伺服制动系与制动力调节装置
车辆工程毕业设计(论文)ca1041轻型商用车制动系统设计【全套图纸】

第1章绪论全套图纸,加1538937061.1制动系统设计的意义汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。
汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。
而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。
汽车的制动性能直接影响汽车的行驶安全性。
随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。
通过查阅相关的资料,运用专业基础理论和专业知识,确定汽车制动系统的设计方案,进行部件的设计计算和结构设计。
使其达到以下要求:具有足够的制动效能以保证汽车的安全性;本系统采用Ⅱ型双回路的制动管路以保证制动的可靠性;采用真空助力器使其操纵轻便;同时在材料的选择上尽量采用对人体无害的材料。
1.2制动系统研究现状车辆在行驶过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。
当车辆制动时,由于车辆受到与行驶方向相反的外力,所以才导致汽车的速度逐渐减小至零,对这一过程中车辆受力情况的分析有助于制动系统的分析和设计,因此制动过程受力情况分析是车辆试验和设计的基础,由于这一过程较为复杂,因此一般在实际中只能建立简化模型分析,通常人们主要从三个方面来对制动过程进行分析和评价:(1)制动效能:即制动距离与制动减速度;(2)制动效能的恒定性:即抗热衰退性;(3)制动时汽车的方向稳定性;目前,对于整车制动系统的研究主要通过路试或台架进行,由于在汽车道路试验中车轮扭矩不易测量,因此,多数有关传动系!制动系的试验均通过间接测量来进行汽车在道路上行驶,其车轮与地面的作用力是汽车运动变化的根据,在汽车道路试验中,如果能够方便地测量出车轮上扭矩的变化,则可为汽车整车制动系统性能研究提供更全面的试验数据和性能评价。
制动系统

上述各制动系统中,行车制动系统和驻车制动系统是每一 辆汽车都必须具备的。
01
制动系类型
2.按制动操纵能源 分:
(1)人力制动系统——以驾驶员的肌体作为唯一制动能源 的制动系统
(2)动力制动系统——完全靠由发动机的动力转化而成的 气压或液压形式的势能进行制动的系统
(3)伺服制动系统(助力制动系统)——兼用人力和发动 机动力进行制动的制动系统
01
驻车制动系统工作原理
01
驻车制动系统工作原理
解除驻车制动时,按下驻车制动 操纵杆上的按钮,使棘爪脱离棘 齿,将操纵杆回到释放制动位置 ,松开驻车制动拉索,则制动蹄 在复位弹簧的作用下回位。
对于四个车轮采用盘式制动器的车 型来说,驻车用的小型鼓式驻车制 动器内置于后轮盘式制动器中,并 通过拉索和连杆等机构固定在盘式 制动器上,如图所示为别克凯越车 型驻车制动器的结构。
01
制动系类型
1.按制动系统的作 用分:
(1)行车制动系统——用以使行驶中的汽车降低速度甚至停 车的制动系统
(2)驻车制动系统——用以使已停驶的汽车驻留原地不动的 制动系统
(3)第二制动系统(应急制动系统)——在行车制动系统失 效的情况下,保证汽车仍能实现减速或停车的制动系统
(4)辅助制动系统——在下长坡时,防止行车制动器过热失 效的辅助制动系统
01
驻车制动器——中央制动器
中央驻车制动器:安装在传动轴上。
车轮驻车制动器:安装在车轮上与行车制动装置共用 一套制动器。 应用:车轮驻车制动器因其结构紧凑,应用较广泛。
a、中央制动 (钳盘式)
b、车轮驻车制动
01
驻车制动器——蹄盘式制动器
01
01
学习目标
第二十章汽车制动系

2、浮钳盘式制动器浮钳盘制动器.swf
结构特点:制 动钳可以相 对制动盘作 轴向滑动; 只在制动盘 的内侧设置 油缸,而外 侧的制动块 则附装在钳 体上。
第三十二页,共77页。
导向销橡胶衬套不有仅防污,而且其弹性变形可使外侧制
动块回位,并保持设定间隙。活塞密封圈作用及定钳盘式 制动器相同。
领从蹄式凸轮的特点: ①凸轮代替轮缸做促动装置,对两蹄促动力不相等。
②制动器布置轴对称。
③开始使用,两蹄制动力不相等,使用一阶段后逐渐变 为相等。
调整:① 局部调整:改变制动凸轮原始角位置。
② 全面调整:同时调整凸轮和偏心制动销。
第二十二页,共77页。
3、楔式制动器楔式制动器.swf
两蹄的布置可为领从蹄式,也可为双向双领 蹄式。制动楔的促动装置可为机械式、液压 式或气压式。
制动力矩Mμ,在Mμ的作用下,车轮将对地面作用一个向前 的力Fμ,地面对车轮作用一个向后的反作用力FB,FB即为地
面对车轮的制动力。
第三页,共77页。
三、分类:
1、按制动系统的功用分类
(1)行车制动系统——使行驶中的汽车减低速度甚至停车的一套专门装置。 (2)驻车制动系统——使已停驶的汽车驻留原地不动的一套装置。 (3)第二制动系统——在行车制动系统失效的情况下保证汽车仍能实现减速或
②浸水后制动效能下降较少,只须经一、两次制动可恢复正常。
③尺寸、质量较小。 ④制动盘沿厚度热膨胀小,受热间隙变化小。 ⑤易实现间隙自动调整。 缺点: ①制动效能较低,促动压力要求较高,用伺服装置。 ②兼用驻车制动,其促动装置较复杂。 盘式制动器广泛用于轿车前轮,后桥多用鼓。少数高性能轿
车全用盘式。货车多用鼓式,盘式很少。
汽车制动系统

管路液压和制动器的力矩是与踏板力呈线性关系, 管路液压和制动器的力矩是与踏板力呈线性关系,在轮胎和路 面间的附着力足够的情况下, 面间的附着力足够的情况下,汽车所受到的制动力与踏板力应成线 性关系,制动系的这项性能叫制动踏扳路感. 性关系,制动系的这项性能叫制动踏扳路感. 液压制动传动装置 自踏板到轮缸活塞的制动系传动比=踏板机构杠杆比 自踏板到轮缸活塞的制动系传动比 踏板机构杠杆比 x 轮缸与 主缸直径之比. 主缸直径之比.
轿车鼓式制动器由于结构问题使它在制动过程中散热性能差和 排水性能差,容易导致制动效率下降.一般用于后轮(前轮用盘式 制动器).鼓式制动器除了成本比较低之外,还有一个好处,就是 便于与驻车(停车)制动组合在一起,凡是后轮为鼓式制动器的轿 车,其驻车制动器也组合在后轮制动器上.
(二),盘式制动器
制动时,制动油液由制动总泵(制动主缸)经进油口进入钳体中两个相通的液压腔 中,将两侧的制动块压向与车轮固定连接的制动盘,从而产生制动. 这种制动 器存在着以下缺点:油缸较多,使制动钳结构复杂;油缸分置于制动盘两侧,必 须用跨越制动盘的钳内油道或外部油管来连通,这使得制动钳的尺寸过大;热负 1,定钳盘式制动器 , 荷大时,油缸和跨越制动盘的油管或油道中的制动液容易受热汽化
1.前轮制动器 2.制动钳 3.制动管路 4.制动踏板机构 5.制动主缸 6.制动轮缸 7.后轮制 动器
制动液
要求: 要求: 1,高温下不易汽化 , 否则在管路中产生汽阻现象, 使制动系失效 , 高温下不易汽化,否则在管路中产生汽阻现象, ; 2,低温下有良好的流动性; ,低温下有良好的流动性; 3,不会使与之经常接触的金属件腐蚀,橡胶件发生膨胀变硬和损 , 不会使与之经常接触的金属件腐蚀, 坏; 4,对液压系统有良好的润滑作用; ,对液压系统有良好的润滑作用; 吸水性差而溶水性好,即使渗入其中的水汽也能均匀混合, 5,吸水性差而溶水性好,即使渗入其中的水汽也能均匀混合,否 则在制动液中形成大水泡大大降低汽化温度. 则在制动液中形成大水泡大大降低汽化温度.
“汽车制动系统”教案讲义

制动蹄安装在制动底板上,为不动件; 制动鼓与车轮一起旋转。
汽车制动力的产生
▪ 制动蹄对制动鼓产生磨 擦力矩
▪ 磨擦力矩使车轮对路面 产生向前的力,同时路 面给车轮向后的力------制动力。
汽车制动系统的组成
▪ 主要
➢ 供能装置 ➢ 控制装置 ➢ 传动装置 ➢ 制动器
▪ 此外
➢ 制动力调节装置 ➢ 报警装置 ➢ 压力保护装置
钳盘式制动器
钳盘式制动器可分为定钳盘式和浮动钳盘式制动器。
定钳盘式
浮动钳盘式
1)定钳盘式制动器
结构特点:制动钳固定在车桥上; 制动盘的两侧均要设置促动装置。
1—制动盘; 2—活塞; 3—制动块; 4—进油口; 5—制动钳; 6—车桥
定钳盘式
No Image
定钳盘式制动器的缺点
▪ 油缸多,制动钳的结构复杂 ▪ 油缸分置于制动盘的两侧,钳内必须有跨
▪ 真空助力伺服制动系统 真空助力器:真空伺服气室 + 制动主缸
真空助力伺服制动系统
▪ 伺服制动控制阀的随动作用
➢ 伺服制动控制阀具有在任何平衡位置时,其稳定 真空度都与踏板行程成递增函数关系的特点
▪ 路感的获得
➢ 驾驶员通过踏板力大小可以感知伺服气室的作用 力的大小,从而可以获得制动路感
2.真空增压式伺服制动系统
➢ 能使汽车速度减慢的外力包括:汽车滚动阻力、上坡阻力、 空气阻力等,都具有让汽车减速的作用:不是制动力
பைடு நூலகம்
制动系统的结构和工作原理制动器:
▪ 制动系统的结构
➢ 制动踏板 ➢ 制动主缸
带制动蹄片的制动
蹄和制动鼓及其它零 部件构成。
➢ 制动轮缸
➢ 轮缸活塞
➢ 制动鼓
汽车制动系习题答案

第十一章汽车制动系一、填空题1.汽车制动系一般至少装用二套各自独立的系统,即主要用于行车时制动的行车制动装置和主要用于停车时制动的驻车制动装置;2.行车制动装置按制动力源可分人力制动系统、动力自动系统和伺服制动系统三类;3.按制动传动机构的布置形式,通常可分为单回路制动系和双回路制动系两类;其中双回路制动系提高了汽车制动的安全性和可靠性 ;4.车轮制动器主要由旋转机构、固定机构、张开机构、调整机构等四部分组成;5.液力制动装置主要由制动主缸、制动轮缸、车轮制动器、踏板、油管等组成;6. 车轮制动器按其制动时两制动蹄对制动鼓径向力是否平衡,可分为非平衡式制动器、平衡式制动器和自增力式制动器;7. 浮钳型盘式车轮制动器主要由轮毂、制动盘、制动钳、制动块、活塞、液压工作缸、密封圈、油管等零件组成;8. 盘式车轮制动器活塞密封圈的作用是:密封、制动解除后活塞回位和自动调整制动间隙 ;9. 双回路液力制动传动机构主要由双腔主缸、制动力调节器、管路等零件组成;10. 在采用增压伺服制动系统的汽车上,根据制动增压装置的力源不同,可分为真空增压伺服制动系统和气压增压伺服制动系统两种;11. 在真空增压伺服制动传动装置中加装了由真空单向阀、真空罐、真空增压器和真空管路组成的真空增压装置;其真空增压器由辅助缸、真空伺服气室、真空伺服气室三部分组成;12. 气压增压伺服制动系统中气压增压器由辅助缸、气压伺服气室、控制阀三部分组成;13. 气压增压装置是利用缩空气的压力与大气压力的压力差转变为机械推力而起助力作用的;14. 常见的驻车制动器有鼓式和盘式两种;15. 鼓式制动器旋转元件是制动鼓 ,盘式制动器的旋转元件是制动盘 ;16. 近代汽车防抱制动系统一般包括轮速传感器、 ECU 、制动压力调节器三部分;三、判断题正确打√、错误打×1.最佳的制动状态是车轮完全被抱死而发生滑移时; ×2.一些简单非平衡式车轮制动器的领制动蹄摩擦片比从蹄摩擦片长,是为了增大领蹄与制动鼓的摩擦力矩; ×3.双领蹄式和双向双领蹄式制动器属于平衡式车轮制动器; √4.简单非平衡式车轮制动器在汽车前进或后退时,制动力几乎相等; √5.双领蹄式制动器在汽车前进和后退时,制动力大小相等; ×6.双向双领蹄式制动器在汽车前进和后退时,制动力大小相等; √7.单向自增力式车轮制动器在汽车前进和后退时,制动力大小相等; ×8.液压制动主缸出油阀损坏,会使制动不灵; √9.液压制动主缸的补偿孔和通气孔堵塞,会造成制动不灵; √10.液压制动最好没有自由行程; ×11. 双腔制动主缸在后制动管路失效时前活塞仍由液压推动; ×12. 东风EQ1092型汽车当踏板踩到底时,其制动气室的气压与储气筒气压相同;×13. 真空增压器在不制动时,其大气阀门是开启的; ×14. 在加力气室大小相同的情况下,气压增压器比真空增压器的助力作用强得多; √15. 当气压增压器失效时,制动主缸仍然能够进行临时性制动; √16. 采用放气制动的挂车气压制动传动装置,在不制动时,主、挂车之间的空气管路是没有压缩空气的;×四、选择题1.如图所示的制动器是 C ;A、领从蹄式制动器B、双向自增力式制动器C、双向双领蹄式制动器D、双领蹄式制动器2.液力张开的简单非平衡式车轮制动器,在轮缸内两活塞大小相等的情况下,其制动蹄摩擦片的长度是A ;A、领蹄长从蹄短B、领从蹄等长C、领蹄短从蹄长D、无所谓3. 液压制动主缸在不制动时,其出油阀和回油阀的开闭情况是C ;A、出油阀和回油阀均开启B、出油阀关闭而回油阀开启C、双阀均关4. 在不制动时,液力制动系中制动主缸与制动轮缸的油压是C ;A、主缸高于轮缸B、主缸与轮缸相等C、轮缸高于主缸5. 在解除制动时,液压制动主缸的出油阀和回油阀的开闭情况是A ;A、先关出油阀再开回油阀B、先开回油阀再关出油阀C、两阀都打开6. 在不制动时,气压制动控制阀的进排气阀门的开闭情况是B ;A、进气阀开启排气阀关闭B、进气阀关闭排气阀开启C、进排气阀均关闭7. 东风EQ1092型汽车制动控制阀处于双阀关闭的平衡位置时,前后制动气室的气压分配是C ;A、一致的B、前大于后C、前略低于后8. 前、后轮的制动气室膜片通常是A ;A、前小后大B、前后相等C、前大后小9. 真空增压器在维持制动时,真空阀和大气阀的开闭情况是B ;A、大气阀开真空阀关B、双阀关闭C、大气阀关真空阀开五、问答题1.汽车制动系的作用是什么根据需要使汽车减速或在最短距离内停车,保证汽车停放可靠,不致自动滑溜,长下坡时保持稳定车速;2.说出鼓式车轮制动器的工作过程;制动时,进入制动轮缸的制动液推活塞带动制动蹄紧压在制动鼓上,产生摩擦力矩,从而产生制动效应;解除制动时,依靠复位弹簧讲制动蹄拉回复位,从而恢复制动蹄与制动鼓之间的间隙,制动作用解除;3.试叙述液力双腔式制动主缸在某一腔控制回路失效时的工作情况;当前腔控制的回路发生故障时,前活塞在后活塞液力的作用下被推到最前端,后腔产生的液力仍能使后轮制动;当后腔控制的回路发生故障时,后腔不产生液压,但后活塞在推杆的作用下前移,并与前活塞接触而推前活塞移动,从而前腔仍能产生液力控制前轮产生制动;4.液力制动主缸活塞回位弹簧的预紧力过小过软对制动性能有何影响若液力制动主缸回位弹簧预紧力过小时,则使制动解除缓慢,残余压力降低,更严重的是使二脚制动失灵;5.说出真空增压器在维持制动时的工作过程当制动踏板踩到某一位置不动时,制动主缸不再向辅助缸输送制动液,作用在辅助缸及控制阀活塞上的力为一定值;由于加力气室作用推动辅助缸活塞左移,右腔油压下降,此时控制阀活塞下移,使空气阀和真空阀双阀关闭,因而加力气室的压力差不变,对辅助缸活塞的推力不变,维持了一定的制动强度;6.试述汽车上装用防抱死装置对制动性能和操纵性能的意义;汽车上装用防抱死装置能充分利用轮胎和路面潜在的附着能力,全面地满足制动过程中汽车制动性能对制动系统的要求,在紧急制动时能防止车轮完全抱死,而处于纵向附着力最大、侧向附着力也很大的半抱死半滚动的运动状态;试验表明,装有自动防抱死装置的汽车,在制动时不仅有良好的防后轮侧滑能力,而且保持了较好的转向性能,汽车的制动减速度也有进一步提高,缩短了制动距离,同时使汽车操纵简便;7.ABS的全称是什么汽车上为什么采用ABS现代汽车ABS一般由哪几部分组成答:ABS全称是制动防抱死系统;当车轮抱死滑移时,车轮与路面间的侧向附着力将完全消失;如果是前轮转向轮制动到抱死滑移而后轮还在滚动,汽车将失去转向能力跑偏;如果是后轮制动到抱死滑移而前轮还在滚动,即使受到不大的侧向干扰力,汽车将产生侧滑甩尾现象;因此,汽车在制动时不希望车轮制动到抱死滑移,而是希望车轮制动到边滑边滚得滑动状态;试验表明,装有自动防抱死装置的汽车,在制动时防止车轮完全抱死,不仅有良好的防后轮侧滑能力,而且保持了较好的转向性能,汽车的制动减速度也有进一步提高,缩短了制动距离,同时使汽车操纵简便;ABS由轮速传感器、制动压力调节器和电子控制器组成;。
汽车制动系统的设计-开题报告

汽车制动系统的设计-开题报告毕业设计(论文)开题报告学生姓名:XXX指导教师姓名:XXX系部:汽车工程系专业:车辆工程专业、班级:XXX车辆工程是否外聘:□是□否职称:副教授题目名称:汽车制动系统的设计一、课题研究现状、选题目的和意义随着高速公路路网的不断发展,汽车车速的提高以及车流密度的增大,对汽车制动系统的工作可靠性要求日益提高。
只有制动效能好、制动系统工作可靠的汽车才能充分发挥出高速行驶的动力性能并保证行驶的安全性。
目前,汽车制动系统种类很多,形式多样,主要包括机械式、气动式、液压式和气—液混合式。
这些制动系统结构型式虽然不同,但基本工作原理相同,都是利用制动装置,用工作时产生的摩擦热来逐渐消耗车辆所具有的动能,以达到车辆制动减速或停车的目的。
随着节能和清洁能源汽车的研究开发,汽车动力系统发生了很大的改变,出现了很多新的结构型式和功能形式。
新型动力系统的出现也要求制动系统结构型式和功能形式发生相应的改变。
因此,本文选取汽车制动系统的设计作为毕业设计主题,旨在研究汽车制动系统的结构、工作原理和设计方法,为汽车制动系统的发展提供参考和指导。
本文的研究意义在于提高汽车制动系统的效能和可靠性,保证汽车行驶的安全性,促进汽车制造业的发展。
目前,汽车制动系统主要由能装置、控制装置、传动装置和制动器组成。
其中,供能装置包括供给、调节制动所需能量以及各个部件,产生制动能量的部分称为制动能源;控制装置包括产生制动动作和控制制动效果的部件;传动装置包括把制动能量传递到制动器的各个部件;制动器是产生阻碍车辆运动或者运动趋势的力的部件,也包括辅助制动系统中的部件。
现代的制动系统还包括制动力调节装置和报警装置、压力保护装置等辅助装置。
综上所述,本文将研究汽车制动系统的结构、工作原理和设计方法,以提高汽车制动系统的效能和可靠性,促进汽车制造业的发展。
供能装置包括人力制动、伺服制动、动力制动或两种的结合使用。
人力制动有机械式和液压式两种形式,机械式主要用于驻车制动系统,而液压式则是通过制动踏板推动制动主缸,使制动器进入工作状态。
交流伺服驱动器原理及调试资料

5. 低速大转矩,过载能力强 一般来说,伺服驱动器具有数分钟甚
至半小时内1.5倍以上的过载能力,在短时间 内可以过载4~6倍而不损坏。
6. 可靠性高 要求数控机床的进给驱动系统可靠性高、
工作稳定性好,具有较强的温度、湿度、振 动等环境适应能力和很强的抗干扰的能力。
对电机的要求
1、从最低速到最高速电机都能平稳运转,转矩波动要 小,尤其在低速如0.1r/min或更低速时,仍有平稳的 速度而无爬行现象。
④ 反馈值与给定值相比较,如果有偏 差通过电流环输出控制电流使用其 差值改为零
17
1.3.1 伺服放大器控制回路
伺服放大器三种控制方式
1 转矩控制: 通过外部模拟量的输入或直接的地址的赋值来设定电机 轴对外的输出转矩的大小,主要应用于需要严格控制转 矩的场合。 ——电流环控制
2 速度控制: 通过模拟量的输入或脉冲的频率对转动速度的控制。 ——速度环控制
3 位置控制: 伺服中最常用的控制,位置控制模式一般是通过外部输入 的脉冲的频率来确定转动速度的大小,通过脉冲的个数来 确定转动的角度,所以一般应用于定位装置 。 ——三环控制
思考:三环中哪个环的响应性最快?
18
2.2 伺服的作用
按照定位指令装置输出的脉冲串,对工件进行定位控制。
伺服电机锁定功能
2、电机应具有大的较长时间的过载能力,以满足低速 大转矩的要求。一般直流伺服电机要求在数分钟内 过载4~6倍而不损坏。
3、为了满足快速响应的要求,电机应有较小的转动惯 量和大的堵转转矩,并具有尽可能小的时间常数和 启动电压。
4、电机应能承受频繁启、制动和反转。
三、 伺服驱动器的电气控制原理
1.外部控制电路结构 2.内部电路结构
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车底盘构造与维修课程教案 课题 伺服制动系与制动力调节装置 课时 周次 授课日期 周次 授课方式 及手段 讲授、演示、讨论、使用多媒体
教 学 目 标
知识点 1、助力式伺服制动系的结构原理 2、增压式伺服制动系的结构原理 3、常见制动力调节装置的结构原理 能力点 1、能正确识别助力和增压两种伺服制动系统 2、能正确分析助力和增压两种伺服制动系统的工作过程
3、能正确分析各阀的工作过程,并对常见阀体进行识别 教 学 重 难 点
重点: 1、真空增压式伺服制动系结构原理 2、真空助力式伺服制动系结构原理 3、比例阀的结构和工作原理。
难点:真空助力式伺服制动系和比例阀的结构和工作原理。
教 学 过 程 结 构 设 计
一、用提问的方式复习上次课的内容 1、气压制动传动系统有何特点? 2、气压制动传动系统有哪些零部件或总成组成的? 二、引入真空增压式伺服制动系的功用、类型、组成及工作原理。 此过程分别采用教具及动画演示。 三、讲解真空增压式伺服制动系的功用、类型、组成及工作原理 在讲解真空增压式伺服制动系的功用、类型、组成及工作原理时可以多进行动画演示以助于学生理解和掌握。 四、分析真空增压器等用、类型及工作原理 此过程应抓住各种真空增压器等的相同点和它本身的特点进行分析,注意强调使用注意事项。 五、总结并布置课后作业 六、结束 由老师引导思路对本次课内容作一个系统回顾。 主 要 教 学 内 容
一、增压式伺服制动系 〃为间接操纵式:控制装置是用制动踏板通过主缸输出的液压操纵,并且伺服系统的输出力与主缸液压共同作用于一个中间传动液缸(辅助缸),使该液缸输出到轮缸的液压远高于主缸液压。 〃按伺服能量的形式分:气压伺服-气压能;真空伺服-真空能(负气压能);液压伺服-液压能 1、真空增压式伺服制动系 (1)结构 〃在人力液压式上多设一真空伺服系统,包括发动机进气管、真空气管、真空单向阀、供能装置、传动装置、伺服气室、中间传动液缸(辅助缸) (2)原理 〃利用伺服系统中的真空能保证真空伺服气室输出力与自液压主缸传来的液压作用力同作用于辅助缸活塞,因而辅助缸送至轮缸的压力高于主缸压力。 (3)真空增压器 〃辅助缸、真空伺服气室和控制阀组合装配而成
主 要 教 学 内 容
1)构造 〃辅助缸:分左右两腔,左腔通轮缸,右腔通向制动主缸,活塞,推杆(前装有球阀门) 〃真空伺服气室:磨片分两腔,左腔通真空罐,且经主缸孔与控制阀下气室B相连;右腔接控制阀上腔A。 〃控制阀:液压控制继动阀,有阀门组件(含真空阀门与大气阀门)活塞 2)原理
〃不制动时,大气阀关闭,真空阀开启,控制阀上、下腔相通,上下腔及气室左右腔真空度相同。 〃制动时,踩下踏板,制动液自主缸输入辅助缸,经活塞上孔进入各轮缸,轮缸液压与主缸液压相同,与此同时,输入液压还作用于控制阀活塞上。推使磨片上移,真空阀关闭,再开启大气阀,上下腔隔绝,从而使控制阀上腔与气室右腔真空度下降,其气压升高。而下腔与气室左腔真空度不变。在两腔压力差的作用下,推杆左移,球阀关闭。这样主缸与辅助缸左腔隔绝。此时辅助缸上有两作用力,液压与推杆作用力。则使辅助缸左腔与各轮缸液压高于主缸液压。 主 要 教 学 内 容
2、气压增压伺服制动系 1)结构上采用 气压增压器:由辅助缸、气压伺服室、控制阀组成 2)气压增压器 〃气压增压器:增压-压缩空气(空压机) 〃不制动时 各腔全通大气 排气阀开启,进气阀关闭 〃气压式比真空式压差大,气室直径小,但要保证制动阀力不过大,直径要大
主 要 教 学 内 容
二、助力式伺服制动系 〃为了提高汽车的制动效能,减轻驾驶员的劳动强度,采用液压制动传动机构的汽车多数装有制动助力装置。根据制动助力装置的力源不同可分为真空助力器和液压助力器两种 1、真空助力式伺服制动系 〃下图为一汽奥迪100型轿车的真空助力伺服(直接操纵真空伺服)制动系示意图
〃采用的是对角线布置的双回路液压制动系统,即左前轮缸与右后轮缸为一液压回路,右前轮缸与左后轮缸为另一液压回路。 (1)真空伺服气室:工作时产生的推力,也同踏板力一样直接作用在制动主缸的活塞推杆上。真空伺服气室和控制阀组合成一个整体部件,即为真空助力器。 (2)真空助力器是利用真空能(负气压能)对制动踏板进行助力的装置,对其控制是利用踏板机构直接操纵。
〃真空助力器主要由真空伺服气室和控制阀两部分组成 〃真空伺服气室由前、后壳体组成,其间夹装有伺服气室膜片,将伺服气室分成前、后两腔。前腔经真空单向阀通向发动机进气歧管(即真空源),后腔膜片座的毂筒中装有控制阀,控制阀由空气阀和真空阀组成,空气阀与控制阀推杆固装在一起,控制阀推杆借调整叉与制动踏板机构连接。 〃外界空气经过滤环和毛毡过滤环滤清后进入伺服气室后腔。伺服气室膜片座上有通道A和B,通道A用于连通伺服气室前腔和控制阀,通道占用来连通伺服气室后腔和控制阀。 〃真空助力器工作原理
主 要 教 学 内 容
〃真空助力器不工作时 1)弹簧将推杆连同控制阀柱塞推到后极限位置(即真空阀开启),橡胶阀门则被弹簧压紧在空气阀座上(即空气阀关闭)。 2)伺服气室前、后腔经通道A、控制阀腔和通道B互相连通,并与空气隔绝。 3)在发动机开始工作、且真空单向阀被吸开后,伺服气室左右两腔内都产生一定的真空度。 〃当制动踏板踩下时
1)起初气室膜片座固定不动,来自踏板机构的操纵力推动控制阀推杆和控制阀柱塞相对于膜片座前移。 2)当柱塞与橡胶反作用盘间的间隙消除后,操纵力便经反作用盘传给制动主缸推杆。 3)同时,橡胶阀门随同控制阀柱塞前移,直到与膜片座上的真空阀座接触为止。伺服气室前后腔隔绝。
主 要 教 学 内 容
〃真空助力器充分工作时 1)控制阀推杆7继续推动控制阀柱塞前移,到其上的空气阀座离开橡胶阀门一定距离。外界空气充入伺服气室后腔,使其真空度降低。 2)在此过程中,膜片与阀座也不断前移,直到阀门重新与空气阀座接触为止。因此在任何一个平衡状态下,伺服气室后腔中的稳定真空度与踏板行程成递增函数关系。 3)因为橡胶反作用盘具有液体那样传递压力的作用,在与橡胶反作用盘接触的面积上相比,制动主缸推杆比控制阀柱塞的大,所以作用于制动主缸推杆1的力比作用于控制阀柱塞的大。
主 要 教 学 内 容
2、气压助力式伺服制动系
1)结构上采用 气压助力器:由气压伺服气室与控制阀组成 2)气压助力器 〃气压助力器:助力-压缩空气(空压机) 〃不制动时 各腔全通大气 排气阀开启,进气阀关闭 〃气压式比真空式压差大,气室直径小,但要保证制动阀力不过大,直径要大
主 要 教 学 内 容 三、制动力调节装置 1、采用制动力调节装置的原因 〃制动力FB。同汽车在正常行驶中路面作用于车轮的牵引力一样,制动力FB也不可能超过车轮与路面间的附着力FΦ,即 FB ≤ FΦ = GΦ 式中,G为车轮对路面的垂直载荷;Φ为轮胎与路面间的附着系数。 〃制动力调节装置的作用: 采用各种制动力调节装置,使前后促动管路压力的实际分配特性曲线在不同程度上接近于相应的理想曲线。 尽量避免在制动时后轮先抱死滑移,并在此前提下,尽可能充分地利用附着条件,产生尽可能大的制动力 。 1)理想的制动力分配 〃前后轮制动力之比等于前后轮对路面 垂直载荷之比 〃尽量防止后轮先抱死滑移,在此前提下尽可能充分利用附着条件,产生尽可能大的制动力。 〃制动力大小取决于促动管路中压力(液压或气压) 2)理想的前后轮促动管路压力分配特性 〃Ⅰ-满载时的理想特性; 〃Ⅱ-空载时的理想特性 〃K-无制动力调节装置时的实际特性 〃P1-前促动管路压力 〃P2-前促动管路压力 2、限压阀:串连于液压或气压制动回路的后促动管路中 〃功用:当前后促动管路中压力P1 P2 由0 同步增长到一定值,即自动将P2限定在该值,防止后轮抱死。 1)结构 〃一般由阀盖、阀门、活塞、弹簧、阀体等组成 〃阀门与活塞为一体装入阀体,弹簧使阀门紧靠阀盖 2)工作原理及特性曲线
〃当P1压力较低阀门开启,限压阀不起作用 〃当P1=PS时,液压作用活塞使阀门关闭,后轮缸与主缸隔绝。 〃满载时:〃当P1=P2=PS时前后轮同时抱死;当P1PS即P1≠PS时制动,必然前后轮包死 〃适用:重心高与轴距较大的轻型汽车
主 要 教 学 内 容 3、比例阀 〃充分利用附着条件尽可能产生大制动力。串连于液压或气压制动回路后促动管路中 1)功用 〃重心高度与轴距比值较小的中型以上汽车 〃串连于后促动管路中 〃P1 、P2同步增长到Ps后,限制P2,使P2增长量小于P1增长量。
2)比例阀结构及工作原理(视频)