合成气
第2章 合成气

3、脱碳方法的选择
氨加工的品种
取决于
气化所用原料和方法 后继气体精炼方法 各脱碳方法的经济性
2.2.4.原料气的精炼(CO、CO2、O2、水等)
1、铜氨溶液吸收法 氯化铜氨液 吸 蚁酸铜氨液 收 碳酸铜氨液 液 醋酸铜氨液 (1)、铜液的组成
总量≤10ppm
铜离子浓度(铜比) 氨含量 醋酸浓度 残余CO、CO2(再生液)
3、甲烷化法
互逆 甲烷蒸汽转化 机理分析:
甲烷蒸汽转化机理
CH4 + [ ] ? [CH 2 ]
[CO] [ ] + CO
甲烷化机理
CO + [ ] [CO]
H2
[CH2 ] + H2O [CO] + 2H2
[CO] + [ ] [C ] + [O]
[C] + H2 ? [CH2 ] H2 揪快? CH4 [ ]
CH 4 + H 2O CO + 3H 2
H2O + [ ] [O] + H 2
[O] + H2 ? H2O [ ]
CO2 + [ ] ? [CO2 ]
[CO2 ] + [ ] [CO] + [O* ]
CO + [O] [ ] + CO2
CO + H 2O CO2 + H 2
利用催化剂使CO、CO2加氢生成CH4使气体 精炼的方法,可使CO、CO2&度增加都会造成扩散系数下降
5.活性系数与催化剂用量
活性系数指真实工业条件下的使用活性与标准条件下的比值 催化剂用量:
VK
yCO ,2 dy G CO = r òyCO ,1 xA k
合成气的生产过程

第五章合成气的生产过程5。
1 概述合成气是指一氧化碳和氢气的混和气,英文缩写是Syngas。
其H2/ CO(摩尔比)由1/2到3/1。
合成气在化学工业中有着重要作用。
5.1.1 合成气的生产方法(1)以煤为原料的生产方法:有间歇和连续两种操作方式。
煤制合成气中H2/ CO比值较低,适于合成有机化合物。
(2)以天然气为原料的生产方法:主要有转化法和部分氧化法.目前工业上多采用水蒸气转化法(steam reforming),该法制得的合成气中H2/ CO比值理论上是3,有利于用来制造合成氨或氢气。
(3) 以重油或渣油为原料的生产方法:主要采用部分氧化法(partial oxidation).5。
1。
2.1 工业化的主要产品(1)合成氨(2)合成甲醇(3)合成醋酸(4)烯烃的氢甲酰化产品(5)合成天然气、汽油和柴油5.1.2。
2 合成气应用新途径(1)直接合成乙烯等低碳烯烃(2)合成气经甲醇再转化为烃类(3)甲醇同系化制乙烯(4)合成低碳醇(5)合成乙二醇(6)合成气与烯烃衍生物羰基化产物5.2 由煤制合成气以煤或焦炭为原料,以氧气(空气、富氧或纯氧)、水蒸气等为气化剂,在高温条件下通过化学反应把煤或焦炭中的可燃部分转化为气体的过程,其有效成分包括一氧化碳、氢气和甲烷等。
5。
2.1。
1煤气化的基本反应煤气化过程的主要反应有:这些反应中,碳与水蒸气反应的意义最大,此反应为强吸热过程。
碳与二氧化碳的还原反应也是重要的气化反应。
气化生成的混合气称为水煤气.总过程为强吸热的。
提高反应温度对煤气化有利,但不利于甲烷的生成。
当温度高于900℃时,CH4和CO2的平衡浓度接近于零.低压有利于CO和H2生成,反之,增大压力有利于CH4生成。
5.2。
1.2 煤气化的反应条件(1)温度一般操作温度在1100℃以上。
(2) 压力一般为2。
5~3。
2MPa。
(3)水蒸气和氧气的比例H2O/O2比值要视采用的煤气化生产方法来定。
合成气的生成

3.甲烷水蒸气转化催化剂 甲烷水蒸气转化催化剂
(1)为什么要使用催化剂:
无催化剂时要在1300℃才有满意的速率,该温度大量 甲烷要裂解。
(2)常用催化剂: 工业上一直采用镍催化剂(最便宜,活性高),并添加一些助催化剂,如铝、 镁、钾、钙、钛、镧、鈰等金属氧化物。 • 催化剂应该具有较大的镍表面。提高镍表面的最有效的方法是采用大比 表面的载体,为了抑制烃类在催化剂表面酸性中心上裂解析碳,往往在 载体中添加碱性物质中和表面酸性。
2.4脱硫方法及工艺 脱硫方法及工艺
脱硫有干法和湿法两大类 1.干法脱硫 干法脱硫 此类脱硫方法又分为吸附法和催化转化法。 吸附法是采用对硫化物有强吸附能力的固体来脱硫,吸附剂主要有氧化锌、活性炭、氧化铁、 分子筛等。 催化转化法是使用加氢脱硫催化剂,将烃类原料中所含的有机硫化合物氢解,转化成易于脱 除的硫化氢,再用其他方法除之。加氢脱硫催化剂是以Al2O3为载体负载的CoO和MoO3,亦称 钴钼加氢脱硫剂。使用时需预先用H2S或CS2硫化变成Co9S8和MoS2才有活性。 钴钼加氢转化 后用氧化锌脱除生成的H2S。因此,用氧化锌- 钴钼加氢转化-氧化锌组合,可达到精脱硫的目 的。 2.湿法脱硫 湿法脱硫 湿法脱硫剂为液体,一般用于含硫高、处理量大的气体的脱硫。按其脱硫机理的不同又分为 化学吸收法、物理吸收法、物理-化学吸收法和湿式氧化法。 化学吸收法是常用的湿式脱硫工艺。有一乙醇胺法(MEA)、二乙醇胺法(DEA)、二甘 醇胺法(DGA)、二异丙醇胺法(DIPA)、以及近年来发展很快的改良甲基二乙醇胺法 (MDEA)。物理吸收法是利用有机溶剂在一定压力下进行物理吸收脱硫,然后减压而释放出 硫化物气体,溶剂得以再生。主要有冷甲醇法(Rectisol),此外还有碳酸丙烯酯法(Fluar) 和N-甲基吡啶烷酮法(Purisol)等等。冷甲醇法可以同时或分段脱除H2S、CO2和各种有机硫, 还可以脱除HCN、C2H2、C3及C3以上气态烃、水蒸气等,能达到很高的净化度。 物理-化学 吸收法是将具有物理吸收性能和化学吸收性能的两类溶液混合在一起,脱硫效率较高。 常用的 吸收剂为环丁砜-烷基醇胺(例如甲基二乙醇胺)混合液,前者对硫化物是物理吸收,后者是 化学吸收。湿式氧化法脱硫的基本原理是利用含催化剂的碱性溶液吸收H2S,以催化剂作为载 氧体,使H2S氧化成单质硫,催化剂本身被还原。再生时通入空气将还原态的催化剂氧化复原, 如此循环使用。湿式氧化法一般只能脱除硫化氢,不能或只能少量脱除有机硫。最常用的湿式 氧化法有蒽醌法(ADA法)。
化学工艺学 第 2 章 合成气

2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.5 转化反应工艺流程及转化炉
燃料用天然气 11
8 9 过 热 蒸 汽
5
2
1 3
一段转化
4
二段转化
对流段
7 10 蒸汽 空气 原料天然气 锅炉给水 转化气去变换 6
氢氮气来自合成
天然气蒸汽转化工艺流程
1、钴钼加氢反应器;2、氧化锌脱硫槽;3、对流段;4、辐射段(一段炉);5、二段转化炉;6、第一废热锅炉;7、批二废热 锅炉;8、汽包;9、辅助锅炉;10、排风机;11、烟囱
图解法或迭代法求解x,y
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素
水碳比 反应温度 反应压力
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素
温度增加,甲烷平衡含量下降,反应温度每降低 10℃,甲烷平衡含量约增加1.0%-1.3%;
增加压力,甲烷平衡含量随之增大;
增加水碳比,对甲烷转化有利; 甲烷蒸汽转化在高温、高水碳比和低压下进行有利
立式圆筒,内径约3米,高约13米;壳体材质 为碳钢,内衬不含硅的耐火材料,炉壳外保温。
上部有燃烧空间的固定床绝热式催化反应器。
2.合成气

合成天然气、汽油和柴油
CO 3H 2 CH 4 H 2O( SNG)
Ni
煤制合成气通过费托合成可生产液体烃燃料
nCO ( 2n 1) H 2 C2 H 2 n 2 nH 2O
合成气的应用实例
合成气应用新途径
1.
直接合成乙烯等低C烯烃 2CO 4 H 2 C2 H 4 2 H 2O
水蒸气转化法 在高温和催化剂存在下,烷烃与水蒸气反应生 产合成气的方法称为水蒸气转化法。当以天然气为原料时,又 称甲烷蒸汽转化法,是目前工业生产应用最广泛的方法。 部分氧化法 部分氧化法是指用氧气(或空气)将烷烃部分氧化 制备合成气的方法。反应运式表示为, 部分氧化法多用于以石 脑油或重油为原料的合成气生产。
Mobil工艺
2. 合成气经甲醇再转化成烃类
2 2 2nCH3OH H nCH3OCH3 HC2 ~ C4烯烃 O O
3. 甲醇同系化制乙烯
CH 3OH CO 2 H 2 CH 3CH 2OH H 2O CH 3CH 2OH C2 H 4
4. 合成低C醇
合成气的应用实例
另一部分烃类与水蒸气发生吸热反应生成合成气 n Cm H n mH 2O mCO ( m ) H 2 2
iii.
以煤为原料的生产方法
高温条件下,以水蒸气和氧气为气化剂;
C H 2O CO H 2
煤制合成气中H2/ CO比值较低,适于合成有机化合物。
合成气的应用实例
1.
5 天然气蒸气转化过程的工艺条件
(1)压力 从热力学特征看,低压有利转化反应。从动力 学看,在反应初期,增加系统压力,相当于增加了反应物 分压,反应速率加快。但到反应后期,反应接近平衡,反 应物浓度高,加压反而会降低反应速率,所以从化学角度 看,压力不宜过高。但从工程角度考虑,适当提高压力对 传热有利,因为①节省动力消耗② 提高传热效率③ 提高 过热蒸汽的余热利用价值。综上所述,甲烷水蒸气转化过 程一般是加压的,大约3MPa左右。 (2)温度 从热力学角度看,高温下甲烷平衡浓度低, 从动力学看,高温使反应速率加快,所以出口残余甲烷含 量低。因加压对平衡的不利影响,更要提高温度来弥补。 但高温下,反应管的材质经受不了,需要将转化过程分为 两段进行。第一段转化800℃左右,出口残余甲烷10% (干基)左右。第二段转化反应器温度1000℃,出口甲 烷降至0.3%。
合成气的有效成分

合成气的有效成分合成气是一种可通过煤、天然气和生物质等原料制备的一种混合气体。
它主要由一氧化碳 (CO)、氢气 (H2) 和少量的二氧化碳 (CO2) 组成。
合成气是现代工业和能源生产中重要的一种原料和能源载体。
它被广泛应用于合成液体燃料、化学品、电力和炼化等领域。
一氧化碳 (CO) 是合成气中的主要成分,约占总体积的50% - 60%。
CO是一种有毒气体,无色、无味,燃烧时产生蓝色火焰。
它是许多化学反应和工业过程的重要原料,如合成甲醇、合成氨和合成氢气等。
CO具有高渗透性,可通过渗入许多金属和合金中,与金属发生反应形成金属羧酸盐,具有催化和促进作用。
氢气 (H2) 是合成气的另一个重要成分,约占总体积的25% - 35%。
H2是一种轻、无色、无味和可燃的气体,是最轻的元素,它的燃烧只产生水蒸气,因此被认为是一种清洁的能源。
H2具有很高的能量密度和燃烧效率,可用于发电、燃料电池、化学合成和氢化反应等。
二氧化碳 (CO2) 是合成气中的少量成分,约占总体积的10%以下。
CO2是一种无色、无味的气体,由于其在大气中的浓度持续增加,引发了全球暖化和气候变化的担忧。
然而,在合成气的生产过程中,CO2可以被捕获和储存,以减少二氧化碳排放。
所以合成气的利用可以对环境产生更小的负面影响。
除了以上这些主要成分外,合成气中还可能含有少量的氮气(N2)、一氧化二氮 (NO)、硫化氢 (H2S)、氧气 (O2)等杂质。
这些杂质的含量通常很低,不会对合成气的应用产生较大影响。
同时,根据不同的原料和制备工艺,合成气的组成也会有所差异。
综上所述,合成气主要由一氧化碳 (CO)、氢气 (H2) 和少量的二氧化碳 (CO2) 组成。
它是一种重要的原料和能源载体,在化学、燃料、能源等领域具有广泛的应用潜力。
第三章 合成气.ppt

3、合成气的净化
三、脱除二氧化碳
1、原因:在上一步降低CO的含量、增加H2含量的同时,生成了大量的CO2
2、方法:采用热碳酸钾脱除CO2,利用二乙醇胺为活化剂,V2O5为缓蚀剂
3、原理:
CO2(气 体)
CO2( 溶 于 液相 ) + K2CO3 + H2O
2 KHCO3
二、合成气的生产
7、两种煤气化装置(鲁奇煤气化炉和德士古煤气化炉)的 对比
相同均燃能烧生原成理合相成同气(但组成不同)
不同反装气应置化时类温间型度鲁德鲁鲁 德德奇士奇奇 士士:古:: 古古19~0:固::103~3h瞬定气510~间床流051迅床0℃45速0℃进行
铜氨液吸收法,又称为 “铜洗”,现国内小厂 仍采用此法
液氮洗涤法,需低温操 作,但洗涤效果好
甲烷化法,采用催化剂
使CO、CO2和H
反应生成
2
CH
,效果好,现多采用此
4
法
3、甲烷化法的反应原理
Cat CO + 3 H2
Cat CO2 + 4 H2
CH4 + H-OH CH4 + 2 H-OH
然后,催化剂把Na2V4O9变回NaVO3,使反应可连续进行下去。
3、合成气的净化
3、合成气的净化
二、降低CO的含量,提高H2的含量
1、原因:在合成氨的反应中,不需要CO,但需要大量的H2;在合成甲醇的
反应中,需要适当提高合成气中H2的含量,降低CO的含量
温度下降; (3) 下吹制气阶段:水蒸气自上而下进行气化反应,使燃料层温度发布趋
于均衡; (4) 二次上吹制气阶段:将炉底部的下吹煤气排净,为吹入空气作准备; (5) 空气吹净阶段:此部分吹风气加以回收,作为半水煤气中氮的主要来
第五章 合成气的生成方法

第五章合成气的生成方法5.1概述一概述合成气,是以氢气、一氧化碳为主要组分供化学合成用的一种原料气。
由含碳矿物质如煤、石油、天然气以及焦炉煤气、炼厂气等转化而得。
按合成气的不同来源、组成和用途,它们也可称为煤气、合成氨原料气、甲醇合成气(见甲醇)等。
合成气的原料范围极广,生产方法甚多,用途不一,组成(体积%)有很大差别:H2 32~67、CO 10~57、CO22~28、CH4 0.1~14、N2 0.6~23。
制造合成气的原料含有不同的H/C摩尔比:对煤来说约为1:1;石脑油约为2.4:1;天然气最高,为4:1。
由这些原料所制得的合成气,其组成比例也各不相同,通常不能直接满足合成产品的需要。
例如:作为合成氨的原料气,要求H2/N2=3,需将空气中的氮引入合成气中(见合成氨原料气);生产甲醇的合成气要求H2/CO≈2或(H2-CO2)/(CO+CO2)≈2;用羰基合成法生产醇类时,则要求H2/CO≈1;生产甲酸、草酸、醋酸和光气等则仅需要一氧化碳。
为此,在合成气制得后,尚需调整其组成,调整的主要方法是利用水煤气反应(变换反应):CO+H2O=CO2+H2。
以降低一氧化碳,提高氢气的含量。
二历史沿革合成气的生产和应用在化学工业中具有极为重要的地位。
早在1913年已开始从合成气生产氨,现在氨已成为最大吨位的化工产品。
从合成气生产的甲醇,也是一个重要的大吨位有机化工产品。
1939年,德国开发的乙炔氢羧化工艺曾是生产丙烯酸及其酯的重要方法。
第二次世界大战期间,德国和日本曾建立了十多座以煤为原料用费托合成从合成气生产液体燃料(见煤间接液化)的工厂,战后由于有廉价的原油,这些厂先后关闭。
1945年,德国鲁尔化学公司用羰基合成(即氢甲酰化)法生产高级脂肪醛和醇开发成功,此项工艺技术发展很快。
60年代,在传统费托合成的基础上,南非开发了SASOL工艺,生产液体燃料并联产乙烯等化工产品,以适应当地的特殊情况。
1960年,联邦德国巴登苯胺纯碱公司的甲醇羰基化生产醋酸工艺工业化;1970年,美国孟山都公司对此法作了重大改进,使之成为生产醋酸的主要方法,进而带动了有关领域的许多研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
· 17 ·
2.1.1 烃类蒸汽转化
图2-3 顶部烧嘴蒸汽转化炉辐射室结构
· 18 ·
2.1.1 烃类蒸汽转化
图2-3 的说明
天然气 烧嘴 空气 辐射段 对流段 排风机 烟囱
辐射段 对流段
燃料燃烧提供转化管热量 回收烟气的余热预热工艺介质
· 19 ·
2.1.1 烃类蒸汽转化
② 炉墙(耐热层+绝热层的复合结构) 耐热层 材 料 轻质耐火砖 高铝纤维毡 绝热层(外侧设3-5mm钢板) 矿渣棉纤维毡 矿渣棉纤维毡
CnH2n+2
n 1 3n 1 n 1 + H 2O = CH4 + CO2 4 4 2
CnH2n
n n 3 + H 2O = CH4 + CO2 2 4 4
·6 ·
2.1.1 烃类蒸汽转化
生成的甲烷与水蒸气进行转化反应: CH4 + H2O CO + 3H2
CH4 + 2H2O
CO + H2O
△H = 206.2 kJ/mol
· 12 ·
2.1.1 烃类蒸汽转化
3)水碳比(3.5-4.0)
甲 烷 平 衡 含 量
%
· 13 ·
2.1.1 烃类蒸汽转化
二、工艺流程及主要设备
(1) 天然气蒸气转化流程
蒸汽 原料天然气 弛放气 加压空气 蒸汽
190℃ 510℃ 850℃
预热器
脱硫
预热
一段转化
德国Veba工厂产氨1400t/d,甲醇 600 t/d。采用Shell法6.0MPa气化, 典型工业装置 低温甲醇洗脱硫、变换,低温甲醇 洗脱碳,液氨洗,压缩合成流程
主要内容
2.1 合成气的制取
2.1.1 烃类蒸汽转化 2.1.2 重油部分氧化 2.1.3 固态燃料气化
2.2 合成气的净化
2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 脱硫 一氧化碳变换 二氧化碳的脱除 少量CO、CO2、O2和H2O的清除 热法与冷法净化流程的比较
· 37 ·
2.1 合成气的制取
总压0.1MPa时空气煤气的平衡组成,体积%
温度,℃ 650 800 900 1000 CO2 10.8 1.6 0.4 0.2 CO 16.9 31.9 34.1 34.4 N2 72.3 66.5 65.5 65.4 a=CO:(CO+CO2) 61.0 95.2 98.8 99.4
· 21 ·
主要内容
2.1 合成气的制取
2.1.1 烃类蒸汽转化 2.1.2 重油部分氧化 2.1.3 固态燃料气化
2.2 合成气的净化
2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 脱硫 一氧化碳变换 二氧化碳的脱除 少量CO、CO2、O2和H2O的清除 热法与冷法净化流程的比较
· 22 ·
· 34 ·
结构型式
2.1.2 重油部分氧化
项目 喷嘴 Shell法 两流道型,中心管进重油,氧与蒸汽 混和后进喷嘴环隙喷出,用水套冷 却。喷嘴为压力雾化(重油)与气 雾流化相结合。近年推出三套管型 Texaco法 两流道型,氧加0.5~5%蒸汽进中 心管,重油与蒸汽混合后由环隙 喷出,用盘管及端部水套冷却。 喷嘴属气流雾化型 1.直接激冷,出气温度260~ 280℃,汽/气比1.4~1.6:1。 2.废热锅炉(直管与盘管组合结 构。 3.激冷与废锅复合型结构
第二章
合成气
主要内容
2.1 合成气的制取
2.1.1 烃类蒸汽转化 2.1.2 重油部分氧化 2.1.3 固态燃料气化
2.2 合成气的净化
2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 脱硫 一氧化碳变换 二氧化碳的脱除 少量CO、CO2、O2和H2O的清除 热法与冷法净化流程的比较
·2 ·
· 38 ·
2.1 合成气的制取
② 以水蒸气为气化剂
∆H0298 KJ/mol 131.390 90.196 -41.194 -74.898
C+H2O C+2H2O(g) CO+H2O(g) C+2H2
CO+H2 CO2+2H2 CO2+H2 CH4
· 27 ·
2.1.2 重油部分氧化
三、工艺流程及主要设备
(1) 方框图
重油
O2 蒸汽 汽 化 热量回收 清除炭尘 (炭黑回收)
裂化气(粗合成气:CO, H2,少量CH4)
· 28 ·
2.1.2 重油部分氧化
(2) 流程分类(按热量回收方式)
①激冷流程(Texaco法) 激冷流程是将高温原料气直接与热水接触,水迅速蒸发进 入气相而原料气迅速冷却,原料气清除炭黑后直接送去进行 一氧化碳变换反应。由于激冷流程不允许在变换前因脱硫而 降低温度,所以要求原料是低硫重油或后变换过程用耐硫催 化剂。 ②废热锅炉流程(Shell法) 利用废热锅炉间接换热,副产品是高压蒸汽。
转化反应 甲烷转化:CH4+H2O CO+3H2
碳 转 化: C+H2O
CO 转 化:CO+H2O
CO+H2
CO2+H2
慢反应 可逆 吸热
· 24 ·
2.1.2 重油部分氧化
二、工艺条件 (1) 温度(1400℃) 甲烷含量随温度提高迅 速降低。从反应速度方面 看,提高温度有利于加快甲 烷和炭黑的转化,对降低原 料气中甲烷和炭黑含量也是 有利的。但温变过高容易烧 坏炉衬,同时耗氧量会增 加。
预热
450℃
二段转化
1000℃
废热锅炉
370℃
去变换
· 14 ·
2.1.1 烃类蒸汽转化 转化气组成
转化炉出口气体组成
H2 CH4 CO CO2 N2
一段转化气
二段转化气
69.5
57
9.95
0.3Leabharlann 9.9512.810
7.6
0.6
22.3
注:此数据为体积%
· 15 ·
2.1.1 烃类蒸汽转化
天然气蒸汽转化工艺流程
2.1.2 重油部分氧化
一、重油部分氧化气化反应 O2 气化剂 水蒸气(或蒸汽)
瞬间反应 不可逆 放热
部分氧化: CmHnSr + m/2O2 = mCO + (n/2-r)H2 + rH2S 完全氧化: CmHn + (m+n/4)O2 = mCO2 + n/2H2O
· 23 ·
2.1.2 重油部分氧化
氧气 蒸汽 重油 裂化气 补充水
石脑油 炭黑回收 油炭浆
· 31 ·
2.1.2 重油部分氧化
重油气化炉结构图
· 32 ·
2.1.2 重油部分氧化
炭黑回收原理
少量石脑油 石脑油碳浆
萃取
碳墨水 水 石脑油 炭墨重油
少量石脑油
萃取
水 油 炭 浆
蒸馏
混合
·33 ·
2.1.2 重油部分氧化
项目 流程 气化的供氧方式 工艺条件 气化压力,MPa 气化温度,℃ 6.0 1350~1400 8.7 1300~1350 Shell法 废热锅炉流程 离心式氧气压缩机 Texaco法 激冷流程 液氧泵加压蒸发后输送,气 化压力低时,用氧气压缩机
图2-4 3.04MPa下气体平衡组成与温度关系
· 25 ·
2.1.2 重油部分氧化
(2) 压力(5MPa左右) 从热力学观点看,提高压 力是不利于反应平衡的,但 是由于转化反应距离平衡很 远,主要是反应速度控制了 反应的程度。因此提高压力 对加速反应是有利的。由图 可见,随着气化压力增加, 甲烷平衡浓度也增加,这一 不利因素可以由提高温度来 补偿。
图2-5 不同压力下原料气中甲烷平衡浓度
· 26 ·
2.1.2 重油部分氧化
(3) 氧油比(1.15-1.3Nm3/kg左右) 氧的理论消耗量与重油组成有关,一段约为0.8Nm3· -1。 kg 但反应时加入的水蒸汽中的氧可以代替部分氧气,因此氧气 不需要按理论用量供给。在计入蒸汽提供的氧量后,氧油比 一般在1.15~1.3之间。 (4) 蒸汽油比(0.3-0.4kg/kg左右) 重油部分氧化加入适量蒸汽,不仅能加快烃类转化,降低 原料气中甲烷含量,还能起到缓冲炉温和抑制炭黑生成的作 用。较适宜的蒸汽油比 (蒸汽:重油 ,kg· -1 )为0.3~ kg 0.4。
· 29 ·
2.1.2 重油部分氧化
废热锅炉流程重液态烃部分氧化法工艺流程
蒸汽 氧气 新鲜水
高压蒸汽
净化气
锅炉给水
炭墨水 石脑油 废水
重油
油炭浆
①原料油和气化剂的加压、预热、预混合 ②油的汽化 ③高温水煤气显热的回收 ④洗涤和清除碳墨 ⑤碳墨回收及污水处理
· 30 ·
2.1.2 重油部分氧化
激冷流程重质液态烃部分氧化工艺流程
蒸汽/油比,kg/kg
氧油比,kg/kg 气化炉最大生产能力, t氨 /(d· 台) 炉内气体停留时间,s
0.34~0.40
0.75 640 长(10~20) 立式,有耐热衬里,钢制 容器,炉膛容积大
0.40
0.75~0.80 1080 短(3~5) 立式,燃烧室有耐热衬里,炉 膛容积小,常与激冷室组合 成一体。
③ 转化管 材质:HK-40 (25%Cr, 20%Ni, 0.4%C) HP-40-Nb (Cr25, Ni35 ,Nb), HP-50-Nb
· 20 ·
2.1.1 烃类蒸汽转化
(3) 二段转化炉 二段转化炉为一碳钢制圆筒,内衬耐火材料,炉内上 部有转化气与空气充分混合的空间,催化剂床层的上层为 耐高温的铬催化剂,下层是镍催化剂。
· 36 ·
2.1 合成气的制取