数学建模大学
数学建模大学课件

数学建模示例
1. 椅子能在不平的地面上放稳吗
问题分析 通常 ~ 三只脚着地 放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚
模 连线呈正方形;
型 假
• 地面高度连续变化,可视为数学上的连续
设 曲面;
• 地面相对平坦,使椅子在任意位置至少三
只脚同时着地。
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来
uk, vk=0,1,2;
vk~第k次渡船上的随从数
k=1,2,
dk=(uk , vk)~决策 D={(u , v) u+v=1, 2} ~允许决策集合
sk+1=sk +(-1)kdk
~状态转移律
多步决策 求dkD(k=1,2, n), 使skS, 并按
问题
转移律由 s1=(3,3)到达 sn+1=(0,0).
• 椅子位置 利用正方形(椅脚连线)的对称性
用(对角线与x轴的夹角)表示椅子位置 B ´ B A ´
• 四只脚着地 椅脚与地面距离为零
距离是的函数
C
四个距离
两个距离
(四只脚) 正方形
C´
对称性
A
O
x
D´ D
A,C 两脚与地面距离之和 ~ f() B,D 两脚与地面距离之和 ~ g()
正方形ABCD 绕O点旋转
y
3
s1
2
d1
1 d11
评注和思考
0sn+1 1
2
3x
规格化方法,易于推广 考虑4名商人各带一随从的情况
三 数学建模概论
• 1. 数学模型与数学建模 • 2. 数学建模的一般步骤 • 3. 数学模型的分类 • 4. 数学建模与能力的培养 • 5. 一些简单实例 • 6.怎样学习数学建模
大学生数学建模练习题

大学生数学建模练习题一、线性规划问题假设你是一家制造公司的经理,公司生产两种产品A和B。
生产一个产品A需要3小时的机器时间和2小时的人工时间,产品B需要2小时的机器时间和4小时的人工时间。
公司每天有24小时的机器时间和40小时的人工时间可用。
如果产品A的销售价格是50元,产品B是80元,如何安排生产计划以最大化利润?二、排队论问题一家银行有3个服务窗口,平均每天接待200名顾客。
每名顾客的平均服务时间是5分钟。
假设顾客到达银行是随机的,服从泊松分布,服务时间服从指数分布。
请计算银行的平均排队长度和顾客的平均等待时间。
三、库存管理问题一家零售商销售一种季节性产品,该产品的需求量在一年中波动很大。
产品的成本是每个20元,存储成本是每个每年2元,缺货成本是每个10元。
如果零售商希望在一年内保持至少95%的服务水平,应该如何确定最优的订货量和订货频率?四、网络流问题在一个供水系统中,有四个水库和五个城市。
水库1和2可以向城市A 供水,水库2和3可以向城市B供水,水库3和4可以向城市C和D供水。
每个水库的供水能力不同,每个城市的需求也不同。
如果需要确保所有城市的需求都得到满足,如何确定最优的供水方案?五、预测问题给定一个公司过去5年的季度销售额数据,使用时间序列分析方法预测下个季度的销售额。
请考虑季节性因素和趋势,并给出预测的置信区间。
六、优化问题一个农场主有一块矩形土地,打算围成一个矩形的牧场。
如果围栏的总长度是固定的,比如400米,如何确定牧场的长和宽,使得牧场的面积最大?七、多目标决策问题一家公司需要在多个项目中做出选择,每个项目都有不同的预期收益、风险和实施时间。
如果公司需要在风险和收益之间做出权衡,并且希望项目尽快完成,如何使用多目标决策方法来选择最合适的项目组合?通过解决这些练习题,大学生可以加深对数学建模的理解,提高分析和解决实际问题的能力。
希望这些练习题能够帮助学生在数学建模的道路上更进一步。
大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字第1篇一、小学数学建模_数学建模_已经越来越被广大教师所接受和采用,所谓的_数学建模_思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为_数学建模_,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。
叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。
二、小学数学建模的定位1.定位于儿童的生活经验儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。
_数学建模_要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。
同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的.挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。
2.定位于儿童的思维方式小学生的特点是年龄小,思维简单。
因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。
实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。
我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使_数量关系_与数学原型_一乘两除_结合起来,并且使学生利用抽象与类比的思维方法完成了_数量关系_的_意义建模_,从而创建了完善的认知体系。
大学《数学建模》考试题目汇总

答案:
解:设供应点 Ai 供应需求点 B j 的物资的数量为 xij (i 1,2,3; j 1,2,4) ,
则可建立运输问题的数学模型:
min Z x11 8x12 5x13 11x14 3x21 4x22 2x23 5x24 7x31 10x32 9x33 6x34
x11 x12 x13 x14 7 x11 x21 x31 3
3.2030 级新生入学后,大数据学院共有在校学生 600 人,其中数据分析及大数据 专业 320 人,人工智能专业 200 人,统计分析专业 80 人。要在全院推选 25 名学 生组成学生代表团,试用下面的方法分配各专业的学生代表: (1)按比例分配取整的方法,剩下的名额按惯例分配给小数部分较大者; (2)用 Q 值方法进行分配
9. 某厂生产甲、乙、丙三种产品,消耗两种主要原材料 A 与 B。每单位产品生 产过程中需要消耗两种资源 A 与 B 的数量、可供使用的原材料数量以及单位产 品利润如下表:
甲
乙
丙
原料数量
A
60
30
50 4500 公斤
B
30
40
50 3000 公斤
产品利润 400 元 300 元 500 元
甲、乙、丙三种产品各生产多少使总利润最大? (1)建立线性规划问题数学模型。 (2)写出用 LINGO 软件求解的程序。 答案:(数据乘 10)
4.某商店每天要订购一批牛奶零售,设购进价 c1 ,售出价 c2(c2 c1) ,当天销售不 出去则削价处理,处理价 c3(c3 c1) 并能处理完所有剩余的牛奶。如果该商店每 天销售牛奶的数量 r 是随机变量,其概率密度函数为 f (r) 。如果商店每天订购牛 奶的数量为 n , L 该商店销售牛奶每天所得利润,则 L 是 r 与 n 的函数 L g(r) (1)建立利润函数 L g(r) ; (2)确定每天的购进量 n ,使该商店每天的期望利润最大。
数学建模 高校排名

.ቤተ መጻሕፍቲ ባይዱ35
.489
.146
.078
yb_rx
.777
.456
.001
.267
.150
jss
.599
.223
经检验 也符合一致性检验
根据对应指标间的关系相乘可得22项指标的权重系数:
={0.0483,0.0266,0.0146,0.0266,0.0146,0.0483,0.1732,0.0175,0.0374,0.034,0.0170,0.0162,0.0089,0.0049,0.0143,0.0079,0.0043,0.1362,0.1362,0.0844,0.0499,0.0779}
目前流行的大学排行榜把不同类型的院校用同一标准进行评价的做法并不恰当,应将综合型大学和应用型大学加以区别,按不同的标准分别排名。事实上,综合性大学和应用型院校的功能是不完全相同的。应用型大学除了传授和探索基础知识外,还要把基础理论转变为各个领域的应用知识,不能单纯用发表论文、著作来衡量其发展。在现有的排行体系下,应用型大学名次总是落后。一些应用型大学为了能挤进排行榜前列,不得不放弃原来的办学理念,转而向综合型大学发展。这种“拿苹果跟橘子比”的评价体系,并不利于大学的发展,也不利于人才培养和国家经济社会的发展。
gjjls_zs1
1.000
.896
gjjls_zs2
1.000
.841
gjjls_zs3
1.000
.881
gxjls_zs1
1.000
.878
gxjls_zs2
1.000
.915
gxjls_zs3
1.000
.943
gjjd_zs1
1.000
各高校数学建模网站及数学专业网站

各高校数学建模网站及数学专业网站各高校数学建模网站及数学专业网站[分享](排名不按先后顺序)各高校数学建模网站及数学专业网站北京市北京大学:/中国人民大学:/清华大学/info.asp北方交通大学:/depart/xyl/jigou/math/北京航空航天大学:/北京理工大学:/introduce/dept/xy11.htm#sx 北京科技大学:/北京化工大学:http://202.4.136.54/introduce/xinji.htm北京邮电大学:/yuanxi/introduce/lixueyuan/Science.HTM 北京师范大学:/首都师范大学:中央民族大学:/天津市南开大学:http://202.113.29.3/天津大学:天津工业大学:/#天津师范大学:/河北省河北大学:/cmc/河北工业大学:/河北科技大学:/河北师范大学:http://202.206.100.3/xi/math/index.htm唐山师范学院:/xssz.html廊坊师范学院:/zghb/%E5%BB%8A%E5%9D%8A%E5%B8%82/nfsfxy .htm河北经贸大学:/山西省山西大学:太原理工大学:/山西师范大学:http://202.207.174.174/太原师范学院:/#雁北师范学院:/index.asp忻州师范学院:/山西财经大学:/内蒙古自治区内蒙古民族大学:/sxxy.htm辽宁省辽宁大学:/lnudept/sx.html大连理工大学:/辽宁师范大学:/dandu/shuxue/index.htm沈阳师范学院:http://210.30.208.81/沈阳大学:/大连大学:http://202.199.158.8/chn/yxyl/index.htm渤海大学数学系:/depart/sxx吉林省吉林大学::/xx.htm延边大学:/department/teach/shuxue.htm东北师范大学:http://210.47.28.254吉林农业大学信息技术学院:/college/xx.htm 北华大学:/通化师范学院:/四平师范学院:/sxxy长春师范学院:/shuli/index.asp黑龙江省:/hmcm/黑龙江大学:/哈尔滨工业大学:/hmcm/哈尔滨工程大学:/齐齐哈尔大学:http://218.7.49.122佳木斯大学:/xy/index.html东北林业大学:/index.asp哈尔滨师范大学:哈尔滨学院:/homepage/index.html上海市复旦大学:/同济大学:/上海交通大学:华东理工大学:/yxdh/lxy/Math/Math.htm东华大学:/science/firstnew.aspx上海大学:/mathematics/math.htm华东师范大学:上海师范大学:http://202.121.48.88/mathsc/上海财经大学:/jcjx/index.htm江苏省:/practice/mcm.htm南京大学:/njuc/dep/shuxue/main/main.htm苏州大学:/东南大学:中国矿业大学:/frameset/jcxi/hemei/math/shushouye.ht m河海大学:/江南大学:/南京理工大学:/Index.htm南京气象学院:/SXX/南京师范大学:/徐州师范大学:/index.asp淮阴师范学院:盐城师范学院:/maths南通师范学院:淮阴工学院:/shuli/index.htm南京晓庄学院:/school淮海工学院:/shuli/index.htm浙江省浙江大学:/mmb/index.php浙江师范大学:/mcm/杭州师范学院:/lxy/index.asp杭州电子工业学院:/湖州师范学院:/new/shetuan/jianmo/index.htm温州大学:/wzu/html/compus_summ/college/cmis/maths /shxjm.htm绍兴文理学院:/lxcol/index.htm温州师范学院:/宁波大学:/allwebs/wwwlxy/安徽省安徽大学:http://210.45.211.128/皖西学院:/depart/math/中国科学技术大学:/安徽师范大学:/~math/阜阳师范学院:/ch2/page.php?para_str=NCwzLDIsMSwwLDAs MCwwLDAsMCwwLDA=安庆师范学院:http://210.45.168.5/sxjsjx/index.asp淮南师范学院:http://211.70.176.138/sxx/安徽工程科技学院:/index.html福建省厦门大学/chinese/student/shetuan/sxyyxh/maths/xxyan di/xxyuandi.htm华侨大学:/福州大学:/dimacs/default.htm福建师范大学:/math/泉州师范学院:http://210.34.120.1/xxgk/erxy.htm漳州师范学院:/maths/MATHS/MATHS.HTM集美大学:/jcb/江西省南昌航空工业学院:/南方冶金学院:/first/yxsz/lxy/index.htm江西师范大学:/jgsz/jx/sxyxxkxxy.htm上饶师范学院:/宜春学院:/fenyuanfc/lixueyuan/INDEX.HTM井冈山师范学院:/南昌大学:/ksljml/yxsz/slxy.htm山东省山东大学:/index.htm青岛海洋大学:/山东科技大学:/chinese/cindex.htm济南大学:/index1.php山东师范大学:/曲阜师范大学:/maths/index1.htm聊城师范学院:/德州学院:/烟台师范学院:/yuanxi/shuxue/index.htm临沂师范学院:烟台大学:/yuanxi/math/index/潍坊学院:/jxjg/xbsz1.htm青岛大学:/河南省郑州大学:/math/许昌学院:/xbsz/shuxue/南阳师范学院:/yuanxi/shuxue/Index.htm河南大学:http://202.196.101.23/河南师范大学:/math信阳师范学院:/shuxue/shuxue.htm安阳师范学院:/shezhi/yxsz.htm洛阳师范学院:/bmzy/sxxweb/商丘师范学院:/shuxuexi/sxindex.htm湖北省武汉大学/华中科技大学:/chinese/departments/dept_maths/index.h tm中国地质大学:/2003/yxsz/12shuli.htm武汉科技学院:/华中师范大学:/math/index.htm湖北大学:http://202.114.153.222/湖北师范学院:/黄冈师范学院:/shuxuexi/webs/index.htm荆州师范学院:湖北民族学院:/襄樊学院:/zyjx/zyjx.htm中南民族学院:/jsj/index.htm孝感学院:/sxx/三峡大学:/lxy/index.htm湖南省湘潭大学:/html/shuxuexi吉首大学:/shuji/湖南大学:/index.asp中南大学:/湖南城市学院:/shuxue.htm湖南师范大学:http://202.197.120.20/web/sj/index.htm岳阳师范学院:/xibu/sxxi/index.html衡阳师范学院:/wyds/math/mathi.htm长沙电力学院:/link/jxyx.htm湘潭师范学院:/home.asp长沙理工大学::81/xb/sxx/长沙大学:/广东省中山大学:/暨南大学:/yxjs/lgxy/csxx1.html汕头大学:/chi/colleges_focus.html华南师范大学:/~math/2002/广州大学:http://202.192.18.15:8080/webdata/lxy/cn/ mathematics/introdu ction.htm韶关学院:/yxzy/shuxue/Index.asp惠州学院:/gb/yxsz/sxx.html韩山师范学院:/xibu/sxx/math_intro.asp湛江师范学院:/jigou/shuxue.htm肇庆学院:/嘉应学院:/shuxue/index.htm深圳大学:/五邑大学:/茂名学院:/华南理工大学:/am佛山科学技术学院:/li/广东水院数模网:/shumo/广西壮族自治区广西大学:/广西师范大学:/广西民族学院:/海南省海南师范学院:/yuanxisz/SHUXUE/SHUXUE.HTM 重庆市重庆大学:http://202.202.9.135/math.asp西南师范大学:/重庆师范学院:/重庆三峡学院:/intro/jk.htm四川省西南交通大学:/电子科技大学:/成都理工学院:/四川师范大学:/内江师范学院:/乐山师范学院:/四川大学:/home/index.html西南财经大学:/index.htm成都信息工程学院:/sm/main.htm贵州省贵州大学:/otherdep/cse/cse/index1.html贵州师范大学:/math/index.html黔南民族师范学院:/贵州民族学院:/云南省云南大学:/indexnew.html云南师范大学:/web/colloges/like.php曲靖师范学院:/西藏自治区西藏大学:/yuanxi_main.asp?id=28陕西省:/fsci/wj.asp西北大学:/page/jigoushezhi/ department/maths/math s/西安交通大学:/fsci/wj.asp西北工业大学:http://202.117.80.8/start0/index1024.asp西安电子科技大学:/西安工业学院:/index.jsp陕西师范大学:/延安大学:/zfbmsf/yadx/index.htm汉中师范学院:/shuji/zhuye.htm宝鸡文理学院:/department/shuxue/default.asp 甘肃省兰州大学:/西北师范大学:/sxxy/index.htm天水师范学院:/xxgk/math/西北民族学院:/青海省青海师范大学:/xiaoneijigou/xiaoneijigou/gexibu_zhong xing/shuxuexi.htm青海民族学院:/gaokao_new/schooldetail/63/10748/1074 8_yxsz/10748_yxsz_6_1.htm宁夏回族自治区宁夏大学:/西北第二民族学院:/新疆维吾尔自治区新疆大学:/石河子大学:/新疆师范大学:/伊犁师范学院:/专业建模协会:数学建模2000:/~sxjm/闯王乡人 - 数学建模:/math.htm数学建模(ja):/CenterWeb/mathematics/newpage312.ht m21世纪数学网:/中国数学在线:/showclass2.asp?ClassID=9傻子石电脑棚:/thunder10/xueshu/MCM.htm武汉理工大学数学建模协会:/bbs/list.asp?bd=1武汉大学数学建模协会:/重庆工商大学数学建模协会:/maths/mathematics%20association/people/p eople.htm成都信息工程学院学生数学建模协会:/sm/jg/jg.htm浙江师范大学数学建模协会:/西南交通大学数学建模协会:/student/邕江大学数学建模协会:/cgi-bin/index.dll?column8?webid=tongtu& userid=1345185&columnno=3&pageno=0山东理工大学建模协会:/sxjm/fzhy.htm茂名学院数学建模协会:http://210.38.240.36/sttd/shumo/8.index.htm 华中理工大学数学建模爱好者协会:/su-old/college/mathshust1/org/mmfan/_mmfa n.htm长虹雪苑之数学建模:http://210.41.224.40/yg/chxue/sxjm/sxjmylc.htm长安大学数学建模协会:/sub/成信数学建模协会:/sm/浙江建筑工程学院数学建模协会:http://210.32.200.48/assnb.htm#ban3 台州学院数学建模协会:/zndt/031016a.htm 四川理工学院大学生数学建模协会:/model/introduce/introduce.htm。
大学数学建模知识点总结

大学数学建模知识点总结一、概率论基础知识1. 集合论基础知识集合的概念、集合的运算、集合的性质、集合的表示方法等。
2. 随机变量及其分布随机变量的概念、随机变量的分布、离散型随机变量、连续型随机变量等。
3. 数理统计基础知识抽样、统计量、分布函数、统计分布函数、极限定理等。
二、线性代数知识1. 行列式及其性质行列式的概念、行列式的性质、行列式的运算规则等。
2. 矩阵及其运算矩阵的概念、矩阵的运算、矩阵的性质、矩阵的逆、矩阵的转置等。
3. 矩阵方程组矩阵方程组的概念、矩阵方程组的求解、矩阵方程组的解的存在性和唯一性等。
三、微积分知识1. 极限函数极限的定义、函数极限的性质、无穷小量、无穷大量、极限的性质等。
2. 导数导数的概念、导数的求法、导数的性质、高阶导数、隐函数的导数等。
3. 微分方程微分方程的概念、微分方程的解、微分方程的分类、微分方程的求解方法等。
四、数理逻辑知识1. 命题与命题的联结词命题的概念、命题的分类、联结词的概念、联结词的分类、逻辑联结词的性质等。
2. 推理与证明推理的概念、推理的方法、证明的方法、证明的逻辑、直接证明、间接证明、数学归纳法等。
五、数学建模方法1. 模型建立模型的概念、模型的分类、模型的建立方法、模型的验证等。
2. 模型求解模型求解的方法、模型求解的工具、模型求解的步骤等。
3. 模型分析模型分析的方法、模型分析的工具、模型分析的步骤等。
六、优化理论1. 最优化问题最优化问题的概念、最优化问题的分类、最优化问题的求解方法、最优化问题的应用等。
2. 线性规划线性规划的概念、线性规划的模型、线性规划的求解方法、线性规划的应用等。
七、统计推断1. 参数估计参数估计的概念、参数估计的方法、参数估计的性质、参数估计的应用等。
2. 假设检验假设检验的概念、假设检验的原理、假设检验的方法、假设检验的应用等。
八、时间序列分析1. 时间序列的概念时间序列的定义、时间序列的分类、时间序列的性质、时间序列的应用等。
大学生数学建模竞赛论文模板(选用)

(数学建模论文书写基本框架,仅供参考)题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下)(第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。
根据这些特点我们对问题1用。
的方法解决;对问题2用。
的方法解决;对问题3用。
的方法解决。
(第2段)对于问题1我们用。
数学中的。
首先建立了。
模型I。
在对。
模型改进的基础上建立了。
模型II。
对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为。
,然后借助于。
数学算法和。
软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3组数据(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。
(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)(第3段)对于问题2我们用。
(第4段)对于问题3我们用。
如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软件、结果、亮点详细说明。
并且一定要在摘要对两个或两个以上模型进行比较,优势较大的放后面,这两个(模型)一定要有具体结果。
(第5段)如果在……条件下,模型可以进行适当修改,这种条件的改变可能来自你的一种猜想或建议。
要注意合理性。
此推广模型可以不深入研究,也可以没有具体结果。
关键词:本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,5~7个较合适。
注:字数700~1000之间;摘要中必须将具体方法、结果写出来;摘要写满几乎一页,不要超过一页。
摘要是重中之重,必须严格执行!。
页码:1(底居中)目录可选:目录(4号黑体)(以下小4号)第一部分问题重述…………………………………………………………() 第二部分问题分析…………………………………………………………() 第三部分模型的假设…………………………………………………………() 第四部分定义与符号说明…………………………………………………() 第五部分模型的建立与求解………………………………………………() 1.问题1的模型………………………………………………………………() 模型I(…(随机规划)模型)……………………………………………() 模型II(………(数学)的模型)………………………………………….() ………………………………………………………………………………….2.问题2的模型…………………………………………………………………() 模型I(………数学的模型)………………………………………………()模型II(………数学的模型)…………………………………………….() ……………………………………………………………………………….第六部分对模型的评价………………………………………………………() 第七部分参考文献……………………………………………………………() 第八部分附录…………………………………………………………………………()一、问题重述(第二页起黑四号)在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接复制,对所提出的问题部分基本原样复制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设条件的本质与非本质 考察四脚呈长方形的椅子
3 走路步长的选择 问题提出 模型建立 模型求解 请你思考
问题提出
人在走路时所作的功等于抬高人体重心所需的势能与两腿运动 所需的动能之和。在给定速度时,以作功最小(即消耗能量最小) 为原则,走路步长选择多大为合适?
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来
地面为连续曲面
f() , g()是连续函数
椅子在任意位置 至少三只脚着地
对任意, f(), g()
至少一个为0
数学 问题
已知: f() , g()是连续函数 ; 对任意, f() • g()=0 ;
且 g(0)=0, f(0) > 0.
证明:存在0,使f(0) = g(0) = 0.
• 椅子位置 利用正方形(椅脚连线)的对称性
用(对角线与x轴的夹角)表示椅子位置 B ´ B A ´
• 四只脚着地 椅脚与地面距离为零
距离是的函数
C
四个距离
两个距离
(四只脚) 正方形
C´
对称性
A
O
x
D´ D
A,C 两脚与地面距离之和 ~ f() B,D 两脚与地面距离之和 ~ g()
正方形ABCD 绕O点旋转
模型(1)的问题可化简为如下的函数来研究
(3) 以下假定b≥a,记n=[x0],考察
定理 若
,则n为(3)式的整数最优解;若
,则n+1为(3)式的整数最优解。
在大多数情况下,可直接利用定理2确定出(3)式的整数最优解,只有当
时,才需
要用定理1确定(3)式的整数最优解。由此可从(2)式十分简便地获得模型(1)的整数最佳订货批量。
模型求解
给出一种简单、粗造的证明方法
将椅子旋转900,对角线AC和BD互换。 由g(0)=0, f(0) > 0 ,知f(/2)=0 , g(/2)>0.
令h()= f()–g(), 则h(0)>0和h(/2)<0.
由 f, g的连续性知 h为连续函数, 据连续函数的基本性
质, 必存在0 , 使h(0)=0, 即f(0) = g(0) . 因为f() • g()=0, 所以f(0) = g(0) = 0.
另据实际观测得α=11o20’,k=3.此时β为多大时p最小? 参考答案
5. 存贮模型
问题与假设 建模与求解 EOQ注记 问题与假设
问题提出 通常工厂要订购各种原材料存在仓库里供生产用; 商店要成批地购进各种商品供零售用; 那么每隔多长时间订货一次、每次订货量为多少最合算?
模型假设 1.每隔T 天订货一次,即订货周期为T 天. 2.每次订货量为Q吨 . 3.每次订货费用为C1元(不包括买货费用,与Q无关). 4.每天对货物的需求量为r吨 . 5.货物每吨每天的库存费用为C2元. 6.货物每天每吨的缺货费用为C3元(因缺货而造成的损失). 7.t------时间,q--------库存量,C------总费用.
数学建模
主讲 张曙光 副教授 孙中品 讲 师
第一讲 数学建模概论
一 数学建模与数学建模竞赛 二 数学建模与我们的生活 三 数学建模概论
一 数学建模与数学建模竞赛
• 数学建模课程 • 数学建模竞赛
二 数学建模与我们的生活
• 1.椅子放稳问题 • 2.手机套餐选择 • 3.步长问题 雨中行走问题 • 4.最短线路问题 • 5.贮存(进货)模型 化工车间排气模型 决策模型-年金分配 • 6.公平席位分配 • 7.传染病模型 减肥模型 赝品的鉴定 • 8.循环比赛的名次 • 9.田忌赛马 • 10.渡河问题
齿状地向上游动和向下滑行交替进行。可以认为这是在长 期进化过程中鱼类选择的消耗能量最小的运动方式。设鱼 总是以常速v运动,鱼在水中净重为w,向下滑行时的阻 力是w在运动方向的分力;向上游动时所需的力是w在运 动方向分力与游动所受阻力之和,而游动的阻力是滑行阻 力的k倍。水平方向游动时的阻力也是滑行阻力的k倍。试 证明,鱼沿折线ACB运动的能量消耗与沿水平线AB运动 的能量消耗之比为
此式称为EOQ公式,Q*称为最佳定货批量,它是(1)的唯一最小值点。 然而,对于大多数实际问题,都要求批量Q为正整数,而EOQ公式的计算结果一般不一定是正整
数。通常教科书介绍的做法是通过比较Q*左右两旁的整数点对应的函数值,选择较小者确定的整数 最优解。
现在我们希望能导出其规律性,使能直接从Q*的值确定出(1)式的整数最优解,在应用上更加方 便。
数学建模示例
1. 椅子能在不平的地面上放稳吗
问题分析 通常 ~ 三只脚着地 放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚
模 连线呈正方形;
型 假
• 地面高度连续变化,可视为数学上的连续
设 曲面;
• 地面相对平坦,使椅子在任意位置至少三
只脚同时着地。
Байду номын сангаас
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来
模型假设 m-----人体质量, m’-----每条腿的质量, s-----步长, n-----单位时间内走的步数, g-----重力加速度, v-----走路速度(设为匀速), l-----腿长, θ-----腿与垂线夹角, Δ-----人体重心在走路时上下移动的幅度, Wf-----单位时间内消耗的势能, Ws-----单位时间内消耗的动能, 走路时把腿视为刚体棒,假设腿的质量集中在脚上。
7. 传染病模型
传染病是人类的大敌,通过疾病传播过程中若干重要因 素之间的联系建立微分方程加以讨论,研究传染病流行的规 律并找出控制疾病流行的方法显然是一件十分有意义的工 作。在本节中,我们将主要用多房室系统的观点来看待传染 病的流行,并建立起相应的多房室模型。
建模与求解
总费用=订货费+库存费+缺货费
(1)不允许缺货的情形
(2)允许缺货的情形
总费用C= C1+ C2TQ/2 总费用 C=C1+ +
( Q*为最佳订货量) 请看详细推导
( Q*为最佳订货量 Q1为最大库存量 Qs为允许最大缺货量)
EOQ注记 以上EOQ 库存模型
(Q>0) (1)
其解为:
(2)
模型建立
如图可知,
∴ 另一方面,假设腿的质量集中在脚上,而脚的运动速
度为v。
∴ 因此,总能量消耗为
模型求解 为了使能量消耗最小,应有
约去v/4得
例如,某人m=65kg, l=1m,m’=10kg, v=1.5m/s,则
(米/步) n=v/s=1.5/0.37≈4(步/秒)
模型基本上符合实际。
请你思考 观察鱼在水中的运动发现,它不是水平游动,而是锯