结构设计的理解

结构设计的理解
结构设计的理解

结构设计的理解

建筑结构

狭义的建筑指各种房屋及其附属的构筑物。建筑结构是在建筑中,由若干构件,即组成结构的单元如梁、板、柱等,连接而构成的能承受作用(或称荷载)的平面或空间体系。建筑结构因所用的建筑材料不同,可分为混凝土结构、砌体结构、钢结构、轻型钢结构、木结构和组合结构等。

《建筑结构设计统一标准(GBJ68-84)》

该标准是为了合理地统一各类材料的建筑结构设计的基本原则,是制定工业与民用建筑结构荷载规范、钢结构、薄壁型钢结构、混凝土结构、砌体结构、木结构等设计规范以及地基基础和建筑抗震等设计规范应遵守的准则,这些规范均应按本标准的要求制定相应的具体规定。制定其它土木工程结构设计规范时,可参照此标准规定的原则。本标准适用于建筑物(包括一般构筑物)的整个结构,以及组成结构的构件和基础;适用于结构的使用阶段,以及结构构件的制作、运输与安装等施工阶段。本标准引进了现代结构可靠性设计理论,采用以概率理论为基础的极限状态设计方法分析确定,即将各种影响结构可靠性的因素都视为随机变量,使设计的概念和方法都建立在统计数学的基础上,并以主要根据统计分析确定的失效概率来度量结构的可靠性,属于“概率设计法”,这是设计思想上的重要演进。这也是当代国际上工程结构设计方法发展的总趋势,而我国在设计规范(或标准)中采用概率极限状态设计法是迄今为止采用最广泛的国家。

结构可靠度

建筑结构的可靠性包括安全性、适用性和耐久性三项要求。结构可靠度是结构可靠性的概率度量,其定义是:结构在规定的时间内,在规定的条件下,完成预定功能的概率,称为结构可靠度。其“规定的时间”是指设计基准期50年,这个基准期只是在计算可靠度时,考虑各项基本变量与时间关系所用的基准时间,并非指建筑结构的寿命;“规定的条件”是指正常设计、正常施工和正常的使用条件,不包括人为的过失影响;“预定的功能”则是能承受在正常施工和正常使用时可能出现的各种作用的能力(即安全性);在正常使用时具有良好的工作性能(即适用性);在正常维护下具有足够的耐久性能(耐久性)。在偶然事件发生时及发生后,仍能保持必需的整体稳定性。结构能完成预定功能的概率称为可靠概率p↓s,结构不能完成预定功能的概率称为失效概率P↓f,p↓f=1-Ps,用以度量结构构件可靠度是用可靠指标β,它与失效概率p↓f的关系为p↓f=ψ(-β)。根据对正常设计与施工的建筑结构可靠度水平的校正结果,并考虑到长期的使用经验和经济后

果后,《统一标准》给出构件强度的统-β值:对于安全等级为二级的各种构件,延性破坏的,β=3.2;脆性破坏的,β=3.7。影响结构可靠度的因素主要有:荷载、荷载效应、材料强度、施工误差和抗力分析五种,这些因素一般都是随机的,因此,为了保证结构具有应有的可靠度,仅仅在设计上加以控制是远远不够的,必须同时加强管理,对材料和构件的生产质量进行控制和验收,保持正常的结构使用条件等都是结构可靠度的有机组成部分。为了照顾传统习惯和实用上的方便,结构设计时不直接按可靠指标β,而是根据两种极限状态的设计要求,采用以荷载代表值、材料设计强度(设计强度等于标准强度除以材料分项系数)、几何参

数标准值以及各种分项系数表达的实用表达式进行设计。其中分项系数反映了以β为标志的结构可靠水平。

一些基本概念2

建筑结构的安全等级

建筑结构设计时,应根据结构破坏可能产生的后果(危及人的生命、造成经济损失、产生社会影响等)的严重性,采用不同的安全等级。它以结构重要性系数的形式反映在设计表达式中,如表4-2。建筑物中各类结构构件的安全等级,宜与整个结构的安全等级相同,对其中部分结构构件的安全等级可进行调整,但不得低于三级。

荷载的代表值

是结构或构件设计时采用的荷载取值,它包括标准值、准永久值和组合值等。设计时应根据不同极限状态的设计要求来确定采用哪一种荷载值。1.荷载标准值(G↓K、Q↓K)。荷载的基本代表值,是结构设计按各类极限状态设计时所采用的荷载代表值。2.荷载组合值(ψ↓qQ↓x)。是当结构承受两个或两个以上可变荷载时,承载能力极限状态按基本组合设计及正常使用极限状态按短期效应组合设计所采用的荷载代表值。3.荷载准永久值(ψ↓cQ↓K)。是正常使用极限状态长期效应组合设计时所采用的荷载代表值。因此,永久荷载只有标准值作为它的唯一代表值,而可变荷载的代表值则除了标准值外,还有组合值和准永久值。结构自重的标准值,可按设计尺寸与材料的标准容重计算。可变荷载的标准值Q↓K,应根据荷载的观测和试验数据,并考虑工程经验,按设计基准期最大荷载概率分布的某一分位值确定,设计时可按《荷载规范》采用。荷载组合值系数ψ↓c应根据两个或两个以上可变荷载在设计基准期内的相遇情况及其组合的最大荷载效应概率分布,并考虑结构构件可靠指标具有一致性的原则确定。一般情况下,当有风荷载参与组合时,ψc取0.6;当没有风荷载参与组合时,ψc取1.0;对于高层建筑和高耸构筑物,其组

合中风荷载效应的Ψ↓c均取1.0;在一般框架、排架结构的简化组合中,当参与组合的可变荷载有两个或两个以上,且其中包括风荷载时,ψ取0.85;其他情况,Ψ均取1.0。荷载准永久值系数Ψ↓q是荷载准永久值与荷载标准值的比值。荷载准永久值应按在设计基准期内荷载达到和超过该值的总持续时间T,与设计基准期T的比值确定,比值Tq /T可采用0,5。所以荷载准永久值相当于任意时点荷载概率密度函数50%的分位值。

结构上的作用

各种施加在结构上的集中或分布荷载,以及引起结构外加变形或约束变形的原因,均称为结构上的作用。引起结构外加变形或约束变形的原因系指地层、基础沉降、温度变化和焊接等作用。结构上前作用可按下列原则分类:1.按其随时间的变异性和出现的可能性可分为永久作用,如结构自重、土压力、预应力等;可变作用,如楼面活荷载、风、雪荷载、温度等;偶然作用,如地震、****、撞击等。2.按随空间位置的变异分为固定作用,如楼面上的固定设备荷载、构件自重等;可动作用,如楼面上人员荷载、吊车荷载等。3.按结构的反应分为静态作用,如结构自重、楼面活荷重等;动态作用,如地震、吊车荷载及高耸结构上的风荷载等。

结构的作用效应

作用引起的结构或构件的内力和变形即称为结构的作用效应。常见的作用效应有:1.内力。(1)轴向力,即作用引起的结构或构件某一正截面上的法向拉力或压力;(2)剪力,即作用引起的结

构或构件某一截面上的切向力;(3)弯矩,即作用引起的结构或构件某一截面上的内力矩;(4)扭矩,即作用引起的结构或构件某一截面上的剪力构成的力偶矩。2.应力。如正应力、剪应力、主应力等。3.位移。作用引起的结构或构件中某点位置改变(线位移)或某线段方向的改变(角位移)。4.挠度。构件轴线或中面上某点在弯短作用平面内垂直于轴线或中面的线位移。5.变形。作用引起的结构或构件中各点间的相对位移。变形分为弹性变形和塑性变形。6.应变:如线应变、剪应变和主应变等。https://www.360docs.net/doc/515693407.html,

抗力

结构或构件承受作用效应的能力称为抗力,如强度、刚度和抗裂度等。强度:材料或构件抵抗破坏的能力,其值为在一定的受力状态和工作条件下,材料所能承受的最大应力或构件所能承受的最大内力(承载能力)。刚度:结构或构件抵抗变形的能力,包括构件刚度和截面刚度,按受力状态不同可分为轴向刚度、弯曲刚度、剪变刚度和扭转刚度等。对于构件刚度,其值为施加于构件上的力(力矩)与它引起的线位移(角位移)之比。对于截面

刚度,在弹性阶段,其值为材料弹性模量或剪变模量与截面面积或惯性矩的乘积。抗裂度:结构或构件抵抗开裂的能力。

一些基本概念3

弹性模量(E)、剪变模量(G)、变形模量(Edef)弹性模量:

材料在单向受拉或受压且应力和应变呈线性关系时,截面上正应力与对应的正应变的比值:E:σ/ε。剪变模量:材料在单向受剪且应力和应变呈线性关系时,截面上剪应力与对应的剪应变的比值:G=τ/γ(τ为剪应力,γ为剪切角)。在弹性变形范围内,G=E/2(1+υ)。υ——泊松比,预料在单向受拉或受压时,横向正应变与轴向正应变的比值。如对钢材,=0.3,算得G=0.384E;对混凝土,υ=1/6,则得G=0.425E。变形模量:材料在单向受拉或受压且应力和应变呈非线性(或部分线性和部分非线性)关系时,截面上正应力与对应的正应变的比值。例如混凝土,其应力应变关系只是在快速加荷或应力小于fc/3(fc为混凝土轴心抗压强度)时才接近直线,而一般情况下应力应变为曲线关系。混凝土规范中的Ec是在应力上限为σ:0.5fc 反复加荷5~10次后变形趋于稳定,应力应变曲线接近于直线,其斜率即为混凝土的弹性模量Ec。当应力较大时,应力应变曲线上任一点,与原点。的联线oa的斜率称为混凝土的变形模量E=tga↓1。E′c也称为割线模量。变形模量可用弹性模量表示:E′c=,Ec。υ为弹性系数,随应力的增大而减小,即变形模量降低。

几个常用几何参数

1.截面面积矩(又叫静矩s)。截面上某一微元面积到截面上某一指定轴线距离的乘积,称为微元面积对指定轴的静矩;而把微元面积与各微元至截面上指定轴线距离乘积的积分称为截面的对指定轴的静矩Sx=ydF。

2.截面惯性矩(I)。截面各微元面积与各微元至截面某一指定轴线距离二次方乘积的积分Ix=y ↑2dF。

3.截面极惯性矩(Ip)。截面各微元面积与各微元至垂直于截面的某一指定轴线二次方乘积的积分Ip=P↑2dF。截面对任意一对互相垂直轴的惯性矩之和,等于截面对该二轴交点的极惯性矩Ip=Iy+Iz。4.截面抵抗矩(W)。截面对其形心轴惯性矩与截面上最远点至形心铀距离的比值W2=。

5.截面回转半径(i)。截面对其形心轴的惯性矩除以截面面积的商的二次方根。

6.弯曲中心。对矩形、I形梁的纵向对称中面施加垂直(或叫横向力)外,对其他截面梁除产生弯曲外,还产生扭转。欲使梁不产生扭转,就必须使外力P在过某一A点的纵向平面内,此A 点就称为弯曲中心,即只有当横向力P作用在通过弯曲中心的纵向平面内时,梁才只产生弯曲而不产生扭转。

性破坏和延性破坏

脆性破坏:

结构或构件在破坏前无明显变形或其它预兆的破坏类型。

延性破坏:

结构或构件在破坏前有明显变形或其它预兆的破坏类型。

在冲击和振动荷载作用下,要求结构的材料能够吸收较大的能量,同时能产生一定的变形而不致破坏,即要求结构或构件有较好的延性。例如,钢结构材料延性好,可抵抗强烈地震而不倒塌;而砖石结构变形能力差,在强烈地震下容易出现脆性破坏而倒塌。为此,砖石砌体结构房屋需按抗震规范要求设置构造柱和抗震圈梁,约束砌体的变形,以增加其在地震作用下的抗倒塌能力。钢筋混凝土材料具有双重性,如果设计合理,能消除或减少混凝土脆性性质的危害,充分发挥钢筋塑性性能,实现延性结构。为此,抗震的钢筋混凝土结构都要按照延性结构要求进行抗震设计,以达到抗震设防的三水准要求:小震下结构处于弹性状态;中震时,结构可能损坏,但经修理即可继续使用;大震时,结构可能有些破坏,但不致倒塌或危及生命安全。

压杆稳定

细长的受压杆当压力达到一定值时,受压杆可能突然弯曲而破坏,即产生失稳现象。由于受压杆失稳后将丧失继续承受原设计荷载的能力,而失稳现象又常是突然发生的,所以,结构中受压杆件的失稳常造成严重的后果,甚至导致整个结构物的倒塌。工程上出现较大的工程事故中,有相当一部分是因为受压构件失稳所致,因此对受压杆的稳定问题绝不容忽视。所谓压杆的稳定,是指受压杆件其平衡状态的稳定性。当压力P小于某一值时,直线状态的平衡为稳定的,当P大于该值时,便是不稳定的,其界限值P↓(1j)称为临界力。当压杆处于不稳定的平衡状态时,就称为丧失稳定或简称失稳。显然,承载结构中的受压杆件绝对不允许失稳。由于杆端的支承对杆的变形起约束作用,且不同的支承形式对杆件变形的约束作用也不同,因此,同一受压杆当两端的支承情况不同时,其所能受到的临界力值也必然不同。工程中一般根据杆件支承条件用“计算长度”来反映压杆稳定的因素。不同材料的压杆,在不同支承条件下,其承载力的折减系数也不同,所用的名称也不同,例如钢压杆叫长细比,钢筋混凝土柱叫高宽比,砌体墙、柱叫高厚比,但这些都是考虑压杆稳定问题。

极限状态

整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求,此特定状态称为该功能的极限状态。极限状态可分为两类:1.承载能力极限状态。结构或结构构件达到最大承载能力或达到不适于继续承载的变形的极限状态:(1)整个结构或

结构的一部分作为刚体失去平衡(如倾覆等);(2)结构构件或连接因材料强度被超过而破坏(包括疲劳破坏),或因过度的塑性变形而不适于继续承载;(3)结构转变为机动体系;(4)结构或结构构件丧失稳定(如压屈等)。2.正常使用极限状态。结构或结构构件达到使用功能上允许的某一限值的极限状态。出现下列状态之一时,即认为超过了正常使用极限状态:(1)影响正常使用或外观的变形;(2)影响正常使用或耐久性能的局部损坏(包括裂缝);(3)影响正常使用的振动;(4)影响正常使用的其它特定状态。

结构设计方法

结构设计的基本任务,是在结构的可靠与经济之间选择一种合理的平衡,力求以最低的代价,使所建造的结构在规定的条件下和规定的使用期限内,能满足预定的安全性、适用性和耐久性等功能要求。为达到这个目的,人们采用过多种设计方法。以现代观点看,可划分为定值设计法和概率设计法两大类。1.定值设计法。将影响结构可靠度的主要因素(如荷载、材料强度、几何参数、计算公式精度等)看作非随机变量,而且采用以经验为主确定的安全系数来度量结构可靠性的设计方法,即确定性方法。此方法要求任何情况下结构的荷载效应S (内力、变形、裂缝宽度等)不应大于结构抗力R(强度、刚度、抗裂度等),即S≤R。在20****70年代中期前,我国和国外主要都采用这种方法。2.概率设计法:将影响结构可靠度的主要因素看作随机变量,而且采用以统计为主确定的失效概率或可靠指标来度量结构可靠性的设计方法,即非确定性方法。此方法要求按概率观念来设计结构,也就是出现结构荷载效应3大于结构抗力R(S>R)的概率应小于某个可以接受的规定值。这种方法是20****40年代提出来的,至70年代后期在国际上已进入实用阶段。我国自80年代中期,结构设计方法开始由定值法向概率法过渡。

1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,在剪力墙的轴压比计算中,轴力取重力荷载代表设计值,与柱子的不一样。

2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5。

3、侧向刚度比:主要为控制结构竖向规则性。

4、位移比:主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。控制比例为1.5。见抗规3.4.2、3.4.3。

5、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响,要求见高规4.3.5。

6、刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆,要求见高规。

7、剪跨比:梁的剪跨

比,剪力的位置a与h0的比值。剪跨比影响了剪应力和正应力之间的相对关系,因此也决定了主应力的大小和方向,也影响着梁的斜截面受剪承载力和破坏的方式;同时也反映在受剪承载力的公式上。柱的剪跨比:,若反弯点在柱子层高范围内,可取柱子的剪跨比小于2时,需要全长加密,见混凝土规范11.4.12、11.4.17。

8、剪压比(梁柱截面上的名义剪应力V/bh0与混凝土轴心抗压强度设计值的比值):梁塑性铰区的截面剪压比对梁的延性、耗能能力及保持梁的强度、刚度有明显的影响,当剪压比大于0.15的时候,梁的强度和刚度有明显的退化现象,此时再增加箍筋用量,也不能发挥作用,因此对梁柱的截面尺寸有所要求。

9、轴压比:轴压比是指有地震作用组合的柱组合轴压力设计值与柱的全截…………….面面积和砼轴心受压抗压强度设计值乘积的比值,是影响柱子破坏形态和延性的主要因素之一。轴压比限值的依据是理论分析和试验研究并参照国外的类似条件确定的,其基准值是对称配筋柱大小偏心

受压状态的轴压比分界值。

10、跨高比:梁的跨高比(梁的净跨与梁截面高度的比值)对梁的抗震性能有明显的影响。梁(非剪力墙的连梁)的跨高比小于5和深梁都按照深受弯构件进行计算的。

11、延性比:延性比即为弹塑性位移增大系数。延性是指材料、构件、结构在初始强度没有明显退化的情况下的非弹性变形能力。延性比主要分为三个层面,即截面的延性比、构件的延性比和结构的延性比。结构的延性比多指框架或者剪力墙等结构的水平荷载-顶层水平位移(P-delta)、水平荷载-层间位移等曲线。结构的屈服位移有等能量方法、几何做图法等

我所理解的房地产结构设计管理

我所理解的房地产结构设计管理 最近在整理手头项目管理资料时,眼前不禁回想起这些年这些项目从方案落地、土方开挖到基础和主体施工,从结构封顶、竣工验收到最终交付的种种情景。这其中曾经填过不少的“坑”,也踩过不少“雷”,但不管如何,当夜幕降临,看着这些小区家家户户亮起温馨的灯光时,这时才感觉到其实钢筋混凝土也是有温度的,而在这些小区的建设过程中,无论工程师们付出了多少辛酸在这一刻也是值得的!结构设计管理岗源于房地产设计管理的精细化及对项目工程的整 体把控的要求。有些公司是没有这个岗位的,或者只是区域公司的层面设此岗位,而有的公司甚至把这块职能交给设计院代管或者项目施工管理协调,我觉得这里面会存在一些问题。 既然房地产公司设置了结构管理这个职位,我们就有必要认真思考其存在的价值和公司期望这个岗位带来的效益。一栋楼,一个地下室,在满足安全和功能使用的基本前提下,保持其经济性,控制合理的结构成本是这个岗位的常规要求,按照此要求,公司会具体量化到结构指标如含钢量、混凝土含量、图纸变更率等等去进行考核,但我觉得结构管理的价值或者对自己所处此岗位的要求并不能仅仅局限在这个范围,尤其是在房地产市场环境竞争越来越激烈,客户对产品

的要求越来越高的市场环境下。我认为,从房地产开发的角度,结构设计管理的视角不仅仅要突破本专业,还应该自我创新,具体体现在以下几点: 一、从回归客户体验的角度重新思考设计从回归客户体验的角度重新思考意味着,需要重新思考结构体系,比如创新户型,是否为了省一点点钢筋造成在业主的客厅或者卧室边突出一根柱子、一根梁或者是混凝土反坎;如何配合装修的“百变户型”设计出相应合理的结构布置;地下车库能不能更加的人性化,有些局部区域里,开车或者倒车不会出现较密的梁和柱子;为了小区的景观更加丰富和互动性更强,前期考虑合理的荷载和结构方案等等。 另一方面从产品设计的角度,所谓结构设计回归客户体验意指,在合理的成本控制框架内,空间上,给室内装修留有极致的尺寸;立面上,实现建筑原有的设计风格;景观上,协助打造人与自然、人与人之间的互动和谐的场景等等。二、更加注重场地分析和方案分析 之所以提出这一点思考,是因为这两年经历的项目不管从本身的设计还是从周边的场地情况表现出越来越复杂的趋势,而且对设计管理的要求也越来越高。比如,场地周边市政管线密布、强发育熔岩地质、周边水库侵入地块、原始地形竖向标高差异性大、老建筑的拆迁及原有基础的制约等等无不影响着项目的前期方案、后期施工甚至是项目全过程的开发

包装结构设计完整

一、包装 1.包装的含义 包装,常备单纯地理解为盛装商品的容器,有时也被理解为包装商品的过程。 美国包装学会对于包装的定义:包装是符合产品的需求,依据最佳的成本,便于货物的转送、流通、交易、储存于贩卖而实施的统筹整体系统的准备工作。 日本对包装的定义是:包装便于物品的输送及保管,并维护商品的价值,保持商品的状态而适当的材料或容器对物品所实施的技术及实施的状态。 中国;包装是在为流通过程中保护产品、方便贮存、促进销售,按一定的技术方法而采用的容器、材料和辅助物等总的名称。包装的目的是保护产品、方便贮存、促进销售。 2包装的功能 包装的功能是指,包装所具有的保护装物,使其不致损坏的能力与效率。包装的功能的作用对象并不是单一的,有针对装物,有的则是为了消费者。 a,容装功能。 b,计量功能 c,保护功能。保护功能是包装的基本功能。包装的保护功能主要体现在两个方面;一是保卫功能,保卫功能是指包装必须具有保持装物不受外力的侵犯,并且具有维持与昂装的能力。具体就是说包装具备防震动、防冲击、防折裂、防挤压、防辐射、防盗窃等能力:二是贮存功能,包装具有储存、保质的能力。 d,方便功能。是指包装具有使装物在保护、贮存等方面的便利,从而提高物品的流通效率。 具体表现在五个方面;一是方便运输,二是方便储存,(易堆放,可以减少仓储的费用,提高仓储效率)三是方便销售(适当的销售包装,有利于在橱窗、货架上列和销售)四是方便使用,五是方便处理(包装材料必须符合环保要求,便于使用后的处理) e,促销功能。是指包装具有吸引消费者、促进销售的能力。 f,社会功能。包装系统是生产系统与社会发生联系的重要媒介,反映着当代生产、技术发展水平,以及消费趋势和消费水平。 3包装分类 a按包装的目的分。可分为销售包装和运输包装(工业包装)。销售包装是以销售为主要目的的包装,与装物一起到达消费者手中,具有防护、美化和宣传产品,促进销售的作用。销售包装的容量相对较小,造型精美,在结构上注重使用、方便,设计上追求和强化心理效应;运输包装又称工业包装,使用于工业用品或一些产品在运输时使用的包装。以运输、贮存为主要目的,具有保障产品安全,方便储运装卸,加速交换的作用。运输包装一般容量较大,相对于销售包装更注重包装的强度、防震等功能及实用方面的要求,对于外观装饰设计比较不注重。 b按包装的相对位置分。可分为包装和外包装。包装是指商品的部包装,目的在于保护商品,是为了容物单件分量盛装和满足美化要求所设计的包装。外包装是指容物及其包装的再包装,是贮运、携带或进一步保护商品而设计的包装。 c按包装材料分。包装材料多种多样,总体上可以根据材料的硬度分为软包装和硬包装。软包装是指在充填或取出容物后,容器形状可发生改变的包装,这类用的材料一般是由纸、纤维制品、塑料薄膜或符合材料制成的;硬包装是指充填或取出容物后,包装形状基本不发生变形的包装,这类包装的材料一般是由金属、木材、玻璃、压缩包装、器及硬质塑料等制成,具有较高的强度和硬度。

建筑结构的认识

建筑结构的认识 从古到今我国的建筑发展史,建筑结构形式的发展,始终都遵循着一个规律——安全可靠。如何设计出高大、安全可靠的建筑,是建筑结构工作者的道路。我简单的说明一下对建筑结构形式发展的认识。结构是指建筑物的承重骨架其作用是保证建筑物在使用期限内,把作用在建筑物上的各种荷载或作用力,承担起来,同时在保证建筑物的强度、刚度和耐久性的情况下,把所有的作用力传到地基中去。建筑物形式由于有多种多样,加上其房间面积大小、开间进深以及组合方式的不同,相应采用的结构也就有所不同。 建筑中由若干构件连接而成的能承受作用的平面或空间体系称为建筑结构。 建筑结构有多种分类方法。按照承重结构所用的材料不同,建筑结构可分为混凝土结构、砌体结构、钢结构、木结构和混合结构五种类型。 建筑结构中常见结构受力体系类型及施工方法: 1.混合结构:砖混或砖木……,块材砌筑墙体楼板 2.框架结构:梁柱刚接而成的受力体系,预制柱、梁、板装配;现浇混凝土柱、梁,预制板;全现浇钢筋混凝土 3.框架剪力墙结构:现浇混凝土墙,现浇混凝土柱、梁,现浇板 4.剪力墙结构:全装配大板;内浇外挂;全现浇;配筋砌块墙体,现浇构造柱、芯柱和圈梁 5.框筒结构:全现浇;

6.筒中筒结构:内外各做成筒,一般内筒为全现浇;外筒做成密柱深梁形成筒体 7.钢网架、悬索结构 建筑结构由水平构件、竖向构件和基础组成。水平构件包括梁、板等,用以承受竖向荷载;竖向构件包括柱、墙等,其作用是支承水平构建或承受水平荷载;基础的作用是将建筑物承受的荷载传至基础。 明梁是看得见突出的,一般在房中一眼看到的向下突出的暗梁是看不见的,表面上看都是和楼面水平的。只是在布钢筋的时候加进梁的钢筋 一般情况下,一定选择明梁,毕竟明梁的实际支撑作用远大于暗梁。对于大面积应该要加一部分暗梁 但是,要考虑一个地方,梁很厚,尤其在楼梯转角处,要考虑人的头会不会碰撞房间一共做几个梁,明梁还是暗梁,做在什么位置,一定要写清楚根据我对建筑结构的理解,建筑结构设计可分为整体设计和部件设计两部分。

浅谈民用飞机短舱进气道结构设计

浅谈民用飞机短舱进气道结构设计 摘要:本文主要介绍安装先进涡轮风扇发动机的民用飞机进气道结构设计,包括进气道消声结构的设计。 关键词:进气道结构设计消声设计 0.概述 高涵道比、高效率的先进的动力装置是民用大型客机的心脏。作为动力装置重要组成部分的短舱进气道,对于整个动力装置的性能起着重要的作用。 1.进气道设计要求 进气道的内部通道设计必须保证在发动机各种工作状态下能供给发动机所需要的空气流量,并为发动机风扇进气面提供均匀流场和高总压恢复系数。进气道结构设计中,应运用声学处理技术,以最大程度减小发动机外传噪声,使飞机符合FAR-36部适航标准的要求。短舱进气道应当与风扇叶片一样具有抵抗飞行中鸟撞的能力。进气道必须采取防冰措施,在各种气候条件下,发动机及其进气系统上,都不产生不利于发动机运行或会引起推力严重下降的冰积聚。 2.进气道结构设计 进气道主要由唇口蒙皮、前隔板、后隔板、内壁板、外壁板和连接法兰组成。 进气道唇口蒙皮通常采用铝合金材料,表面阳极化处理,外表面打磨光滑,能够承受雨砂的侵蚀和冰雹的冲击,并且是防鸟撞的第一道防线。进气道唇口蒙皮通过角材与进气道后隔板与外壁板相连接,角材之间通过接头连接。进气道前隔板组件由腹板、径向肋、加强件、开口和管路支架组成。腹板由钛合金退火材料成形,以承受防冰管路的高温,由左右两块拼接而成。腹板上通常布置有径向肋,主要对结构起到加强作用。进气道前隔板组件通过角材与唇口蒙皮、内壁板和外壁板相连接。进气道前隔板组件主要承受的载荷为鸟撞冲击载荷,是防鸟撞设计的主要结构件。 进气道后隔板组件由腹板、径向肋、开口组成。腹板通常采用钛合金退火材料成形,由左右两块拼接或者整体成型,主要吸收FBO工况时风扇打出能量。腹板通常有径向肋,材料为钛合金,主要对结构起到加强作用。进气道后隔板组件在外侧通过角材与外壁板相连接,并且通过角材提供风扇罩罩体搭接区域;后隔板组件在内侧通过角材与内壁板相连接。进气道后隔板组件是防鸟撞结构设计的最后一道防线,要保证鸟的撞击不会穿透后隔板打到风扇舱段,后隔板的变形不能引起燃油管路以及其它系统的损坏以危及到飞行的安全。同时,尽管FADEC 位于风扇舱段区而不在进气道内,但是不能允许鸟撞击后隔板变形而接触到FADEC。因此后隔板需要布置一定数量的钛合金材料径向加强肋。后隔板通常也是风扇舱段火区的前向边,因此后隔板需要采用钛合金退火材料且必须布置防

包装结构设计(第三版)部分习题答案

1-1.举例说明包装结构、造型与装潢设计之间的关系。 答:三者具有一定的关联性,如折叠纸盒设计中,不是在结构图上随意的设计图案、文字、商标等,而是要考虑装潢的各要素与结构的各要素,然后按一定方式结合。 三者具有共同的目的性,如折叠纸盒设计中,其结构具有容装性和保护性,装潢具有显示性,造型具有陈列性,三者结合具有方便、促销售等功能; 三者具有相辅相成的综合性,如折叠纸盒设计中,不同的结构,不同的造型,不同的装潢对于产品的销售影响是不同的,必须三者有机的组合才能达到最好的效果。 2-3.什么是内折、外折与对折 答:纸盒折叠成型后,纸板底层为盒内角的两个边,而面层为外角的两个边,则为内折,反之为外折;如果纸板180°折叠后,纸板两底层相对,则为内对折,反之为外对折。 2-4.在瓦楞纸箱设计中如何选择楞向 答:盘式盒盒体的瓦楞楞向应与纸盒长度方向平行,02类纸箱与纸箱高度纵向平行;只有一组压痕线的瓦楞纸箱,瓦楞楞向应与该组压痕线垂直,瓦楞衬件一般是垂直瓦楞。 2-5.在折叠纸盒设计中如何选择纸板纹向 答:纸板纹向一般可以通过目视观察纸中纤维排列方向进行确定,也可以同时用水湿纸板使其发生弯曲,与弯曲轴向平行的方向即为纸板纵向。 2-6.纸包装制造尺寸为什么不能用LxBxH表示 答:制造尺寸指生产尺寸,即在结构设计图上标注的尺寸,就直角六面体包装容器类来说,还不止一组数据,因此不能用LxBxH表示。 4-1.为什么粘贴纸盒制造尺寸计算公式与折叠纸盒有所不同 答:粘贴纸盒纸材选用由短纤维草浆制造的非耐折纸板,其耐折性能较差,折叠时极易在压痕处发生断裂,所以其制造尺寸就等于内尺寸,而折叠纸盒利用的耐折纸板,其纸页两面均有足够的长纤维产生以必要的耐折性能和足够的弯曲强度,使其在折叠后不会沿压痕处断裂,故其制造尺寸不等于内尺寸。 6-1.塑料容器的选材原则是什么/ 6-2.注射、压制和压铸成型容器的结构设计要素有哪些 6-3.容器壁厚过大和过小有何不利影响 6-4.为提高中空容器的强度和刚度,设计时可采用哪些方法 6-5.为什么说中空容器的肩部形状十分重要怎样设计较为合理 6-6.塑料容器的外形设计需注意哪些与包装生产线相关的问题 6-7.简述造成塑件成型误差的主要因素。 6-8.真空成型容器的壁厚分布有何规律是何原因 7-1.在压制法生产中,为什么随着开模时间的延长,玻璃瓶罐内表面脱模斜度逐渐增大,而外表面脱模斜度逐渐减小 7-2.在异型瓶设计中,为什么拉应力作用区壁厚取大值,压应力作用区壁厚取小值 7-3.螺纹瓶口的种类及特点是什么 7-4.塞形瓶口的设计要求是什么

多工位级进模的设计说明

多工位级进模的设计 -----------------------作者:

-----------------------日期:

多工位级进模的设计(基础知识) 01 1 概述 多工位级进模是在普通级进模的基础上发展起来的一种高精度、高效率、长寿命的模具,是技术密集型模具的重要代表,是冲模发展方向之一。这种模具除进行冲孔落料工作外,还可根据零件结构的特点和成形性质,完成压筋、冲窝、弯曲、拉深等成形工序,甚至还可以在模具中完成装配工序。冲压时,将带料或条料由模具入口端送进后,在严格控制步距精度的条件下,按照成形工艺安排的顺序,通过各工位的连续冲压,在最后工位经冲裁或切断后,便可冲制出符合产品要求的冲压件。为保证多工位级进模的正常工作,模具必须具有高精度的导向和准确的定距系统,配备有自动送料、自动出件、安全检测等装置。所以多工位级进模与普通冲模相比要复杂,具有如下特点:(1)在一副模具中,可以完成包括冲裁,弯曲,拉深和成形等多道冲压工序;减少了使用多副模具的周转和重复定位过程,显著提高了劳动生产率和设备利用率。(2)由于在级进模中工序可以分散在不同的工位上,故不存在复合模的“最小壁厚”问 题,设计时还可根据模具强度和模具的装配需要留出空工位,从而保证模具的强度和装配空 间。 (3)多工位级进模通常具有高精度的内、外导向(除模架导向精度要求高外,还必须对细小凸模实施内导向保护)和准确的定距系统,以保证产品零件的加工精度和模具寿命。 (4)多工位级进模常采用高速冲床生产冲压件,模具采用了自动送料、自动出件、安全检测等自动化装置,操作安全,具有较高的生产效率。目前,世界上最先进的多工位级进模工位数多达50多个,冲压速度达1000次/分以上。 (5)多工位级进模结构复杂,镶块较多,模具制造精度要求很高,给模具的制造、调试及维修带来一定的难度。同时要求模具零件具有互换性,在模具零件磨损或损坏后要求更换迅速,方便,可靠。所以模具工作零件选材必须好(常采用高强度的高合金工具钢、高速钢或硬质合金等材料),必须应用慢走丝线切割加工、成型磨削、坐标镗、坐标磨等先进加工方法制造模具。 (6)多工位级进模主要用于冲制厚度较薄(一般不超过2mm)、产量大,形状复杂、精度要求较高的中、小型零件。用这种模具冲制的零件,精度可达IT10级。 由上可知,多工位级进模的结构比较复杂,模具设计和制造技术要求较高,同时对冲压设备、原材料也有相应的要求,模具的成本高。因此,在模具设计前必须对工件进行全面分析,然后合理确定该工件的冲压成形工艺方案,正确设计模具结构和模具零件的加工工艺规程,以获得最佳的技术经济效益。显然,采用多工位级进模进行冲压成形

我对工业设计的理解

我对工业设计的理解 工业设计是为制造工业产品所进行的设计,它包含产品外部和内部设计的整个过程,对产品的外观和性能,生产技术的发挥,以及品牌建设产生最直接的影响。发达国家发展的实践表明,工业设计已成为制造业竞争的源泉和核心动力之一。尤其是在经济全球化日趋深入、国际市场竞争激烈的情况下,产品的国际竞争力将首先取决于产品的设计开发能力。 它要求我们,学习工业设计的基础理论与知识,具有应用造型设计原理和法则处理各种产品的造型与色彩、形式与外观、结构与功能、结构与材料、外形与工艺、产品与人、产品与环境、市场的关系,并将这些关系统一表现在产品的造型设计的基本能力。向别人表达自己的设计观点时,要有较好的语言和文字表达能力,可见,工业设计培养的是我们的综合素质。我个人觉得,工业设计的最终目标,就是将我们培育成具备一定工业设计的基础理论、知识与应用能力的高级专门人才,将来能在相应的岗位上得到很好的应用。 一、什么是工业设计 钱学森(1987)认为,“所谓工业设计,就是综合了工业产品的技术功能设计和外形美术设计,所以是自然科学技术和社会科学、哲学、美学的汇合”。吕东(1991)认为:“工业产品设计是科技成果进入市场的桥梁,先进技术需要通过工业设计转化为商品,实现科技成果向商品转化。”这一定义准确地表述了设计、技术、经济之间的关系。工信部(2010年)在《关于促进工业设计发展的若干指导意见》中认为,“工业设计是以工业产品为主要对象,综合运用科技成果和工学、美学、心理学、经济学等知识,对产品的功能、结构、形态及包装等进行整合优化的创新活动。” 综上所述,工业设计是综合运用人类的技术发明成果,融合美学、艺术、经济、环境以及其他哲学社会科学于一体,涉及领域广泛的集成创新活动。它主要通过设计师的创新创意劳动,使产品品质和附加价值得到迅速提升,具有智力密集、技术密集、科技含量高、附加值高等特点。 二、工业设计的发展背景 我国工业设计已经基本形成了环渤海(以北京为中心,向大连、青岛等地扩展)、长三角(以上海为中心,向杭州、宁波、无锡、太仓等地扩展)、珠三角(以深圳、广州为中心,向东莞、顺德等地扩展)三大设计产业带的布局。通过为三大经济圈提供设计服务,提升了区域制造业的竞争力,同时,依托区域雄厚的产业基础和市场实现了设计服务业的发展。未来,设计产业发展空间将逐步由中心城市向周边城市扩展,由东部沿海城市向内陆城市延伸,逐步形成以三大设计产业带为支撑,带动内陆地区、中西部地区设计服务业发展的格局。国家提出的《中国制造2025》、国家“十三五”规划纲要、《发展服务型制造专项行动指南》等均将工业设计和文化创意作为推动制造业和实体经济转型升级的战略措施,特别强调发展工业设计和文化创意产业的重要意义,多方合作加快提升全社会的创新设计能力,推动创新驱动发展。 园区聚集效应逐步显现。工业设计园区日益成为产业聚集的载体。近年来,一些有条件的地区陆续建立了设计产业园。较有代表性的有:无锡(国家)工业设计园、深圳田面设计之都、上海市8号桥设计创意园、北京DRC工业设计创意产业基地、顺德北窖国家工业设计示范基地等。这些园区在当地政府的大力支持下,广泛吸收国有资本、民营资本和外资共同投资兴建,采取市场化运营方式,形成了明显的聚集效应。 人力资源队伍迅速扩大。据调查,我国设计从业者年龄结构主要在20-30岁之间,所占比例达到93%。地域分布主要经济发达城市。其中,华北、华东、华南地区分别为24%、

浅析进气道隐身技术

浅析进气道隐身技术 俄罗斯五代原型机T50的首飞唤起了公众对于其航空工业实力的强烈关注,对T50设计思想分析和性能推测就没有停止过。起初,由于只有T50首飞时的小段视频作为分析资料,对于T50的分析大多局限于整体而没有细节。近日在网络上流传的T50进气道正面清晰照片为偶们分析T50提供了很好的素材,也成就了现在异常流行的“毛五悲剧”。网友们对T50采用弯度很小的S形进气道恶评如潮,纷纷大呼“T50隐身性能悲剧了”,以至于上军网不顺便踩一脚俄罗斯五代机都不好意思出来见人。其主要理由就是现代隐身飞机为了遮挡发动机风扇叶片都采用了S形隐身进气道设计,而T50的发动机叶片竟然非常不和谐地裸露在众人的视野中。其实,进气道乃至飞机隐身技术是隐身与各方面性能指标权衡的艺术,进气道隐身并没有固定模式可以遵循。是否采用S形进气道对发动机叶片进行遮挡,也不是判断一型飞机隐身性能优劣的标准。路人皆知的芙蓉姐姐总喜欢把自己的肉体扭曲成怪异的S形,难道性能尖端的五代作战飞机非要把自己的进气道也弄成神似芙蓉姐姐腰肢的模样就叫隐身了么? T50照片,图中能清晰的看到发动机叶片 雷达隐身原理 雷达隐身就是控制和降低军用目标的雷达特征,迫使敌方电子探测系统和武器平台降低其战斗效力,从而提高军用目标的突防能力和生存能力。狭义地说,雷达隐身就是反雷达的隐身技术。一般说来,雷达隐身代表了各种相互矛盾的要求之间的一个折衷,其利和弊两方面最后应得以平衡。例如,当修改目标外形设计以获得雷达隐身时,雷达截面在一个观察角范围内的减少通常伴随着在另一些观察角上的增加,并且外形的修改又往往会带来飞行器的气动特性方面的问题。我们己经知道,如果使用雷达吸波材料,则可通过在材料内能量的耗散来实现雷达隐身,而在其他方向上的RCS电平可保持相对不变,但此时也是以增加重量、体积和表面维护问题为代价的,使目标的有效载荷和作用距离受到影响。因此,每一种雷达隐身的方法都包含了它自己的折衷选择方式,而它们又决定于特定目

多工位级进模设计大全

多工位级进模的设计(基础知识) 1 概述 多工位级进模是在普通级进模的基础上发展起来的一种高精度、高效率、长寿命的模具,是技术密集型模具的重要代表,是冲模发展方向之一。这种模具除进行冲孔落料工作外,还可根据零件结构的特点和成形性质,完成压筋、冲窝、弯曲、拉深等成形工序,甚至还可以在模具中完成装配工序。冲压时,将带料或条料由模具入口端送进后,在严格控制步距精度的条件下,按照成形工艺安排的顺序,通过各工位的连续冲压,在最后工位经冲裁或切断后,便可冲制出符合产品要求的冲压件。为保证多工位级进模的正常工作,模具必须具有高精度的导向和准确的定距系统,配备有自动送料、自动出件、安全检测等装置。所以多工位级进模与普通冲模相比要复杂,具有如下特点: (1)在一副模具中,可以完成包括冲裁,弯曲,拉深和成形等多道冲压工序;减少了使用多副模具的周转和重复定位过程,显著提高了劳动生产率和设备利用率。 (2)由于在级进模中工序可以分散在不同的工位上,故不存在复合模的“最小壁厚”问 题,设计时还可根据模具强度和模具的装配需要留出空工位,从而保证模具的强度和装配空 间。 (3)多工位级进模通常具有高精度的内、外导向(除模架导向精度要求高外,还必须对细小凸模实施内导向保护)和准确的定距系统,以保证产品零件的加工精度和模具寿命。 (4)多工位级进模常采用高速冲床生产冲压件,模具采用了自动送料、自动出件、安全检测等自动化装置,操作安全,具有较高的生产效率。目前,世界上最先进的多工位级进模工位数多达50多个,冲压速度达1000次/分以上。 (5)多工位级进模结构复杂,镶块较多,模具制造精度要求很高,给模具的制造、调试及维修带来一定的难度。同时要求模具零件具有互换性,在模具零件磨损或损坏后要求更换迅速,方便,可靠。所以模具工作零件选材必须好(常采用高强度的高合金工具钢、高速钢或硬质合金等材料),必须应用慢走丝线切割加工、成型磨削、坐标镗、坐标磨等先进加工方法制造模具。 (6)多工位级进模主要用于冲制厚度较薄(一般不超过2mm)、产量大,形状复杂、精度要求较高的中、小型零件。用这种模具冲制的零件,精度可达IT10级。 由上可知,多工位级进模的结构比较复杂,模具设计和制造技术要求较高,同时对冲压设备、原材料也有相应的要求,模具的成本高。因此,在模具设计前必须对工件进行全面分析,然后合理确定该工件的冲压成形工艺方案,正确设计模具结构和模具零件

我对结构设计的理解

我对结构设计的理解 刚开始踏入结构设计行业,我想大部分新人都是先从楼梯、坡道这些东西开始画的。为什么呢?从两个角度看,第一是因为楼梯常常被作为附属结构,产值提成低,而且设计的东西(梁、板、柱、墙等等),空间结构复杂,所以对于老员工来说是“费力不讨好”的差事;第二是因为结构设计上,大多数设计院往往把楼梯的荷载值事先加载到楼梯间梁或墙上了,设计上往往也将楼梯与主题结构之间设计为铰接,即便后期如果有荷载增加等因素也可以在不大范围影响的情形下快速修改(很少会因为楼梯荷载改变而改变梁柱位置,充其量也就改一下尺寸,然后跑一边盈建科或PKPM),而对于有几年画图经验的设计者来说,楼梯基本上很多是套路(用心的设计者还会自己编制一些实用设计表格批量生产楼梯,详图自己做一个详图库改一改就好),因此从结构和出图来看,楼梯出于一个比较附属的位置(虽然很多专家说楼梯非常影响主体结构,应该把楼梯和主体结构整体建模一起分析计算,并且楼梯设计也是非常重要的,但是没办法,传统的观念已经根深蒂固,而且这样做效率高)。 大概画了四五十部各种类型的楼梯(单跑、双跑。交叉、三跑、螺旋、折线、钢楼梯(钢梯涉及面比较广了,一般做砼结构的也不会全面了解设计)),加上做一些坡道(坡道比楼梯要难,主要是因为坡道不仅要与上部配合还要与地下室基础等配合,另外不得不说坡道出计算书麻烦,楼梯直接用TSPT就可以,坡道还得自己在盈建科里面建模,碰到螺旋形的怪麻烦),接着会分一些门卫室啦,门厅啦,大概就是四六根柱子加上两三块板,搞个独立基础就可以了,介于这些结构单层单跨,一般开始做的时候稍微放大了设计也不会出多大问题。 这样画楼梯画坡道等大概画个大半年甚或一年,基本的软件如CAD/PKPM或者盈建科/TSPT熟悉了,就开始分一些建平比较小的比方说两三千平的框架梁做了。一般除了101系列图集,各个设计院也会有自己的标准,如CAD图层啦、线型啦、配筋放大系数啦(满足规范要求之外)。估计一开始不少是老员工甩梁图的计算书给你,把PKPM梁线图给你(也可以将PKPM文件导入TSPT生成初版,也有的直接用盈建科的导出梁图作为基础修改),然后按照规范、101图集、公司标准一根一根开始配筋(用上配筋助手+TSPT+小萝卜头+ZCtool+贱人等等各种插件工具箱),配完后自己先检查一下十来条强条,然后检查一下配筋是否合理(能通则通,裂缝控制调节配筋疏密、挠度控制等等,TSPT有校审可以帮助检查),自检没问题后发给专负检查,一般开始画肯定有不少问题的,或多或少吧。然后按照专负的要求继续修改,反复上边的步骤直到最后满意。画板图相对梁图要简单一些,一般先看PKPM/盈建科出来的SATWE数据顶一个基本配筋涵盖大多数的板面,然后不够的原位标注,配合GG快捷键+贱人+TSPT等等插件等,直至是整个板配筋合理均匀清楚准确即可,当然开始也会有不少的问题,经过五六个项目的话基本上也没多大问题。 梁板配筋画好之后就开始进入柱墙画图了,由于是竖向受力构件,往往要求也卡的比较严格,强条也比较多。刚开始画的时候就可以细心一点,根据图集+规范+公司标准,不懂的及时问问有经验的或者师傅。尤其是有抗震要求的墙柱配筋往往也有很多容易忽略的地方,同时每一个设计院画图的样式还可能不一样,比如有的设计院墙体配筋文字说明,图面只画暗柱,有的设计院则在图面把暗柱和墙配筋都表示出来,这样经过大概四五个项目,墙柱至少也没多大问题了。

进气道设计.doc

喷气式飞机进气道是一个系统的总称,它包括进气口、辅助进气口、放气口和进气通道,因此它是保证喷气发动机正常工作的重要部件之一,它直接影响到飞机发动机的工作效率,它对发动机是否正常工作,推力大小等有着到关重要的作用,因此它对飞机性能尤其是战斗机有很大的影响。其作用是:第一,供给发动机一定流量的空气。螺旋桨飞机靠螺旋桨工作拉动空气向后运动带动飞机做相对运动前飞,螺旋桨发动机燃烧也需要空气,但它的用量无法与喷气发动机相比,而且在高空空气稀薄,含氧量代,发动机效率会急剧下降,喷气发动机所需的空气量惊人,动辄每秒以上百千克计,如“海鹞”的发动机空气流量为196千克/秒,中国飞豹的则是2×92千克/秒,美国F-15的是2×121千克/秒;第二、保证进气流场能满足压气机和燃烧室正常工作的要求,喷气发动机压气机进口流速约为当地音速的0.3- 0.6M,而且对流场的不均匀性有严格限制。在飞行中,进气道要实现对高速气流的减速增压,将气流的动能转化为压力能。随着飞行速度的增加,进气道的增压作用越来越大,在超音速飞行时的增压作用可大大超过压气机。 进气道分为不可调进气道和可调进气道。不可调进气道,也就是进气道形状参数不可调节,只能在某种设计状态下才可高效工作的进气道,它只在设计状态下能与发动机协调工作,这时进气道处于最佳临界状态。在非设计状态下,譬如改变飞行速度,进气道与发动机的工作可能不协调。当发动机需要空气量超裹进气道通过能力时,进气道处于低效率的超临界状态。当发动机需要空气量低于进气道通过能力时,进气道将处于亚临界溢流状态。严格上讲,超音速进气道和亚音速进气道都会使阻力增加,不排除某些亚音速进气道或许出现前缘吸力大于阻力的情况,但过分的亚临界状态使阻力增加,并引起进气道喘振。为了使进气道在非设计状态下也能与发动机协调工作,提高效能,广泛应用可调进气道,常用的方法是调节喉部面积和斜板角度(最好专门对这些术语进行解释、配图。),使在任何状态下进气道的通过能力与发动机的要求一致。另外,在亚音速扩散通道处设有放气门,将多余的空气放掉,防止进气道处于亚临界状态,同时,在起飞时,发动机全加力工作,气流量需求很大;而且因为速度低,要保持同样气流量的需求,需要的捕获面积增大。因此为了解决起飞状态进气口面积过小的问题,还设置有在低速能被吸开的辅助进气口。 飞机进气道设计中几个重要的设计指标是总压恢复、流场畸变水平和阻力大小。在进气道设计中,必须参照这几个重要的技术指标,它也是反映飞机整体性能的关键参数。 总压是气流静压和动压之和,表征了气流的机械能,总压恢复是指发动机进口处的气流总压与进气道远前方来流的总压之比,是进气道设计中一个非常重要的参数,表示气流机械能的损失,对于超音速进气道,总压恢复主要与斜板级数和角度所决定的激波的级数和波后流动参数有关。 流场畸变水平表征了进气道提供给发动机的气流的均匀程度,一般用进气道流场中的最高总压与最低总压值之间的差值表示,它影响着发动机的喘振裕度,间接关系着飞机的安全。进气道设计时一般考虑的阻力是外罩阻力和附加阻力,其中附加阻力又叫溢流阻力,是指在进入进气道的气流量大于发动机所需流量时,由于部分气流从进气道口溢出而导致的阻力。进气道的形状选择和位置的布置应该满足发动机有较高工作效率的要求,或应保证飞行器具有最佳性能要求或应保证飞行器能达到最佳飞行性能的要求。进气道的设计在科技的带动下有了很大的发展,使得喷气战斗机的飞行速度越来越快,性能越来越高,可以说它的重要性越来越明显,并且已成为飞机机体设计中成为一个独立的组成部分,进气道设计成为飞机性能提高的重要因素之一。 飞机进气道发展到现在主要分为亚音速进气道和超音速进气道。

简单结构的设计教学设计全解

《简单结构的设计》教学设计 一、教材依据 通用技术苏教版《技术与设计2》第一单元《结构与设计》第三节《简单结构的设计》。 二、课时安排:1课时 三、设计思想 1、教材分析: 本节课是第一单元《结构与设计》第三节《简单结构的设计》,这节课有两个方面要求:一是能够对所做的结构进行简单分析,熟悉设计一个简单结构所应考虑的主要因素;二是进行一个简单结构的设计,绘制设计图并制作模型或原型。分析教材本单元的前后章节——《常见结构的认识》、《稳固结构的探析》,这些章节中涉及到结构与力、结构的类型、结构的稳定性、结构的强度等知识点与本节课有很强的延续性,因此本节课重点应放在如何在设计简单结构的过程中,结合这些知识点,让学生发挥自己的创造力,设计出既符合要求又各具特点的简单结构。 2、设计理念: 简单结构的设计,关键在于这个简单结构——“载体”的选择。按照教材上的要求选择简易相框的制作,在实际教学中很难吸引学生的兴趣。现在的学生数码相机的使用非常普遍。好的照片他们或许会用来作电脑桌面的壁纸,或许能放在手机中欣赏,却很难会再打印出来放在相框中。甚至还有一些学生,他们拥有电子相框、MP4等电子设备,又怎么会有兴趣来制作相框呢?所以必须另选一个新的“载体”来制作简单结构,才能充分调动学生积极性和主动性,培养他们对结构设计的兴趣。因为是结构设计,所以我很自然就会考虑到桥梁的设计,考虑到上学期让同学们分组用报纸自由发挥设计过不同结构的桥梁,本学期学习了结构设计以后,提升了难度,让同学们在给定的场景下设计出自己的桥梁,并用电脑软件在交

互式白板上当堂设计,用软件当堂测试、评估,达到更好的教学效果,我决定选择用软件在电子交互式白板上设计桥梁。 3、教学策略设计: 第一个环节:本节课是简单结构的设计,从课题上看包含两部分内容,一是结构,二是设计,因此,为了学生能更好的进入设计的状态,要做好结构与设计基本知识的温习环节,尤其是设计。另外,要讲清楚设计时要考虑的主要因素和桥梁设计的基本知识,由于本节课的时间是40分钟,因此,这个环节分配10分钟。 第二个环节:组织同学前后桌分组设计实验。同学前后桌分组,一组4—6人,每组同学根据导学案完成分组任务,此环节分配16分钟。(小组任务规则:每小组根据导学案完成任务分配,在规定时间内完成桥梁整体结构设计并完成图纸绘制,写出设计分析,模型制作) 第三个环节:根据小组完成的情况,让小组指定的人到讲台上利用电子交互式白板完成桥梁的搭建和测试、评估,此环节分配10分钟。 第四环节:教师总结点评,此环节4分钟。 4、学情分析: 在学习完必修一的内容,同学们已经具备设计全过程的基本技术素养,再加上高中阶段的学生已有一定的物理力学知识和动手实践的基础,完成桥梁的设计情况应该普遍较好。但是由于是第一次接触结构设计,很多很好的结构设计往往在制作过程中会因为设计与制作的脱节而“流产”。但是不断的修正设计——动手制作的过程本身就是一个良好的创新实践过程,在这个过程中每个用心的学生都能体会到自己设计的乐趣。限于学生对桥制作的结构认识的不同、掌握结构设计水平能力的不同,学生们最终制作出的桥完成设计要求的结果差异性也很大。动手能力强、思维灵活的同学更容易设计出承载比较高的作品,这样可以让他们把自己成功的经验向其他同学们分享。动手能力较弱、思维比较迟缓的同学可能更多的体验解决问题过程的艰辛,这个过程同样是一份可贵的经验,而且他们对结构设计的理解尤为深刻。 四、教学目标 1、知识与技能目标: (1)理解结构的涵义、结构与力之间的关系。

缓冲包装与结构设计

1.课程设计目的与任务 课程设计的目的 (1)通过缓冲包装与结构设计课程设计,使同学们对指定产品的缓冲包装设计过程和设计方法有一个全面的了解,熟练掌握缓冲包装设计六步法; (2)对于产品的缓冲衬垫和外包装箱的结构进行设计,掌握各种箱型结构设计的方法。为毕业设计和以后走向工作岗位打下良好的基础。 课程设计的任务 为格力空调KFR-72LW设计出合理缓冲衬垫以及外包装箱。要适合国内运输环境的要求,存贮时间为30——100天。 2.产品介绍 产品名称:格力空调 型号:KFR-72LW 室内机竟重:40kg 产地:深圳珠海 价格:5999元 销售范围:全国各地 尺寸:宽*高*深mm(500*1720*300)图2-1 格力空调的外形图 产品机械性能: 3. 流通环境 a.外观工艺、检查:机柜表面喷涂均匀、无破损; b.操作及维修安全、方便,标牌、标记:应平整清晰。 c.部件排列合理、整齐;,布放平整;接插件牢固; 进出线符合工程需要;具备抗震措施。 流通的基本环节 包装件在运输流通中所经历的一切外部因素统称为流通环境条件。包装技术就是

要确保产品由一地向另一地运送时不受经济上和功能上的意外损失。对产品可能遭遇的条件作考察与评价,是运输包装设计中的重要内容。流通过程的基本环节有:装卸搬运环节、运输环节、贮存环节。 (1)装卸搬运环节 在装卸搬运环节中,由于格力KFR-72LW空调销售遍及全国乃至全球任何地方,其销售范围非常的广泛,所以既可能有短流程运输也可能包括较长流程的运输。如果流程越长,中转环节越多,装卸搬运次数就越多,所以对此商品的包装件造成的损害就越大。装卸作业中既可能有人工装卸也有机械装卸,所以要中和考虑到抛掷、堆垛倒塌、起吊脱落、装卸机的突然启动和过急的升降都会造成产品的跌落损害。 (2) 运输环节 产品的主要运输方式铁路和公路运输。由于产品销往全国各地,既有长途运输又有短途运输。一般产品从出厂到发货火车站使用汽车运输,从发货站到全国各地的代理商使用火车运输,而从各地代理商到零售商和从零售商到消费者手中多使用汽车运输。汽车运输的冲击,主要取决于路面状况,车辆的启动和制动,货物重量及装载稳定性。汽车运输振动加速度的大小也与路面状况、行驶速度、车型和载重量有关,但主要因素为公路的起伏和不平。汽车运输是包装件的共振频率一般小于25HZ,实验测得,汽车运输发生二次共振时其基频为~,二次共振频率范围为~18HZ,共振加速度增大为外界激励的18倍。汽车运输的随机振动加速度垂直方向最大,汽车运输振动能量绝大部分分布在0~200HZ,其中能量最集中处于0~50HZ频带内。汽车运输随机振动功率谱密度在2HZ和10HZ左右各有一个较大峰值。通常2HZ出的峰值为全频带内最大值,所以公路运输包装件的固有频率应避开这两个频率值。铁路运输时产生的冲击有两种。一种是车轮滚过钢轨接逢时的垂直冲击,在普通路轨上为80~120次/分,加速度最高为1g;另一种是火车在挂钩撞合时产生的水平冲击,加速度可达2~4g。若速度为h时作溜放挂钩,车体撞合瞬间可能产生18g 的冲击加速度。火车驶过钢轨时受到冲击,以正常速度70km/h驶过钢轨时,垂直方向加速度峰值为5~8g。 (3) 贮存环节 在贮存环节中,贮存是商品流通链中重要的一环。贮存方法、堆码重量、堆码高度、贮存周期、贮存地点、贮存环境等,会直接影响产品的流通安全性。在贮存时,为节省占地面积、常需将货物堆高,堆码后底部货物包装件将承受上部货物的重压。这种重载压力会导致包装容器变形,影响包装外观及其动态保护性能。一般情况下,空调的堆码层数为一层.存贮时间为30——100天。 确定跌落高度H (1)图表法:

基于CFD的发动机进气道优化设计

?设计?计算? 基于CF D 的发动机进气道优化设计 彭北京 邓定红 胡军峰 胡景彦 (浙江钱江摩托股份有限公司 浙江温岭 317500) 摘 要:发动机进排气系统的气体流动特性复杂,影响发动机的充气效率和换气损失,对发动机的动力性和经济性有重要的影响。在某水冷125mL 发动机研制过程中,样机性能测试表明,发动机整体性能偏离设计目标要求,发动机的进气道的设计存在缺陷。本文利用AVL -F I ER 软件建立了原型发动机进气道CF D 模型,进行三维稳态CF D 分析和优化。首先利用实验结果验证了原始气道计算模型,并进行优化分析。计算结果表明,优化后的进气道比原始进气道流量系数最大值增大了近21%。按优化后的方案对原始气道实物进行改进,样机对比测试结果表明,按优化后的方案改进的气道实测流量系数比原始气道增大了19%。 关键词:发动机 进气道 CF D AVL -F I ER 中图分类号:412.44 文献标识码:A 文章编号:1671-0630(2009)03-0040-04 O pti m u m D esi gn of I n let A i r Core of Eng i n e by CF D Technology Peng Be iji n g,D eng D i n ghong,Hu Junfeng,Hu J i n gyan Zhejiang Q ianjiang Mot orcycle Co .,L td .(W enling,Zhejiang,317500,China ). Abstract:The gas fl owing characteristic of intake and exhaust syste m in engine is very comp lex .It could not only affect the volumetric efficiency and the gas exchange l oss,but als o has i m portant influence on the dyna m 2ic p r operty and econom ical efficiency .During the devel opment of a ne w type 125cc water 2cooling engine,the sa mp le engine perf or mance test indicates that the integrity perf or mance has a gap comparing t o the original de 2sign require ments and the original design of intake passage has s ome defects .I n this passage,a CF D model of the p r ot oty pe engine’s intake gas passage was built using AVL -F I ER and a 3D steady CF D analysis and op ti 2m izati on were carried out .A t first,the original gas passage model was validated by the test result,then op ti 2mu m analysis basic on the model was p r ocessed .The calculati on results show that the flux coefficient of the op ti m ized real passage is 21%larger than that of the original one;the original real passage was i m p r oved ac 2cording t o the op ti m ized s oluti on,and the contrasting test result shows that the flux coefficient is larger than the original one by 19%. Keywords:Engine,I nlet air core,CF D ,AVL -F I ER 引言 在发动机开发设计阶段,性能参数是非常重要的 考查指标,其中有很多参数都要进行优化,比如进气道、凸轮型线、压缩比、进气管内径、化油器进气孔大小 作者简介:彭北京(1976-),男,大本,高级工程师,研究方向为发动机开发及分析。 第38卷 第3期2009年6月小型内燃机与摩托车 S MALL I N TERNAL COMBUSTI O N ENGI N E AND MOT ORCYCLE Vol .38No .3 Jun .2009

《简单结构的设计》教案(1)

【课题】简单结构的设计 【教材分析】 本节课是苏教版通用技术课程《技术与设计2》第一单元第三节的内容。本单元专题讲结构。其内容体系是:[理解结构]→[探析结构]→[设计结构]→[欣赏结构],显然,本节课内容在本单元有着承上启下的作用。学生通过学习,“理解结构”、“探析结构”,就是为“设计结构”服务的。所以,本节内容是本单元的一个重点知识。从宏观来讲,《技术与设计2》其它三个专题:流程与设计、系统与设计、控制与设计,都有设计实践活动。学好简单结构的设计,也为后面其它专题的设计活动起到了方法上的引领作用。所以,本节内容也是《技术与设计2》这个模块的一个重点内容。 【学情分析】 1、教学对象:高一下学期学生 2、学生的生理、心理特点 此阶段的学生,思维活跃,思想日渐成熟且创造力强。对于难度适宜、具有一定挑战性的任务,可较好地激发他们的学习热情,更能激发他们学习兴趣。同时,他们已经具备较强分析判断水平和合作学习的水平,能够在教师的指导下通过自主探究、交流合作来实行知识的建构。 3、学生已有的认知基础和经验 在《技术与设计1》中,学生已经学习了“设计的一般过程”、设计的原则等设计方面的知识;从本章前两节中,也了解了结构的功能和分类,稳定性和强度,为本节课的设计制作奠定了基础。 【教学目标】 1、知识与技能 (1)知道设计手机支架应考虑的主要因素。 (2)会用规范的设计过程,实行手机支架结构设计。 (3)能将结构的稳定性与强度相关知识,使用到设计中去。 2、过程与方法 通过手机支架的设计与交流,体验设计分析,合作实践探究的乐趣,交流体验,多元评价,促动结构知识的内化、设计素养的形成。 3、情感态度价值观 (1)明确任何设计活动都是为了满足人的需要。 (2)培养创新品质,提升审美意识,激发的设计兴趣和欲望。 (3)增强对技术世界的热爱,增进良好的合作交流水平。 【教学重点与难点】 重点:完成手机支架的结构设计及方案交流。 难点:落实设计分析和设计优化过程。 【教法】 建构主义认为,知识不是通过教师传授得到,而是学习者在一定的情境下,借助教师和学习伙伴的协助,如人与人之间的协作、交流、利用必要的学习资料等,通过意义建构的方式而获得。所以,我采用以下教法: 情境教学:将学生感兴趣的事物及生活中的实际需要,与教学内容联系起来,激发情感。 任务驱动:以任务为主线、教师为主导、学生为主体,完成本节课的实践活

相关文档
最新文档