制动力调节装置原理
汽车制动力分配调节装置结构与原理

汽车制动力分配调节装置结构与原理汽车制动力分配调节装置(Electronic Brakeforce Distribution,简称EBD)是一种用于调节车辆制动力分配的装置,它通过在车辆制动时根据车辆的动力学状态、负载和制动系统的工作状况,智能地分配前后轴上的制动力,从而提高制动性能和稳定性。
EBD的结构主要包括传感器、控制器和执行器三部分。
传感器用于感知车辆的动力学状态,如车速、纵向加速度、车辆倾斜角度等,同时还可以感知车辆的负载情况。
传感器通常安装在车轮、底盘和车身上。
控制器是EBD的核心部件,负责收集传感器数据,并根据预设的算法和逻辑进行计算,最后通过执行器调节制动力。
执行器一般是通过电动控制的制动系统或液压控制的制动系统来实现,例如电子制动系统(Electronically Controlled Brake System,简称ECB)或电控制动系统。
EBD的工作原理如下:当司机踩下制动踏板时,ECU即刻通过传感器获取到车速、车轮转速、车辆倾斜角度等信息。
根据这些信息,ECU能够判断出车辆当前的制动状态和负载情况。
接下来,ECU会根据预设的算法和逻辑,在前轴和后轴上智能地分配制动力。
在正常行驶时,EBD将制动力尽量均匀地分配给前后轴,以确保车辆在制动时的稳定性和平衡性。
在一些情况下,例如在危险情况下需要紧急制动时,EBD会将更多的制动力分配给后轴,以减少前轴的制动压力,防止前轮翻滚和车辆失控。
除了智能分配制动力外,EBD还可以提供制动力的调节功能。
例如,在车辆左右车轮抓地力不均匀的情况下,EBD可以通过调节不同车轮的制动力,使车轮间的抓地力更为均衡,从而提高制动性能和车辆稳定性。
总之,汽车制动力分配调节装置是一种通过感知车辆状态和调节制动力分配的装置,能够提高车辆的制动性能和稳定性。
随着车辆动力学控制技术的不断发展,EBD也将进一步提升,并与其他车辆稳定控制系统相结合,为驾驶人提供更加安全和舒适的驾驶体验。
制动器原理

制动器原理制动器是一种重要的机械设备,它能将机械发电机或其他转动载体中积累的能量转换为有效的制动力,从而控制机械的速度和安全的停止机械的运行。
它是一种非常重要的安全装置,在各种设备上均有广泛的应用。
首先,要说明制动器是如何工作的。
实际上,制动器的工作原理是利用机械力学和机械能学的原理。
当运动的载体在转动过程中,它受到了机械能的作用,这些机械能就会被储存起来,形成一种能量积累,当要终止运动时,这些积累的能量就会被释放,从而实现制动的作用。
制动器的种类繁多,根据其工作原理可以分为机械制动器和电气制动器两大类。
机械制动器是指利用机械能来控制运动载体的变速和停止,常见的机械制动器有盘式制动器、刹车片式制动器等。
电气制动器是指利用电能来控制运动载体的变速和停止,常见的电气制动器有变频制动器、电磁制动器等。
在机械制动器的应用中,盘式制动器是最常见的。
它利用离心力的原理,把摩擦片与制动盘上的摩擦表面紧密接触,当制动轮转动时,摩擦片就会产生摩擦力,这样就可以降低转动速度,从而实现制动停止的目的。
电气制动器的应用也比较广泛。
其工作原理是利用电磁学的原理,电磁制动器的工作原理是通过控制电磁路的电流,从而调节电磁路中磁铁的磁通力来实现制动。
而变频制动器则是利用变频电机作为动力,在改变其转速时可以实现制动的效果。
此外,还有液压制动器、热制动器和摩擦制动器等,它们也是制动器中较为常用的几种。
液压制动器是一种利用液压力进行制动的设备,它采用液压缸和活塞的结构,可以利用液压力实现制动的功能。
热制动器是利用热力学的原理,通过热量的转换而变成制动力的方法实现制动的设备,常见的热制动器有制冷式热制动器和制热式热制动器。
摩擦制动器则是利用摩擦力来实现降低转动载体的转速,从而达到制动的目的,它具有体积小、结构简单、安装方便的特点,经常被用于汽车、磨床和磨机等机械设备上。
另外,制动器的可靠性也是一个重要的环节。
因此,在制动器的设计、使用、维护等过程中,都应考虑及时的润滑、定期的检查和更换、以及维护良好的制动器调节系统等,才能保证制动器的正常使用,同时确保设备及人员的安全。
制动总阀原理讲解

制动总阀原理讲解制动总阀是汽车制动系统中的重要组成部分,其原理是在制动踏板的作用下,通过传力机构将制动力转化为液压力,从而实现车辆的制动。
制动总阀通常由踏板、活塞、阀芯、弹簧、密封圈等部分组成。
当驾驶员踩下制动踏板时,通过传力装置将踏板力传递给活塞。
活塞向下运动,压缩空气,并将压缩的空气通过通道传送到制动总阀的阀芯。
阀芯上设有多个开口和密封槽,并在中间设有通道。
当踏板力传递到阀芯上时,阀芯向下弹簧的作用下,使其密封槽与开口对应,从而实现气路的连通。
制动总阀的阀芯下端连接着制动缸,其上端连接着气压泵或空气储罐。
当阀芯与密封圈之间的通道连通后,压缩空气进入制动缸,推动制动缸的活塞从而产生制动力。
同时,阀芯与密封圈之间的通道连通,也将制动缸的压力泄放至大气中,使制动力得到释放。
制动总阀起到一个控制和调节制动力的作用。
因此,制动总阀通常包括一个调节阀,以便根据实际情况调整制动力的大小。
通过调节阀芯与阀座之间的开口面积来改变流量,实现对制动力的精确控制。
同时,制动总阀还配有弹簧,以保证制动踏板在释放时能够恢复原状,实现制动的正常工作。
制动总阀的原理可以总结为:驾驶员踩下制动踏板时,通过传力机构将踏板力传递给制动总阀,阀芯下移并连通阀芯与制动缸之间的通道,使气压传送到制动缸并产生制动力;当驾驶员释放制动踏板时,弹簧的作用下,阀芯上移并连通阀芯与大气之间的通道,释放制动缸的压力,实现制动力的释放。
制动总阀作为汽车制动系统中非常重要的一部分,其原理的了解对于掌握制动系统的工作原理和保养维修具有重要意义。
只有熟悉制动总阀的工作原理,才能及时发现制动系统故障,保证行车安全。
因此,在驾驶汽车时,我们需要重视制动总阀的工作原理,定期检查和维护制动系统,确保车辆制动的可靠性和安全性。
2章汽车制动系统

三、制动主缸
1、单腔制动主缸
四、制动轮缸
双活塞式制动轮缸:
说明:
各类汽车为了使前后车轮的制动力矩能与其实际载荷及附着 力相适应,以获得最大的制动效果,多采用不同活塞直径的轮 缸或不同型式、不同尺寸的制动器。货车制动时前轮实际载荷 及附着力仍小于后轮,所以后轮缸直径大于前轮缸直径。轿车 制动时,因质量转移较大,前轮实际载荷大于后轮,故前轮缸 直径大于后轮缸直径,且装用高制动性能的制动器。
制动踏板机构 15、16-制动轮缸
真空式
这种伺服制动系比人力液压制动系多一套真空伺服系统, 供能装置包括:由发动机进气管8(真空源)、真空单向阀9、 真空罐10组成。 控制装置:真空增压器控制阀6; 传动装置:伺服气室7; 中间传动液压缸:辅助缸4。。 真空增压器:辅助缸、真空伺服气室和控制阀通常组合装配 成一个部件。 工作原理
货车制动时前轮实际载荷及附着力仍小于后轮,所以后轮缸 直径大于前轮缸直径。
轿车制动时,因质量转移较大,前轮实际载荷大于后轮,故 前轮缸直径大于后轮缸直径,且装用高制动性能的制动器。
真空式
红旗CA7220型轿车真空助力伺服制动系示意图 动画演示 真空助力器结构
气压助力伺服制动系统
为了兼取气压制动和液压制动两者的优点,不少重型汽车采 用了空气液压制动传动装置。
4.制动平顺性好
5.散热性好。连续制动时,制动鼓的温度高达400 ° C,摩 擦片的抗“热衰退”能力要高(摩擦片抵抗因高温分解变质引起 的摩擦系数降低);水湿后恢复能力快。
6.对有挂车的制动系,还要求挂车的制动作用应略早于主车; 挂车自行脱挂时能自动进行应急制动。
第二节 制动器
按旋转元件的形状的不同,汽车制动器可分为鼓-蹄式和盘 式两大类。
湿式制动器工作原理

湿式制动器工作原理
湿式制动器是一种常见的工程机械和汽车上常用的制动装置,它通过液压传动来实现制动作用。
它的工作原理主要包括摩擦转矩传递、液压传动和制动力的调节。
下面我们将详细介绍湿式制动器的工作原理。
首先,湿式制动器的工作原理基于摩擦转矩传递。
当制动器工作时,制动器壳体内的摩擦片与摩擦盘之间会产生摩擦力,从而实现摩擦转矩的传递。
这种摩擦转矩的传递可以有效地将旋转的动能转化为热能,从而实现制动的效果。
其次,湿式制动器利用液压传动来实现制动作用。
在制动器内部,会有一定量的液体(通常是液压油)充填其中。
当制动器需要进行制动时,压力油泵会向制动器内部注入液压油,从而形成一定的液压压力。
这种液压压力会使制动器内部的摩擦片与摩擦盘产生紧密的接触,从而实现制动的效果。
最后,湿式制动器通过调节制动力来实现灵活的制动控制。
在实际工作中,制动器需要根据不同的工况和要求来调节制动力的大小。
这通常通过调节液压系统的压力来实现,从而实现对制动力的
精确控制。
总的来说,湿式制动器的工作原理主要包括摩擦转矩传递、液压传动和制动力的调节。
它通过这些原理的相互作用,实现了在工程机械和汽车上的可靠制动效果。
希望通过本文的介绍,能够让大家对湿式制动器的工作原理有更深入的了解。
工程机械制动调整方案怎么写

工程机械制动调整方案怎么写一、调整原理(一)制动系统的基本原理工程机械的制动系统是通过摩擦力来实现机械设备的停止和保持。
通常制动系统由制动器、制动鼓/盘、制动液和辅助装置等组成。
在制动过程中,制动器受到操纵杆的作用使得制动鼓/盘与车轮或机械设备的转动部件接触,通过摩擦力产生制动力矩,从而使机械设备停止或保持。
(二)制动系统的调整原理工程机械的制动系统调整的基本原理是通过调整制动器的间隙和工作行程,使得制动器能够在保证良好制动效果的前提下,最大程度地发挥其制动性能,保持制动器的正常工作状态,并使得整个制动系统的工作效果达到最佳状态。
二、调整工具1. 扳手:用于调整制动器的间隙和工作行程;2. 尺子:用于测量制动器的间隙和工作行程;3. 螺丝刀:用于拧制动器螺丝,调整制动器的工作行程;4. 压力表:用于测量制动液的压力,判断制动器的工作效果;5. 千斤顶:用于抬升机械设备,使得车轮脱离地面,方便制动器的调整。
三、调整步骤1. 停车并卸载:将工程机械停放在平整的地面上,卸载机械设备的负荷,使得车轮脱离地面;2. 调整制动器间隙:用扳手调整制动器的间隙,使得制动器与制动鼓/盘的间隙达到标准要求;3. 调整制动器工作行程:用螺丝刀调整制动器的工作行程,使得制动器在踩下制动踏板时,能够产生适当的制动力;4. 测试制动效果:使用压力表测试制动液的压力,检查制动器的工作效果,确保制动系统正常工作;5. 复原并测试:将机械设备卸载,车轮重返地面,测试制动效果是否符合要求;6. 调整完成并记录:对调整后的制动系统进行整体检查,并将调整过程和结果进行记录。
四、注意事项1. 谨慎操作:在调整制动系统时,要谨慎操作,避免因误操作造成制动系统调整不当或者损坏。
2. 参照规程:在调整制动系统时,要严格按照车辆的技术规范和制动器的调整标准进行操作,确保调整的准确性和安全性。
3. 定期维护:工程机械的制动系统需要定期进行检查和维护,及时发现并处理制动系统的异常情况。
汽车的制动力分配及其调节实验报告

汽车的制动力分配及其调节实验报告实验目的:探究汽车制动力分配及其调节的原理和实际效果。
实验原理:1. 汽车的制动力分配是指在刹车时,前后轮的制动力分配比例。
根据车辆的不同设计和使用需求,制动力分配可以有前置(前轮制动力大于后轮)、后置(后轮制动力大于前轮)或平衡(前后轮制动力相等)的情况。
2. 汽车的制动力分配可以通过制动液的流动来实现。
前轮制动力大于后轮时,制动液通过前制动器的活塞向后制动器流动,从而使后轮制动器施加制动力;后轮制动力大于前轮时,制动液通过后制动器的活塞向前制动器流动,从而使前轮制动器施加制动力。
实验装置:1. 汽车制动系统(包括前制动器、后制动器、制动液、制动管路等)。
2. 测力传感器或动态测力仪。
实验步骤:1. 确保实验车辆停稳在平整的地面上,保证安全性。
2. 将测力传感器或动态测力仪分别放置在前轮和后轮制动器上,用以测量前后轮的制动力分配情况。
3. 使用脚踏制动器时,记录测得的前后轮制动力值并计算制动力分配比例。
4. 根据实验需求,调节制动力分配比例。
可以通过调整前制动器和后制动器的活塞直径、制动液流通面积或其他方式来实现。
5. 重复步骤3和步骤4,直到达到所需的制动力分配比例。
实验结果与讨论:1. 根据实验测得的前后轮制动力值和制动力分配比例,可以得出实际的制动力分配情况。
对比理论设计,评估实验结果的准确性和可行性。
2. 可以根据实验结果对制动系统进行调节和优化,以提高制动性能和安全性。
3. 进一步研究制动力分配对汽车稳定性的影响,探究不同制动力分配比例对车辆操控性能的影响。
4. 讨论汽车制动力分配的应用场景和限制,以及与其他车辆动态控制系统(如防抱死制动系统、动态稳定控制系统等)的协同工作。
实验结论:通过本次实验,我们研究了汽车的制动力分配及其调节原理和实际效果。
实验表明,制动力分配对汽车的制动性能和操控性能具有重要影响,可以通过调节制动系统来实现不同的制动力分配比例。
汽车制动系统

概述
液压制动系
气压制动系
辅助制动系
制动力调节装置
防抱死制动系统与驱动防滑系统
三联学院交通工程系
§15.1 概 述
一、制动系的功用
根据需要使汽车减速或停车,以保证行车的安全。
二、制动系的类型
1、按作用分类
行车制动装置
驻车制动装置
辅助制动装置
三联学院交通工程系
2、按动力来腔阀门
⑵工作过程
气制动阀的随 动作用是靠平衡弹 簧来保证的;制动 阀的平衡位置是指 进排气阀均关闭, 且前后制动气室的 气压保证稳定状态。 每次平衡过程,平 衡弹簧下端面的位 置相同。
三联学院交通工程系
五、继动阀与快放阀
1、继动阀:缩短由储气筒到制动气室充气路程。 2、快放阀:解除制动时,可直接将制动气室的压缩空气排入 大气。
分类: 钳盘式制动器 a、定前盘式制动器
b、浮钳盘式制动器
全盘式制动器 (1)钳盘式制动器
三联学院交通工程系
1)定钳盘式制动器 油路中的制动 跨置在制动盘1上的制动钳体5固定安装在车桥6上,它不能旋转
液受制动盘加 热易汽化。 活 塞
制动钳体
进油口
制动块 缺点:油缸多、 结构复杂、制 动钳尺寸大
车 桥
人力制动系统 动力制动系统 伺服制动系统 机械式 液压式 气压式 电磁式 组合式
3.按传能介质不同
三、制动系的工作原理
三联学院交通工程系
制动系统的一般工作 原理是,利用与车身(或车 架)相连的非旋转元件和 与车轮(或传动轴)相连的 旋转元件之间的相互摩擦 来阻止车轮的转动或转动 的趋势。
当驾驶员踏下制动 踏板,使活塞压缩制动 液时,轮缸活塞在液压 的作用下将制动蹄片压 向制动鼓,使制动鼓减 小转动速度,或保持不 动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型液压制动系统示意图
1-制动踏板机构2-控制阀3-真空伺服气室4-制动轮缸5-储液罐
6-制动信号等液压开关7-真空单向阀8-真空供能管路
9-感载比例阀10-左前轮缸11-左后轮缸12-右前轮缸13-右后轮缸
上图为奥迪100型轿车的真空助力伺服(直接操纵真空伺服)制动示意图,其中的液压制动系统是双回路的。
串列双腔制动主缸4的前腔通往左前轮盘式制动器的轮缸10,并经感载比例阀9,通向右后轮鼓式制动器的轮缸13。
主缸4的后腔通往右前轮盘式制动器的轮缸12,并经感载比例阀通向左后轮鼓式制动器的轮缸11。
真空伺服气室3和控制阀2组合成一个整体部件,称为真空助力器。
制动主缸4即直接装在真空伺服气室前端,真空单向阀7直接装在伺服气室上。
真空伺服气室工作时产生的推力,也同踏板力一样直接作用在制动主缸4的活塞推杆上。
感载比例阀9属于制动力调节装置。
制动力调节装置
制动力分配装置主要有限压阀、比例阀以及在此基础上发展的感载阀等。
比例阀(亦称P阀)也是串连于液压或气压制动回路的后促动管中的。
其作用是
当前后促动管路压力p
1与p
2
同步增长到p
s
后,即自动对p
2
的增长加以节制,
亦即使p
2的增长量小于p
1
的增长量。
图2-9 比例阀结构示意图
1-阀门 2-活塞 3-弹簧
比例阀一般采用两端承压面积不等的差径活塞结构。
不工作时,差径活塞2在弹簧3的作用下处于上极限的位置。
此时阀门1保持开启,因而在输入控制压力p 1与输出压力p 2从零同步增长的初始阶段,总是p 1=p 2的。
但是压力p 1的作用面积为214
D A π
=,因而A 2>A 1,故活塞上方液压作用力大于活塞下方液压作用力。
在p 1、p 2同步增长的过程中,活塞上、下两端液压作用之差胜过弹簧3的预紧力时,活塞便开始下移。
当p 1、p 2增长到一定值p s 时,活塞内腔中的阀座与阀门接触,进油腔与出油腔即被隔绝。
此即比例阀的平衡状态。
若进一步提高p 1,则活塞将会回升,阀门再度开启。
油液继续流入出油腔,使p 2也升高但由于A 2>A 1,p 2尚未增长到新的p 1值,活塞又下降到平衡位置。
在任一平衡状态下,差径活塞的力的平衡方程为
p 2A 2=p 1A 1+F
即 p 2=2
121A F p A A + (2-9) 此处F 为平衡状态下的弹簧力。
图2-10 比例阀静特性
I -满载理想线 II -空载理想线
上列方程的曲线即是图2-10所示的比例阀静态特性曲线AB (图中假定A 点位于满载理想特性曲线的下方)。
装用比例阀以后的实际促动管路压力分配特性线即为折线OAB 。
比例阀静特性线AB 的斜率为(A 1/ A 2)<1,说明p 2的增量小于p 1的增量。
汽车在实际装载质量不同时,其总重心和重心位置变化较大,因此满载和空载下的理想促动管路压力分配特性曲线差距也较大。
在此情况下,采用一般的特性不变的制动力调节装置已不能保证汽车制动性能符合法规要求,故有必要采用其特性能随汽车实际装载质量而改变的感载阀。
液压制动系统用的感载阀有感载限压阀和感载比例阀两种,。
设汽车满载时,感载阀特性线为11B A ,而在空载时,感载阀的调节作用起点自动变为2A ,使特性线变为22B A 。
但两特性线的斜率还是相等。
这种变化是渐进的,即在实际装载量为任何值时,都有一条与之相应的特性线。
在限压阀或比例阀的结构及其它参数一定的情况下,调节作用起始点的控制压力s P 值决定于限压阀或比例阀的活塞弹簧的预紧力。
因此,只要使弹簧预紧力随汽车实际装载量而变化,便能实现感载调节。