低噪放的设计
ADS设计低噪声放大器的详细步骤课件PPT

ADS软件基本操作
01
创建新工程
通过菜单栏或工具栏选择“文件”->“新建”->“工程”,命名并选
择工程保存位置。
02 03
创建电路图
在工程浏览器中右键单击“Circuit Design”文件夹,选择“New”>“Circuit Design”,命名并选择保存位置。在电路图编辑器中绘制 电路图,使用元件库添加元件符号,并连接电路。
菜单栏包含文件、编辑、视图、仿真 等常用命令。
工具栏提供了常用命令的快捷方式, 方便用户快速执行操作。
工程浏览器用于管理工程文件和电路 元件,方便用户组织和查找相关资源。
电路图编辑器用于绘制和编辑电路图, 支持多种元件符号和连线方式。
仿真结果显示窗口用于显示仿真结果 和分析数据,支持多种图表和报告输 出。
03 低噪声放大器设计基础
低噪声放大器概述
01
低噪声放大器是一种电子器件, 用于放大微弱信号,通常用于接 收机前端,提高信号的信噪比。
02
低噪声放大器通常采用晶体管作 为放大元件,通过合理的设计和 匹配电路,实现低噪声、高线性 度和宽频带放大。
低噪声放大器设计原理
01
02
03
04
低噪声放大器设计主要关注噪 声系数、增益和线性度等性能
设置仿真参数
在仿真结果显示窗口中设置仿真参数,如仿真类型、扫描参数、收敛方 法等。
ADS软件基本操作
运行仿真
点击仿真结果显示窗口中的 “Simulate”按钮,开始运行仿真 。仿真完成后,结果将显示在仿真结 果显示窗口中。
分析仿真结果
可以使用仿真结果显示窗口中的图表 和报告工具对仿真结果进行分析和评 估。根据需要调整电路参数或重新进 行仿真,以达到最佳性能。
S波段低噪放设计

电路则 采用共 扼匹 配。输入 匹配 电路 在达 到最佳 噪声 时 ,放 大器 的输入 阻抗未 必恰好 与信 号源 阻抗 匹 配 ,因而 功率 放 大倍 数不 是最 大 。设 计 放大 器 时 ,首先 考虑 的是 噪声 尽可 能
噪 声 ga 4 I . . t ̄-o9 B.增益 大 "3 d - d I 0
低 噪声 放 大 器 主要 功 能 是将 来 自天 线 的低 电压 信 号 进行 小 信 号 放大 。前 级 放大 器 的
噪声 系 数对 整个 微 波 系统 的噪声 影 响最 大 ,它 的增益 将 决定 对后 级 电路 的噪声 抑制 程 度 .
O八 一 科 技
S波 段 低 噪 放 设 计
・ 3・ 3
S 波 段 低 噪 放 设 计
田耕 郑光 华 杨 玻
6 13) 17 1
( 中国兵器 装备 集 团成都 火控 技术 中心 成都
摘
要 :本 文使 用A 设 计 并制 作 了S 段 的 低噪 声放 大 器 。在 整 个 频段 内 Ds 频 噪声 系数 增益
O八 一科技
S波段低 噪放 设计
用 A S 进行 低 噪声放 大器 的仿真 与 优化 设计 。 D
2 主 要 技 术 指 标
( )工作 频 率 : S频 段 1
( )噪声 系数 : ≤09 B 2 .d
( )增益 : 3 ≥3 B Od ( )增益 平坦 度 :≤± .d 4 O7 B
( )输 入输 出阻抗 :5 1 5 02
低 。其 次才考 虑增益 的问题 。因此 。牺牲一 点增益 来换取 噪声 系数 的降低 是必 要的 ,两者 之间应 该取 一个 合适 的折 中 。L A 采用 两级放 大 的方 式来 实现 。为使 放 大器 具有 更低 的 N 噪声 。第一 级 的工 作 点应 根据 最 小噪 声 系数来 选 取最 佳 的工 作 电流 。为 保 证有 足够 的增
低噪放内部结构

低噪放内部结构摘要:一、低噪放内部结构简介1.低噪放概念2.内部结构组成二、低噪放内部结构详解1.输入匹配网络2.输出匹配网络3.噪声源4.放大器三、低噪放内部结构的作用1.降低噪声2.提高信号质量四、内部结构对低噪放性能的影响1.输入匹配网络的影响2.输出匹配网络的影响3.噪声源的影响4.放大器的影响五、结论正文:一、低噪放内部结构简介低噪放,即低噪声放大器,是一种电子放大器,主要用于放大微弱信号。
在通信系统、射频放大器、音频放大器等领域有着广泛应用。
低噪放的性能优劣,很大程度上取决于其内部结构的设计。
本文将对低噪放的内部结构进行详细解析。
二、低噪放内部结构详解1.输入匹配网络输入匹配网络是低噪放内部结构中的重要组成部分,其作用是使输入信号与放大器之间的阻抗匹配,从而提高信号传输效率,降低信号反射,减少噪声产生。
输入匹配网络通常由电感、电容等元器件组成。
2.输出匹配网络输出匹配网络的作用与输入匹配网络类似,也是为了提高信号传输效率和降低噪声。
不同的是,输出匹配网络需要将放大器的输出阻抗与负载阻抗进行匹配。
输出匹配网络通常也包括电感、电容等元器件。
3.噪声源噪声源是低噪放内部结构中产生噪声的部分。
它包括热噪声、闪烁噪声等。
噪声源的设计对于降低噪声、提高信号质量具有重要意义。
4.放大器放大器是低噪放的核心部分,负责对输入信号进行放大。
放大器的性能直接影响到低噪放的总体性能。
在设计放大器时,需要考虑其增益、带宽、噪声系数等因素。
三、低噪放内部结构的作用1.降低噪声低噪放的内部结构设计主要目的是降低噪声。
通过合理的元器件选择和参数配置,可以减少噪声源产生的噪声,降低信号反射产生的噪声,从而提高信号质量。
2.提高信号质量除了降低噪声外,低噪放的内部结构还需提高信号质量。
通过优化输入匹配网络、输出匹配网络以及放大器的设计,可以提高信号的传输效率,降低信号失真,从而提高信号质量。
四、内部结构对低噪放性能的影响1.输入匹配网络的影响输入匹配网络的设计对低噪放的性能有重要影响。
ansysdesigner8低噪放设计

ansysdesigner8低噪放设计一、概述在电子设备中,噪声是一个常见的问题,特别是在放大器设计中。
为了解决这个问题,ANSYS Designer 8提供了一种低噪声放大器设计的解决方案。
本文将详细探讨如何使用ANSYS Designer 8进行低噪声放大器设计。
二、低噪声放大器的原理低噪声放大器是一种能够在放大信号的同时尽量减小噪声的放大器。
在设计低噪声放大器时,需要考虑以下几个方面:1. 前端放大器的设计前端放大器是低噪声放大器的核心部分,它负责放大输入信号并尽量减小噪声。
在ANSYS Designer 8中,可以使用各种电路元件和模块来设计前端放大器,如晶体管、电容和电感等。
2. 信号传输线的设计信号传输线在低噪声放大器中起到了关键的作用。
为了减小噪声的干扰,需要设计合适的传输线,如微带线或同轴电缆等。
3. 电源噪声的抑制电源噪声是低噪声放大器中常见的问题之一。
为了抑制电源噪声,可以使用滤波器、稳压器等电路元件来减小噪声的干扰。
三、ANSYS Designer 8的功能ANSYS Designer 8是一款功能强大的电子设计自动化工具,它提供了一系列的功能来帮助设计低噪声放大器。
1. 电路仿真ANSYS Designer 8可以对设计的低噪声放大器进行电路仿真,以评估其性能。
通过仿真,可以分析放大器的增益、带宽和噪声等参数,并进行优化。
2. 参数优化ANSYS Designer 8提供了参数优化功能,可以根据设计要求自动调整电路参数,以达到最佳的性能。
通过参数优化,可以实现低噪声放大器的最佳设计。
3. 噪声分析ANSYS Designer 8可以进行噪声分析,以评估低噪声放大器的噪声性能。
通过噪声分析,可以了解噪声源的贡献,并采取相应的措施来减小噪声。
4. PCB布局ANSYS Designer 8还提供了PCB布局功能,可以帮助设计人员进行电路布局,以减小噪声的干扰。
通过合理的布局,可以有效地减小电路中的噪声。
ansysdesigner8低噪放设计

ansysdesigner8低噪放设计【原创实用版】目录1.ANSYS Designer 8 低噪放设计概述2.设计流程与方法3.设计要素与技巧4.设计实例与结果分析5.总结与展望正文【ANSYS Designer 8 低噪放设计概述】ANSYS Designer 8 是一款专业的电子设计自动化(EDA)软件,广泛应用于各种电子设备的设计与分析。
低噪放设计,即低噪声放大器设计,是该软件在射频微波领域中的一个重要应用。
通过 ANSYS Designer 8,工程师可以轻松地完成低噪放设计的各个环节,从而实现性能优异的低噪声放大器。
【设计流程与方法】低噪放设计的基本流程可以分为以下几个步骤:1.需求分析:明确设计的目标和性能指标,如增益、噪声系数、输入输出阻抗等。
2.方案选择:根据需求分析,选择合适的放大器架构,如线性放大器、反馈放大器等。
3.元器件选型与布局:根据设计方案,选择合适的元器件,并进行合理的布局。
4.参数优化:通过调整元器件参数,优化放大器的性能。
5.仿真验证:对设计方案进行仿真验证,以确保放大器性能满足需求。
6.测试与调试:对实际制作出的放大器进行测试与调试,以验证其性能。
【设计要素与技巧】在进行低噪放设计时,以下几个要素和技巧需要特别注意:1.选择合适的放大器架构:不同的放大器架构对性能影响很大,应根据需求选择最合适的架构。
2.选用高品质元器件:元器件的性能直接影响放大器的性能,应选择性能优良、可靠性高的元器件。
3.合理布局:良好的布局可以减小信号干扰,提高放大器性能。
4.参数优化:通过调整元器件参数,可以有效提高放大器性能,但需要注意避免过度优化。
5.仿真验证:仿真验证是设计过程中非常重要的一环,可以及时发现问题,避免盲目制作实际产品。
【设计实例与结果分析】假设我们需要设计一款增益为 20dB,噪声系数为 2dB,输入阻抗为50Ω,输出阻抗为 50Ω的低噪声放大器。
通过 ANSYS Designer 8,我们可以按照以下步骤完成设计:1.创建项目,导入所需元器件库。
小型cmos低噪放设计.wps

一个使用并联电阻反馈和系列感性调峰技术的小型宽带CMOS低噪声放大器摘要宽带低噪声放大器(LNA)利用分流电阻反馈和系列电感调峰技术达到宽频带内的输入匹配,功率增益和平滑的噪声系数(NF)响应。
此宽带低噪声放大器(LNA)是使用0.18米CMOS技术来实现的。
测量结果表明功率增益大于10 dB,从2到11.5 GHz的输入回波损耗低于10 dB。
三阶输入截点IIP3为+3 dBm,和带外NF范围从3.1至4.1分贝。
结果发现模拟与实测数据非常吻合,归因于与以往的设计相比此电路所需的被动元件数量更少。
此外,电路片的品质因数为190(MW每平方毫米),这在所有先前报道的以CMOS为基础的宽带低噪声放大器(LNA)中是最好的。
关键词CMOS,反馈,低成本,低噪声放大器(LNA),系列调峰,小芯片尺寸,宽带。
一·概述宽带系统最近获得关注是由于其高速的数据传输能力,所谓的超宽带(UWB)技术提供了频率在3.1到10.6 GHz有吸引力的高速无线信号的方案。
为了与天线和预选择滤波器接口匹配,低噪声放大器(LNA)在3.1到10.6 GHz的整个波段的输入阻抗应该接近50Ώ。
到现在为止,已经提出了许多为UWB LNA设计的宽带技术。
分布式放大器(DA)是广泛应用于宽带的技术,由于其固有的宽带频率响应伴随着良好的输入和输出阻抗匹配线性下降到DC。
然而,到目前为止,它的高功耗和芯片面积大,阻碍了其广泛应用[1][2]。
最近一个具有输入带通响应的宽带阻抗匹配的级联CMOS低噪声放大器已被报道[3]。
带通滤波器(BPF)基于拓扑结构采用了级联的输入阻抗放大器作为滤波器的一部分。
然而,在采用的滤波器输入端需要许多电抗性元件,这就不可避免地导致更大的芯片面积和噪声系数(NF)从而造成芯片实现的退化。
一个有效的方式来实现小功耗的宽带匹配和芯片面积为共栅输入拓扑结构。
然而,据报道共栅LNA具有较低的增益和比共源放大器更高的噪声系数[4]。
低噪声放大器设计

低噪声放大器设计随着电子技术的不断发展,低噪声放大器(Low Noise Amplifier,简称LNA)在无线通信和微波领域的重要性不断提升。
低噪声放大器的主要作用是在前置放大器中放大微弱信号,同时将噪声压制到最小,以保证整个系统的性能。
低噪声放大器的噪声系数是衡量其性能的重要指标,通常用dB比值或者分贝数来表示,简称Nf。
低噪声放大器的设计要确保Nf足够低,才能在微弱信号中产生足够的增益且不引入过多的噪声。
因此,低噪声放大器的设计非常重要。
一、低噪声放大器设计的挑战在设计低噪声放大器时,需要面临几个挑战。
第一,如何处理噪声。
在放大器中,噪声来自于电阻、晶体管的温度、元器件的起伏等因素,噪声在传输信号时会被放大。
因此,设计低噪声放大器需要充分考虑噪声的来源,并采取合适的抑制措施,以保证系统的高效运作。
第二,如何改善热噪声。
热噪声是低噪声放大器中一个常见的问题,是由器件本身热引起的噪声。
为了减小热噪声,需要减小器件的温度,采用低噪声晶体管等高品质元器件来代替常规器件,并减小元器件之间的串扰。
第三,如何平衡增益和噪声。
低噪声放大器需要在增益和噪声之间进行权衡,在增益和噪声之间找到平衡点。
增加放大器的增益会对噪声产生影响,因此需要采用低失真、高效率的放大器设计来保证放大器的性能。
二、低噪声放大器的设计要点低噪声放大器的设计要点主要包括器件选择、电路结构、滤波器和匹配等。
器件选择是设计低噪声放大器时非常关键的一个方面,选择适当的低噪声、低电荷、高频率的晶体管材料,能提高系统的性能,也能减小噪声系数。
电路结构是设计低噪声放大器时的另外一个重要方面。
直接耦合放大器和共源放大器是常见的电路结构,其中直接耦合放大器简单、稳定,但增益和噪声系数会受到限制。
而共源放大器的增益和噪声系数的选择范围更大,但也更过程更为复杂。
此外,混频器的阻抗匹配和反馈网络设计也是设计低噪声放大器的重要方面。
滤波器也是设计低噪声放大器时需要重点考虑的方面之一。
低噪放设计

低噪声放大器设计报告学生姓名:李江江学号:201221040234 单位:物理电子学院一、技术指标:频率:5.25 GHz~5.55 GHz 噪声系数:小于0.5 dB (纯电路噪声系数不考虑连接损耗)增益:大于20dB 增益平坦度:每10MHZ带内小于0.1dB输入输出驻波比:小于2.0 输入输出阻抗:50二、理论分析低噪声放大器(LNA)在接收机系统中处于前端,主要作用是放大接收到的微弱信号,降低噪声干扰。
LNA的设计对整个接收机性能至关重要,其噪声系数(NF)直接反映接收机的灵敏度。
随着通讯、雷达技术的发展,对微波低噪声放大器也提出了更为严格的要求。
利用微波电路CAD设计软件,结合可靠的LNA设计理论来进行电路设计,可以避开复杂的理论计算,极大地提高设计准确性和效率,有效缩短研制周期,降低成本。
( A D S ) 软件是A g i l e n t 公司在H P E E S O F 系列E D A 软件基础上发展完善的大型综合设计软件,它功能强大,能够提供各种射频微波电路的仿真和优化设计,广泛应用于通信、航天等领域,是射频工程师的得力助手。
本文着重介绍如何使用ADS 进行低噪声放大器的仿真与优化设计。
LNA的性能指标主要是噪声系数、增益、工作频带、电压驻波比和带内平坦度等,尤其是噪声系数和增益对整机性能影响较大。
要实现理想功率传输,必须使负载阻抗与源阻抗相匹配,这就需要插入匹配网络。
放大管存在最佳源阻抗Zsop,t LNA的输入端应按Zsopt进行匹配,此时放大器的噪声系数为最小。
而为了获得较高的功率增益和较好的输出驻波比,输出端则采用输出共轭匹配。
如果增益不够,则需要采用多级放大电路。
原则上前级放大器相对注重噪声系数性能,后级放大器则相对注重增益性能。
也就是说,输出端口和级间针对增益最大和平坦度进行匹配电路设计。
LNA低噪声放大器的主要指标如下:1.工作频率与带宽2.噪声系数3.增益4.放大器的稳定性5.输入阻抗匹配6.端口驻波比和反射损耗三、设计过程:(1)直流分析晶体管S 参数的测量并确定工作点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.023 1.047 1.072 1.096 1.122 1.148 1.175 1.202 1.230 1.259 6.825 13.81 20.96 28.27 35.75 43.41 51.24 59.26 67.47 75.87 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 10
在圆图上表示噪声和增益——等噪声圆和等增益圆 在圆图上表示噪声和增益——等噪声圆和等增益圆
15
等噪声源、等增益圆是我们设计输入输出匹配电路,尤其输入 匹配电路的依据。
低噪声放大器设计的依据与步骤 16
依据: 1. 满足规定的技术指标 噪声系数(或噪声温度);功率增益;增益平坦度;工作频 带;动态范围 2. 1. 2. 3. 4. 5. 输入、输出为标准微带线,其特征阻抗均为50 放大器级数 晶体管选择 电路拓朴结构 电路初步设计 用CAD软件进行设计、优化、仿真模拟 步骤:
9
放大器技术指标— 放大器技术指标—端口驻波比和反射损耗
9
低噪声放大器主要指标是噪声系数,所以输入匹配电 路是按照噪声最佳来设计的,其结果会偏离驻波比最 佳的共扼匹配状态,因此驻波比不会很好。 此外,由于微波场效应晶体或双极性晶体管,其增益 特性大体上都是按每倍频程以6dB规律随频率升高而 下降,为了获得工作频带内平坦增益特性,在输入匹 配电路和输出匹配电路都是无耗电抗性电路情况下, 只能采用低频段失配的方法来压低增益,以保持带内 增益平坦,因此端口驻波比必然是随着频率降低而升 高。
在圆图上表示噪声和增益——等噪声圆和等增益圆 在圆图上表示噪声和增益——等噪声圆和等增益圆
14
输入、输出不匹配时,增益将下降。因为负载 是复数,有可能在不同的负载下得到相同的输 出,经分析在圆图上,等增益线为一圆,这个 圆叫等增益圆。 当输入匹配电路不能使信源反射系数ΓS和最佳反
射系数Γopt(噪声系数最小时的反射系数)相等时, 放大器噪声将增大。由于ΓS是复数,不同的ΓS值有 可能得到相同的噪声系数,在圆图上噪声系数等值 线为一圆,叫等噪声圆。
放大器技术指标— 放大器技术指标—增益平坦度
6
增益平坦度是指工作频带内功率增益的起伏,常用最 高增益与最小增益之差,即△G(dB)表示,如下图所示。
放大器技术指标— 放大器技术指标—工作频带
考虑到噪音系数是主要指 标,但是在宽频带情况下 难于获得极低噪音,所以 低噪音放大器的工作频带 一般不大宽,较多为20% 上下。 工作频带不仅是指功率增 益满足平坦度要求的频带 范围,而且还要求全频带 内噪音要满足要求,并给 出各频点的噪音系数。
输入匹配电路模块
P3 Z0
输入 匹配 电路
18
输出匹配电路模块
P1 a1 b1 微波 器 件 b2 [S] Zs Zin Γ sΓ 1 Zout ZL Γ 2Γ L P2 a2
输出 匹配 电路
P4
Z0
低噪声放大器一般不止一级,还有级间匹配电路模块。
输入匹配电路——要求 输入匹配电路——要求
要求:Zout = Zopt Γout = Γopt
P2 G= P1
低噪声放大器都是按照噪声最佳匹配进行设计的。噪声最佳匹 配点并非最大增益点,因此增益 G 要下降。噪声最佳匹配情况下的 增益称为相关增益。通常,相关增益比最大增益大概低 2-4dB。
功率增益与噪声系数
5
功率增益的大小还会影响整机噪声系数,下面给出简化的多级 放大器噪声系数表达式:
N f = N f1 +
19
输入匹配电路——结构类型 输入匹配电路——结构类型
并联导纳型匹配电路
20
阻抗变换型匹配电路
微带电路拓扑结构的选择原则
的阻抗变换器类, (2)对于微波的低频段,例如S波段或更低端,宜选用分支微带结构。
21
(1)微波的高频段,比如工作频率在X波段或更高,宜选用微带阻抗跳变式
(3)微波管输入阻抗为容性时,此时s11 处在史密斯圆图下半平面,匹配电 路第1个微带元件宜用电感性微带单元;反之,当s11 处在史密斯圆图 上半平面时,宜用电容性微带单元。 (4)微波晶体管输入总阻抗为低阻抗时,即s11处在史密斯圆图第2、3象限, 微带变换器应采用高特性阻抗的微带线;反之,s11处在史密斯圆图第 1、4象限时,为高输入阻抗,微带变换器宜采用低特性阻抗微带线。
在圆图上表示噪声和增益——等噪声圆和等增益圆 在圆图上表示噪声和增益——等噪声圆和等增益圆 1、增益与负载有关,输入输出匹配时输出最大
12
如果输入匹配电路和输出匹配电路使微波器件的输入 阻抗Zin和输出阻抗Zout都转换到标准系统阻抗Z0,即Zin = Z0, Zout = Z0(或ΓS = Γ1*,ΓL = Γ2*)就可使器件的 传输增益最高。
suficient1 = 1 S11 S12 S 21
2
suficient 2 = 1 S 22 S12 S 21
2
necessary =
1 S11 S 22 + S11 S 22 S12 S 21
2 2
2
2 S12 S 21
放大器在гS 输入平面上绝对稳定的充分必要条件为
suficient1 > 0 necessary > 1
式中,NF 为微波部件的噪声系数; Sin,Nin 分别为输入端的信号功率和噪声功率; Sout,Nout 分别为输出端的信号功率和噪声功率。 噪声系数的物理含义是:信号通过放大器之后,由于放大器 产生噪声,使信噪比变坏;信噪比下降的倍数就是噪声系数。 通常,噪声系数用分贝数表示,此时
NF ( dB ) = 10 lg( NF )
输入匹配电路——电路拓朴结构选择原则 输入匹配电路——电路拓朴结构选择原则
22
根据上述原则,不同输入阻 抗(即不同的s11情况),微 波管的适宜电路可归纳如图 6-8所示。图中微带线宽度表 示了微带线特性阻抗的高或 低,线越宽表示特性阻抗越 低。这里所指高特性阻抗是 图6-8 具有不同s11的微波晶体 指高于50而言,反之是指 管适宜的匹配电路结构 低于50。 以上介绍了微带匹配电路的多种基本单元。应该注意的是,实 际放大器都有一定的工作频带,不同频率时微波管有不同的输 入阻抗(即s11 )。从理论上讲,一个频率点上,复数阻抗可以 匹配到实数信源阻抗,而整个频带内多个频率点的复数阻抗不 可能都匹配到实数信源阻抗。因此,上述各种匹配电路形式往 往是综合运用的。
放大器技术指标— 放大器技术指标—噪声系数与噪声温度
Te = T0 ( NF 1)
3
放大器自身产生的噪声常用等效噪声温度 T e 来表达。噪声温度 T e 与噪声系数 NF 的 关系是 式中,T 0 为环境温度,通常取为 293K。 根据公式(6-3) ,可以计算出常用的噪声系数和与之对应的噪声温度,如表 6-1 所示。 表 6-1 噪声系数和噪声温度关系 NF(dB) NF T e(K) NF(dB) NF T e(K) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.413 1.585 1.778 1.995 2.239 2.512 2.818 3.162 3.981 10.00 120.9 171.3 228.1 291.6 362.9 442.9 532.8 633.5 873.5 2637
放大器技术指标— 放大器技术指标—功率增益
4
微波放大器功率增益有多种定义,比如资用增益、实际增益、 共扼增益、单向化增益等。 对于实际的低噪音放大器,功率增益通常是指信源和负载都是 50Ω标准阻抗情况下实测的增益。 实际测量时,常用插入法,即用功率计先测信号源能给出的功 率 P1;再把放大器接到信源上,用同一功率计测放大器输出功率 P2, 功率增益就是
放大器在гL 输入平面上绝对稳定的充分必要条件为
suficient 2 > 0 necessary > 1
带有输入、输出匹配电路放大器的一般表示
P3 Z0
输入 匹配 电路
11
P1 a1 微波 b1 器 件 b2 [S] Zs Zin Γ sΓ 1
P2 a2
输出 匹配 电路
P4
Z0
Zout ZL Γ 2Γ L
放大器的稳定性
当放大器的输入和输出端的反射系数的模都小于 1(即
Γ1 < 1, Γ2 < 1 )时,不
管源阻抗和负载阻抗如何,网络都是稳定的,称为绝对稳定; 当输入端或输出端的反射系数的模大于 1 时,网络是不稳定的,称为条件稳定。 对条件稳定的放大器,其负载阻抗和源阻抗不能任意选择,而是有一定的范围, 否则放大器不能稳定工作。 定义:
N f 2 1 G1
+
N f 3 1 G1G2
+ ...
其中: N f -放大器整机噪声系数;
N f 1,N f 2,N f 3 -分别为第 1,2,3 级的噪声系数;
G1,G2 -分别为第 1,2 级功率增益。从上面的讨论可以知道,
当前级增益 G1 和 G2 足够大的时候,整机的噪声系数接近第一级的 噪声系数。因此多级放大器第一级噪音系数大小起决定作用。作为 成品微波低噪音放大器的功率增益,一般是 20-50dB 范围。
7
放大器技术指标— 放大器技术指标—动态范围
8
动态范围是指低噪音放大器输入信号允许的最小功率和最大功率的范 围。动态范围的下限取决于噪声性能。当放大器的噪声系数 Nf 给定时,输 入信号功率允许最小值是:
Pmin = N f ( kT0 f m ) M
其中: f m -微波系统的通频带(例如中频放大器通频带); M- 微波系统允许的信号噪声比,或信号识别系数; T0- 环境温度,293K。 由公式可知,动态范围下限基本上取决于放大器噪声系数,但是也和整 个系统的状态和要求有关。例如,电视机信号微波中继每信道频带 f m = 40MHz,信号噪音比 M=10,放大器噪声系数 Nf=1.2(0.8dB)动态范围下限 是 Pmin = 7.23 × 10 mW = 81dB 。 动态范围的上限是受非线性指标限制,有时候要求更加严格些,则定义为放 大器非线性特性达到指定三阶交调系数时的输入功率值。