圆锥曲线中三点共线、四点共圆问题

圆锥曲线中三点共线、四点共圆问题
圆锥曲线中三点共线、四点共圆问题

圆锥曲线中的三点共线、四点共圆问题

1、(2012北京卷)已知曲线C:

(m ∈R), (1)若曲线C 是焦点在x 轴点上的椭圆,求m 的取值范围;

(2)设m=4,曲线c 与y 轴的交点为A ,B (点A 位于点B 的上方),直线y=kx+4与曲线c 交于不同的两点M 、N,直线y=1与直线BM 交于点G.求证:A ,G ,N 三点共线.

22(5)(2)8m x m y -+-=

2、(2017年上海卷)、已知抛物线y2=4x的焦点为F,过焦点F的直线l交抛物线于A、B两点,设AB的中点为M,A、B、M在准线上的射影依次为C、D、N.(1)求直线FN与直线AB的夹角θ的大小;

(2)求证:点B、O、C三点共线.

3、(2011年全国大纲卷)已知O为坐标原点,F为椭圆C:

2

21

2

y

x+=

在y轴正

半轴上的焦点,过F且斜率为-2的直线l与C交于A、B两点,点P满足

.

(Ⅰ)证明:点P在C上;

(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上。

4、(2014年全国大纲卷)已知抛物线C:22(0)

y px p

=>的焦点为F,直线4

y=

与y轴的交点为P,与C的交点为Q,且

5

||||

4

QF PQ

=.

(1)求C的方程;

(2)过F的直线l与C相交于A、B两点,若AB的垂直平分线'l与C相较于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.

次曲线上的四点共圆问题的完整结论

二次曲线上的四点共圆问题的完整结论 甘志国(该文已发表 数学通讯,2013(7下):40-41) 百年前,著名教材《坐标几何》(Loney 著)中曾提到椭圆上四点共圆的一个必要条件是 这四点的离心角之和为周角的整数倍(椭圆)0,0(122 22>>=+b a b y a x 上任一点A 的坐标可以表示为∈θθ)(sin cos,(b a R ),角θ就叫做点A 的离心角),证明方法十分巧妙,还要运用高次方程的韦达定理.这一条件是否充分,一直是悬案.在20世纪80年代编写《数学题解辞典(平面解析几何)》时,仍未解决.到20世纪年代初编写《中学数学范例点评》时,才证明了此条件的充分性.[1,2] 2011年高考全国大纲卷理科第21题,2005年高考湖北卷理科第21题(也即文科第22题)及2002年高考江苏、广东卷第20题都是关于二次曲线上四点共圆的问题(见文献[3,4]).笔者曾由2005年的这道高考题得出了二次曲线上四点共圆的一个简洁充要条件(其证明也很简洁但有技巧): 若两条直线)2,1)((:00=-=-i x x k y y l i i 与二次曲线22:0()ax by cx dy e a b Γ++++=≠有四个交点,则这四个交点共圆的充要条件是021=+k k . 文献[2]还用此结论证得了“椭圆上的四点共圆的充要条件是这四点的离心角之和为周角的整数倍”. 文献[5]用较长的篇幅得出了下面的两个结论(即原文末的命题7、8): 结论1 抛物线2 2y px =的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补. 结论 2 圆锥曲线221(0,)mx ny mn m n +=≠≠的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补. 请注意,文献[5]中所涉及的直线的斜率均存在,所以这两个结论均正确.但不够完整,本文将给出二次曲线上的四点共圆问题的完整结论,即文末的推论4. 定理1 若两条二次曲线22220()0ax by cx dy e a b a x b y c x d y e '''''++++=≠++++=,有四个交点,则这四个交点共圆. 证明 过这四个交点的二次曲线一定能表示成以下形式μλ,(不同时为0): 2222()()0ax by cx dy e a x b y c x d y e λμ'''''+++++++++= ① 式①左边的展开式中不含xy 的项,选1=μ时,再令式①左边的展开式中含2 2,y x 项

高考圆锥曲线压轴题型汇总

高考圆锥曲线压轴题型汇总

————————————————————————————————作者:————————————————————————————————日期:

高考圆锥曲线压轴题型总结 直线与圆锥曲线相交,一般采取设而不求,利用韦达定理,在这里我将这个问题分成了三种类型,其中第一种类型的变式比较多。而方程思想,函数思想在这里也用得多,两种思想可以提供简单的思路,简单的说就是只需考虑未知数个数和条件个数,。使用韦达定理时需注意成立的条件。 题型4有关定点,定值问题。将与之无关的参数提取出来,再对其系数进行处理。 (湖北卷)设A 、B 是椭圆 λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点. (Ⅰ)确定λ的取值范围,并求直线AB 的方程; (Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (I )解法1:依题意,可设直线AB 的方程为 λ=++-=2 23,3)1(y x x k y 代入,整理得 .0)3()3(2)3(222=--+--+λk x k k x k ① 设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根, 0])3(3)3([422>--+=?∴k k λ ② ) 3,1(.3) 3(2221N k k k x x 由且+-= +是线段AB 的中点,得 .3)3(,1222 1+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设则有),,(),,(2211y x B y x A .0))(())((33, 3212121212 2222121=+-++-??????=+=+y y y y x x x x y x y x λλ 依题意, . ) (3,2 12121y y x x k x x AB ++- =∴≠ . 04),1(3). ,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+?>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλΘ

老师专属二次曲线上的四点共圆问题解题研究第二境界(下篇)

老师专属二次曲线上的四点共圆问题解题研究第二境界(下 篇) 老师们:四点共圆是一个经典问题,很多优秀老师都以此做为切入点发表研究文章。本文为您收集四点共圆问题的研究现状,尝试剖析作者的研究思路。四点共圆问题有两个研究方向:求证四个点共圆和推导四点共圆的充要条件。以下从三个角度来梳理研究思路。第一境界:掌握已有的解题技巧;第二境界:剖析背后的思维方法;第三境界:分享自己的研究成果。 纯几何角度在小编多方查证下:四点共圆问题在80,90年代还曾入选过《初级中学课本_几何》中。(那个时候小编还没出生!所以对于更早的课本有没有四点共圆问题小编就不知道了,在网上只找到了89年版的)以下是该书中涉及证明四个点共圆的定理:图1:对角互补图2:公共弦图3:外角等于内对角图4:相交弦定理?图5:切割线定理可以看出这些证明四点共圆的方法都是纯几何证法。在初中范围内,证明四点共圆的方法一般有7种[1]:1,圆的定义法:根据圆的定义“到定点的距离等于定长的集合为圆”。首先寻找圆心,之后去求出各点到圆心的长度。在高中遇到四点共圆问题时,很多学生和老师的思路也是如此。2,对角互补法:利用“如果一个四边形的对角互补,那么它内接于圆。”

进行证明。找出四边形的一组对角,之后证明它们互补,进而得出四个点共圆。3,公共边法:利用“有相同边的两个三角形,且公共边的对应的角相等且在边的同一侧,那么这两个三角形内接于同一个圆”,进行证明。4,外角等于它的内对角法:找到一个角的外角和其内对角相等即可得证。其原理和对角互补法相似,不过多阐述。5,圆幂定理:圆幂定理即为相交弦定理,切割线定理和割线定理的统一形式。它的具体内容为:如果交点为P的两条相交直线与圆O 相交于A、B与C、D,则PA·PB=PC·PD。一般运用其逆定理证明四点共圆,很多高中老师都是运用圆幂定理去推导四点共圆的充要条件。6,证明四点组成的图形是矩形,等腰梯形等必有外接圆的图形[2]。7,托勒密定理:托勒密定理为“圆的凸内接四边形的对边乘积和等于对角线乘积”。运用托勒密定理的逆定理进行证明。以上即为初中(30年前)常见的证明四点共圆的方式。虽然说现在这些定理推论都不教了,但是遇到四点共圆问题还是要用这些东西。名义上是减负,但是不会这些去证明四点共圆问题反而让学生感到更加困难。那我们为什么要介绍四点共圆问题的纯几何方法呢?经过小编大量的阅读四点共圆方面的文章,发现很多老师的工作都是基于这些纯几何的定理推论。解析几何角度在高中知识点的范畴内,四点共圆问题很少有纯几何的题目(除了数学竞赛外[3])。作为圆锥曲线的一部分,圆的问题

二次曲线上的四点共圆问题的完整结论

二次曲线上的四点共圆问题的完整结论 百年前,著名教材《坐标几何》(Loney 著)中曾提到椭圆上四点共圆的一个必要条件是 这四点的离心角之和为周角的整数倍(椭圆)0,0(122 22>>=+b a b y a x 上任一点A 的坐标可以表示为∈θθθ)(sin ,cos (b a R ),角θ就叫做点A 的离心角),证明方法十分巧妙,还要运用高次方程的韦达定理.这一条件是否充分,一直是悬案.在20世纪80年代编写《数学题解辞典(平面解析几何)》时,仍未解决.到20世纪年代初编写《中学数学例点评》时,才证明了此条件的充分性.[1,2] 2016年高考卷文科第20题,2011年高考全国大纲卷理科第21题,2005年高考卷理科第21题(也即文科第22题)及2002年高考、卷第20题都是关于二次曲线上四点共圆的问题(见文献[3,4]).笔者曾由2005年的这道高考题得出了二次曲线上四点共圆的一个简洁充要条件(其证明也很简洁但有技巧): 若两条直线)2,1)((:00=-=-i x x k y y l i i 与二次曲线22:0()ax by cx dy e a b Γ++++=≠有四个交点,则这四个交点共圆的充要条件是021=+k k . 文献[2]还用此结论证得了“椭圆上的四点共圆的充要条件是这四点的离心角之和为周角的整数倍”. 文献[5]用较长的篇幅得出了下面的两个结论(即原文末的命题7、8): 结论1 抛物线2 2y px =的接四边形同时接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补. 结论2 圆锥曲线221(0,)mx ny mn m n +=≠≠的接四边形同时接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补. 请注意,文献[5]中所涉及的直线的斜率均存在,所以这两个结论均正确.但不够完整,本文将给出二次曲线上的四点共圆问题的完整结论,即文末的推论4. 定理 1 若两条二次曲线 22220()0ax by cx dy e a b a x b y c x d y e '''''++++=≠++++=,有四个交点, 则这四个交点共圆. 证明 过这四个交点的二次曲线一定能表示成以下形式μλ,(不同时为0): 2222()()0ax by cx dy e a x b y c x d y e λμ'''''+++++++++= ① 式①左边的展开式中不含xy 的项,选1=μ时,再令式①左边的展开式中含22,y x 项

圆锥曲线的特殊性质

1命题12.椭圆两个共轭直径上的正方形之和等于两个对称轴上的正方形之和.命题13.双曲线两个共轭直径上的正方形之差等于两个对称轴上的正方形之差.命题31.椭圆或双曲线的两条共轭直径所构成的平行四边形(以其交角为内角)等于两条对称轴所构成的矩形. 2我探究的这一特性是在抛物线、椭圆和双曲线上讨论的——过圆锥曲线的焦点,做一条弦与圆锥曲线相交,则由焦点分割弦得到的两段线段长度的倒数之和,与圆锥曲线离心率和焦点到相应准线的距离相乘的倒数的两倍;但是对于双曲线,当这两个交点分别位于两支上面的时候,之和应该改为之差。这样说来可能比较抽象,那么用数学表达式来说明一下。设m和n是焦点分割弦形成的线段的长度,e代表圆锥曲线的离心率,p代表焦点到相应准线的距离,则有112mnep+=恒成立,对于交点位于两支上的弦,满足112mnep?=的关系。换句话说,焦点分割弦得到的线段长度的倒数之和或者之差是一个定值,只与圆锥曲线有关系,而与点在圆锥曲线的位置没有关系。这给我们什么启示呢 3用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。 首先注意到复数恒等式:,两边取模,运用三角不等式得 。 等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。因此托勒密定理得证。 1.第二定义的统一性圆的准线在∞,0=e. 2.极坐标方程的统一性3.曲线上一点光学性质的统一性椭圆:点光源在一个焦点上,光线通过另一个焦点。双曲线:点光源在一个焦点上,反射光线与另一焦点到反射点的连线在同一条直线上。抛物线:点光源在焦点上,反射光线相互平行且垂直于准线。具体应用:探照灯4.一般弦长公式具有统一性5.过焦点弦长公式具有统一性6.过曲线上一点切线方程的统一性7.直径所对周角之斜率乘积的统一性8.焦点弦端点切线的交点轨迹的统一性9.过焦点且和焦点弦垂直的的直线和焦点弦端点切线的关系统一性10.过非等轴双曲线曲线上一点做互相垂直弦共有的性质11.过曲线上一点做倾斜角互补直线所成弦而具有共有的性质12.内部焦点弦被焦点分成两个焦半径倒数和为定值13.圆锥曲线内部外部点代入方程后不等式符号的统一性14.过同一焦点两任意焦点弦AB和CD,AC和BD交点轨迹统一15.任意一弦BA延长交准线于E,则FE平分BFA外角16.任意一弦BA延长交准线于E,则FE平分BFA外角,又任意一弦AN延长交准线于Q,则FQ平分BFA外角后得到EFQ是直角17.过一个焦点交圆锥曲线于MN,做MN的垂直平分线交轴与P则离心率等于2PF/MN 18.二次曲线和二次曲线交于两点AB,联立两方程消X得0)(=YH,消Y得0)(=XG则AB为端点的圆的方程就是0)()(=+YHXG(必须先保证X和Y系数相同)19.若有弦AB,AB中点为),(00.yxP 则弦AB方程为0)2,2(),(00=???yyxxfyxf 20.圆锥曲线通径长统一为定值ep2 21.利用统一的圆锥曲线方程中判别式可以判断曲线类型22.F是焦点,E是F对应准线L和轴交点AD垂直L,BC垂直L 则有BD、AC同时平分线段EF(一组关系)23.F是焦点,E是F对应准线L和轴交点AB是过焦点F的弦,BC平行FE,N是线段 EF的中点,则BC

圆锥曲线经典性质总结及证明

Gandongle 椭圆双曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆内切.(第二定义) 4. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

圆锥曲线经典性质总结及证明

圆锥曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. (中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.(第二定义) 4. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面 积为122 tan 2 F PF S b γ ?=.(余弦定理+面积公式+半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭 圆准线于M 、N 两点,则MF ⊥NF

9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交 于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上 根据第8条,证毕 10. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。(点 差法) 11. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.(点差法) 12. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+.(点差法) 二、双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.(同上) 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个 端点.(同上) 3. 以焦点弦PQ 为直径的圆必与对应准线相交.(同上) 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)(同上) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=.(同上) 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2 的直线方程是 00221x x y y a b -=.(同上)

【高中数学竞赛】四点共圆专题详解

四点共圆 四点共圆的定义 四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。 证明四点共圆有下述一些基本方法: 【方法1】从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.或利用圆的定义,证各点均与某一定点等距。 【方法2 】如果各点都在某两点所在直线同侧,且各点对这两点的张角相等,则这些点共圆.(若能证明其两张角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)【方法3 】把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆. 【方法4】把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线 段之积,即可肯定这四点也共圆.即利用相交弦、切割线、割线定理的逆定理证四点共圆。【方法5】证被证共圆的点到某一定点的距离都相等,从而确定它们共圆. 【方法6】根据托勒密定理的逆定理,在四边形ABCD中,若AC*BD=AB*CD+AD*BC,那么A,B,C,D四点共圆。或根据西姆松定理的逆定理证四点共圆。 【方法7】证明五点或五点以上的点共圆,可以分别证各四点共圆,且四点中有三点相同。

【方法8】证连结各点所得凸多边形与某一圆内接凸多边形相似。 上述六种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这8种基本方法中选择一种证法,给予证明. 一.某些知识的补充 1.已知:ABCD共圆,AB中点为E、CD中点为F,EF中点为G,过E点分别作AD、BC的垂线,垂足为H、I求证:GH=GI 首先可这样转化图形:作E点关于AD、BC边的轴对称点S、T,显然I、H分别是ES、ET中点。由中位线,可将原题转化为证:FS=FT。再延长AD、BC相交于P点。由A、B、C、D是圆内接四边形。知△PCD∽△PAB,而PF、PE分别是这两个三角形的对应中线,故∠DPF=∠BPE;这就表明E和F是∠APB内的两个“等角点”(即指满足左、右两角相等)。 下面是等角点的一个常用性质(Poncelet定理): “设E、F是∠APB内的两点,满足∠APF=∠BPE。作E关于PA、PB的轴对称点S、T。求证:FS =FT。”

圆锥曲线上四点共圆解决策略

圆锥曲线上四点共圆解决策略 【摘要】圆锥曲线一直是高考的热点问题,本文针对圆锥曲线上的四点共圆问题提出两种解决策略,一是利用共圆定理,二是利用曲线系 【关键词】圆锥曲线;共圆;曲线系 一、圆锥曲线上四点共圆定理 若A,B,C,D为有心圆锥曲线mx2+ny2=1(m≠n)上四个不同的点,且直线AB与CD交于E,AB与CD倾斜角分别为α,β,则A,B,C,D共圆的充要条件是α+β=π. 证明设E(x0,y0),则直线AB参数方程为 x=x0+tcosα,y=y0+tsinα(t为参数),代入mx2+ny2=1,并整理得(mcos2α+nsin2α)t2+2(mx0cosα+ny0sin α)t+(mx20+ny20-1)=0, 则EA?EB=|t1t2|=mx20+ny20-1mcos2α+nsin2α, 同理得EC?ED=mx20+ny20-1mcos2β+nsin2β. 因为A,B,C,D四点共圆的充要条件是EA?EB=EC?ED,所以mcos2α+nsin2α=mcos2β+nsin2β, 即m+(n-m)sin2α=m+(n-m)sin2β. 因为m≠n,所以sin2α=sin2β,又α,β∈[0,π),所以sinα=sinβ.

而直线AB与CD相交,所以α≠β, 由sinα=sinβα+β=π. 综上所述,A,B,C,D四点共圆的充要条件是α+β=π,即AB与CD斜率互为相反数. 二、圆锥曲线上四点共圆定理的应用 例1(2011年全国高考卷2理科第21题)已知O为坐标原点,F为椭圆C:x2+y22=1在y轴正半轴上的焦点,过F且斜率为-2的直线l与C交于A,B两点,P-22,-1关于O的对称点为Q,求证:A,P,B,Q四点共圆. 证明由P点坐标可知点P在椭圆C′上,则点Q也在椭圆C′上.因为P,O,Q三点共线,故得PQ的方程为y=2x,又AB的方程为y=-2x+1,两直线斜率互为相反数,即两直线倾斜角互补,根据定理可知A,P,B,Q四点共圆. 例2(2016年高考四川卷文科第20题)已知椭圆 x24+y2=1,过原点O且斜率为12的直线l交椭圆于不同两点A,B,线段AB中点为M,直线OM与椭圆交于C,D. 求证:MA?MB=MC?MD. 证明设直线l的方程为y=12x+m,代入椭圆方程整理得x2+2mx+(2m2-2)=0,?txA+xB=-2m,因为M为线段AB 的中点,所以xM=xA+xB2=-m,故yM=12m,所以M-m,12m,故直线OM的方程为y=-12x,故直线AB与CD的斜率互为相反数.

圆锥曲线中的四点共圆问题的研究

圆锥曲线中的四点共圆问题的研究 定理 设两条直线00:()i i l y y k x x -=-(1,2i =)与二次曲线L : 2 2 0Ax By C x D y E ++++=(A B ≠)有四个交点,则这四个交点共圆的充 要条件是120k k += 证明 由1l 、2l 组成的曲线即 01 0020 [()][()]0 y y k x x y y k x x ---?---=, 所以,经过它与L 的四个交点的二次曲线一定能表成(λ、μ不同时为0)以下形式 2 2 010020()[()][()]0Ax By C x D y E y y k x x y y k x x λμ+++++---?---= ① 必要性 若四个交点共圆,则存在λ,μ使方程①表示圆,故式①左边展开式含xy 项的系数12()0k k μ-+=.而0μ≠,否则①表示曲线,不表示圆,所以 120 k k += 充分性 当120k k +=时,式①左边的展开式中不含xy 的项,取1μ=时,令式①左边的展开式中含2 x ,2 y 项的系数相等,即2 11A k B λλ-=+,得2 11k A B λ+= - 此时曲线①即220x y C x D y E '''++++= ② 的形式,这种形式表示的曲线有且仅有三种情形:一个圆,一个点,无轨迹,而 题中的四个交点在曲线②上,所以方程②表示圆。这就证得了四个交点共圆. 下面利用这个定理来解决圆锥曲线中四点共圆问题. 例1 设A 、B 是椭圆λ=+223y x 上的两点,点(1,3)N 是线段A B 的中点,线段A B 的垂直平分线与椭圆相交于C 、D 两点. (Ⅰ)确定λ的取值范围,并求直线A B 的方程; (Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (2005年湖北卷) 解 (Ⅰ) 设点11(,)A x y ,22(,)B x y 在椭圆λ=+223y x 上,因为点(1,3)N 是线 段A B 的中点,所以 12 12 x x +=, 12 32 y y +=,即122x x +=,126 y y +=. 又λ=+2 12 13y x ,λ=+2 22 23y x ,两式相减,得

相关文档
最新文档