽,将金属从表面切除。

通常,磨粒材料具有高的强度。

当磨粒和金属表面是干摩擦时,从金属表面被切削的颗粒呈直削片或卷曲状削片;当表面被有效润滑时,磨粒被钝化后,金属表面主要发生变形而不是被切削。

在一般的装置中,这两种过程都同时发生。

粘着磨粒磨损中也起一定作用。

当磨粒和洁净的金属表面接触时,使发生向磨粒表面的金属迁移,这样便减缓了磨粒磨损的进程。

第二种形式是具有高强度的颗粒,如二氧化硅,氧化铝和碳化硅,进入两个磨擦面之间,使两个磨擦面都被切割成沟槽。

用氧化铝,氧化镁抛光金属表面就是这种类型的磨损。

通常,在磨粒磨损过程中,磨粒愈来愈小[4]。

当然,抛光是有益的磨损,但是有些磨粒磨损却十分有害。

如磨粒进入啮合的齿面,将使齿面磨损而失效。

如磨粒进入轴承磨擦面,将使轴承元件磨损而导致轴承失效。

影响磨粒磨损性能因素有[5]:(1)磨粒硬度。

对均质材料而言,其影响程度以磨粒硬度Ha和材料硬度Hm的比值来标志。

当Ha/Hm<1.0时,为软磨损,磨损速率很低。

当Ha/Hm<1.2时,继续增加磨粒硬度意义不大。

当1.0< Ha/Hm<1.2,其磨损速率随Ha/Hm的增加几乎是线性的。

(2)磨粒形状和粒度。

当磨粒在某一临界尺寸一下时,材料的体积磨损率随尺寸增加按比例急剧增加;当超过这一尺寸是,磨损增大的幅度显著降低。

磨粒形状对磨粒磨损过程有明显影响。

尖锐性磨粒磨损速率最大,圆形磨粒的最小。

(3)材料力学性能和显微组织。

在同样硬度条件下,奥氏体、贝氏体的耐磨性优于珠光体和马氏体。

夹杂物和内部缺陷会使磨损过程中更容易产生剥落、开裂。

(4)工况和环境。

一般情况下,湿磨损由于能起到润滑和冷却的作用,磨损率少有下降。

但在腐蚀介质及高温条件下的磨粒磨损过程会产生很大的变化,磨损速率会大幅增加。

1.3冲蚀磨损冲蚀(Erosion)有咬蚀的含意。

但一般是指由外部机械力作用下使用材料被破坏和磨去的现象。

这里讲的外部力,通常是由于固体向固体表面液体向固体表面或气体向固体表面或气体向固体表面不断地进行动态撞击而产生的。

颗粒A以一定速度向材料B表面撞击,B表面被磨去一些材料,在材料B表面留下一个凹坑。

颗粒A可能具有不同的成份和以不同形式存在。

影响磨粒磨损性能因素有[6]:(1)冲蚀速度。

对铝、铜、软钢等延性材料进行研究发现, 在冲蚀速度< 10m / s时,随冲角α增大,材料的冲蚀磨损率ε不断增加。

(2)冲蚀角度。

最小冲蚀率在90°冲角处。

当冲蚀角为20°时,相当于一种切削过程,也称切削磨损。

1.4 疲劳磨损当两种材料相对运动(滚动或滑动)时,接触区受到循环应力的反复作用,当循环应力超过材料接触疲劳强度,接触表面或表面下某处形成疲劳裂纹,造成表面层局部脱落的现象称为疲劳磨损。

这种损伤经历两个阶段:材料表面或表层裂纹的萌生和裂纹的扩展。

目前,一般认为疲劳裂纹的萌生是塑性变形的结果,但是这种塑性变形仅仅出现在亚微观范围内。

在滚动元件中产生塑性变形主要是由一起材料表面或表层的不完整性[7]。

在滚动元件的表面,即使加工得非常光滑也存在着显微凹凸,显微凸起端部开始接触承压时,也只需要很小的负载就会产生塑性变性,这种变形对滚动元件的运行性能几乎没有什么影响,但是塑性变形功对引起表面疲劳是重要的。

影响疲劳磨损的主要因素:零件表面硬度越高,产生疲劳裂纹的危险性越小;减少表面粗糙度,可改善零件疲劳寿命;高粘度的润滑油能提高抗疲劳磨损的能力,有利于提高疲劳寿命等[8]。

1.5 腐蚀磨损当一对磨擦副在一定的环境中发生磨擦时,在磨擦面上便发生与环境介质的反应并形成反应产物,这些反应产物将影响滑支和滚动过程中表面磨擦特性。

环境介质和磨擦面的交互作用有许多机制。

活性或腐蚀性介质的磨擦面反应后产生的腐蚀产物,和表面的结合性能一般都较差,进一步磨擦后,这些腐蚀产物就会被磨去。

这样重复的现象就叫做腐蚀磨损。

这种交互作用是循环的和逐步的。

在第一阶段是两个磨擦表面和环境发生反应,反应结果是在两个磨擦表面形成反应产物,在第二阶段是两个磨擦表面相互接触的过程中,由于反应产物被磨擦和形成裂纹,结果反应产物就被磨去。

一旦反应产物被磨去,就暴露出未反应表面,那么就又开始了腐蚀磨损的第一阶段[9]。

影响腐蚀磨损的主要因素:腐蚀介质(如酸、碱、盐)的性质、零件表面氧化膜的性质和环境温度与湿度等。

1.6 微动磨损当两个承载的相互接触表面经历相对往复切风吹草动振动时,由于振动或循环应力的作用产生所谓的“滑移”而导致微动损伤。

通常,切向的相对运动量很小,而且难以测定。

这种微动损伤过程有三个主要特点:一是在大多数情况下,“滑移”仅发生在相互接触部分,根据许多微动过程的实例可知“滑移”的幅值约为2~20um,相对切向运动是不规则的。

但是在许多试验研究中,切向振动是受迫的,振幅也较大,并且具有往复磨损的特征。

二是两个磨擦面始终相互紧密接触,磨屑总是被裹夹在接触面之间。

磨擦面和环境的接触受到了限制。

但是当振幅增大时就会失去这个特点。

第三,由于循环应力作用在磨擦面上,所以形成了疲劳裂纹核心。

一对磨擦副表面在以上条件下造成的损伤,就叫做微动磨损。

如钢丝绳之间的相互磨擦过程。

影响微动磨损的因素主要与摆动角度和负荷有关,也和重复次数相关[10]。

2降低磨损失效的措施[11]2.1材料的选择材料的选择基本原则是适用性、可得性和经济性。

当然在选择时还应该充分考虑到所处的工况环境对零件抗磨性的影响。

根据失效分析的结果,材料的性能和表面形态对零件的磨损影响很大。

提高耐磨性和韧性可以初步确定为重点考虑的问题。

可通过各种表面强化技术,如表面渗碳、渗合金元素等方法,提高零件表面硬度,使表面硬度尽可能超过磨料的硬度,提高耐磨性。

2.2 改进结构设计和表面几何特征磨损失效受结构的影响很大,包括整机的结构和零件的形状尺寸、配合接触方式、特殊的工艺方法等。

为此,需要考虑磨物的接触状态,本质是力的作用和力流方向的改善问题。

零件接触表面的特征是影响摩擦的主要因素,因此,改善接触表面的光洁度、粗糙度是主要的手段,同时还要对接触表面的几何形状、尺寸等都要进行合理设计,或采取相适宜的加工工艺。

2.3改善工况空气中的灰尘颗粒、粉末和液体气泡等浸入摩擦表面会加速磨损;各种酸性、碱性或盐类化学物质的浸入会加速零件的氧化和腐蚀磨损,因此,要尽可能地减少这类物质的混入,为接触表面提供优良的工作环境。

同时,要防止机械长时间在高温、重载、高速的工况下工作。

2.4 合理的维修保养根据工艺合理、经济合算、生产可行的原则,合理进行维修,保证维修质量。

建立合理的维护保养制度,严格执行技术保养和使用操作规程,是保证机械设备工作的可靠性和提高使用寿命的重要条件。

3 磨损失效过程图 1 磨损量与时间(磨损行程)曲线磨损失效一般分为三个阶段[12]: 跑合阶段(磨合阶段):新的摩擦副在运行初期,由于对偶表面的表面粗糙度值较大,实际接触面积较小,接触点数少而多数接触点的面积又较大,接触点粘着严重,因此磨损率较大。

但随着跑合的进行,表面微峰峰顶逐渐磨去,表面粗糙度值降低,实际接触面积增大,接触点数增多,磨损率降低,为稳定磨损阶段创造了条件。

为了避免跑合磨损阶段损坏摩擦副,因此跑合磨损阶段多采取在空车或低负荷下进行;为了缩短跑合时间,也可采用含添加剂和固体润滑剂的润滑材料,在一定负荷和较高速度下进行跑合。

相关文档
最新文档