综合法与分析法:数学解题运用解析
_高中数学第二章推理与证明2

跟踪练习
(2014~2015·合肥一六八中高二期中)观察下题的解答过
程:
已知正实数 a、b 满足 a+b=1,求 2a+1+ 2b+1的最
大值.
解:∵
2a+1· 2≤
2a+12+ 2
22=a+32,
2b+1· 2
≤
2b+12+ 2
22=b+32,
相 加 得 2a+1 · 2 + 2b+1 · 2 = 2 ( 2a+1 + 2b+1)≤a+b+3=4.
综合法: ∵a、b、c∈R+,∴(a-b)2+(b-c)2+(c-a)2≥0, ∴2(a2+b2+c2)≥(ab+bc+ac), ∴3(a2+b2+c2)≥a2+b2+c2+2ab+2bc+2ac, ∴3(a2+b2+c2)≥(a+b+c)2, ∴ a2+b32+c2≥a+3b+c.
人教版 选修2-2
第二章 推理与证明
2.2 直接证明与间接证明
2.2.1 综合法和分析法
目标导航
• 了解综合法与分析法的特点,熟练应用分析法与综合法证明 命题.
重点难点
• 重点:综合法和分析法的概念及思考过程、特点. • 难点:综合法和分析法的应用.
新知导学
1.综合法证明不等式
• 1.定义 • 利用___已__知__条__件___和某些数学__定__义____、__定__理____、
、已知的重要不等式和逻辑推理的基本理论;
• (2)适用范围:对于一些条件复杂,结构简单的不等式的证明 ,经常用综合法.而对于一些条件简单、结论复杂的不等式 的证明,常用分析法;
• (3)思路方法:分析法证明不等式的思路是从要证的不等式出 发,逐步寻求使它成立的充分条件,最后得到的充分条件是 已知(或已证)的不等式;
探讨综合法和分析法在初中几何解题中的应用

探讨综合法和分析法在初中几何解题中的应用戴燕红(江苏省天一中学㊀214101)摘㊀要:初中几何解题是初中学习的重要内容ꎬ掌握必要的几何解题方法非常重要.本文就综合法与分析法在初中几何中的应用进行探讨.综合法与分析法并不是孤立存在的ꎬ在初中几何试题求证过程中ꎬ两种方法的运用是密不可分的ꎬ学生通过分析法对几何试题进行分析ꎬ运用综合法对试题进行罗列求证ꎬ最终完成几何试题的求证.关键词:综合法ꎻ解析法ꎻ初中几何解题中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)23-0007-02㊀㊀几何解题需要清醒的头脑与沉稳的心情ꎬ不要一看到几何证明题目凭着自己的直觉就开始着手解题ꎬ首先需要运用分析法细致㊁全面地分析几何题目的解题思路ꎬ然后再运用综合法对几何题目整体把控ꎬ开始证明.分析法讲的是以所要证明的几何题目结论为出发点ꎬ向前一步步寻找使其成立的充分条件ꎬ直到找到一个符合题目的条件.综合法讲的是在几何题目证明当中ꎬ通过已知条件开始证明ꎬ解题过程环环相扣ꎬ最终得到几何题目所要证明的结论成立ꎬ简而言之就是通过已知去看可知ꎬ步步接近未知的证明方法.综合法是初中几何试题常用的解题方法.㊀㊀一㊁综合法和分析法在初中几何解题中的应用例1㊀如图1所示ꎬ三角形ABC是一个等腰直角三角形ꎬCF是直角øACB的角平分线ꎬBF是外角øABE的角平分线ꎬCF与BF这两条角平分线相交于点Fꎬ探求øBFC与øBAC之间的数量关系.解㊀根据已知条件ꎬøACB=90ʎꎬCF是øACB的角平分线ꎬ所以øCAB=øBCF=1/2øBCA=45ʎ.因为BF是外角øABE的角平分线ꎬ所以øABF=1/2øEBA=1/2(180ʎ-øCBA)=1/2(180ʎ-45ʎ)=67.5ʎ.所以øFBC=67.5ʎ+45ʎ=112.5ʎꎬ所以øBFC=180ʎ-øFBC-øBCF=180ʎ-112.5ʎ-45=22.5ʎ.又因为øCAB=45ʎꎬ所以øBFC=1/2øBAC.例2㊀如图2所示ꎬ在等腰RtәABC中ꎬøACB=90ʎꎬ点E是әABC之外的一点ꎬ并且øAEC=45ʎꎬ求证线段AEʅBE.首先运用分析法探索几何题目的解题路线:若证明线段AEʅBEꎬ已知øAEC=45ʎꎬ需要证明øBEC=45ʎ.分析到这里ꎬ解题遇到第一个瓶颈ꎬ没有更多的已知条件可用ꎬ我们需要考虑借助辅助线来增加已知条件ꎬ通常会首先考虑具有特殊性的45ʎ角.继续分析:作线段BMʅEC并相交于点Mꎬ须证明线段BM=EMꎬ线段BM处在әBMC当中ꎬ通过看图直觉发现并没有与其全等的三角形ꎬ因此还需要增加一条辅助线构建一个与三角形BMC全等的三角形.已知AC=BCꎬ作线段ANʅEC相交于点Nꎬ得出AN=ENꎬ进而可以运用角角边的全等三角形定理证明әCBM全等于әACNꎬ进一步得到线段BM=CN.因为线段CM=AE=ENꎬ所以线段CN=EMꎬ所以线段BM=EMꎬ所以øBEC=45ʎ.进而得出所需要求证的结论ꎬ线段AEʅBE.㊀㊀二㊁激发学生几何学习兴趣ꎬ促进综合法和分析法在初中几何解题中的应用㊀㊀兴趣是最好的老师ꎬ学生自身对几何学习产生兴趣直接促进综合法和分析法在初中几何解题中的应用.首先ꎬ教师可以举出几何学习中具有代表性㊁通俗易懂的背景材料.举例来讲ꎬ教师在传授学生 平行线 这一概念的时候ꎬ教师可以先让学生们观察铁轨的图片㊁长方形黑板的左右边缘㊁直尺的上下边缘等ꎬ引导学生发现以上例子具有哪些共同点.学生在观察㊁分辨之后ꎬ老师可以让学生举手发言ꎬ同时通过举手数量来初步衡量学生们的观察情况ꎬ然后教师顺理成章地将本节课 平行线 的概念引出来ꎬ学生们就更容易理解 平行线 这一抽象的概念了.其次ꎬ可以通过就具体的实验来调动学生学习几何的积极性ꎬ恰到好处地使用几何教学工具就显得尤为重要ꎬ老师指导学生自己动手开展几何实验ꎬ引导学生主动探索几何的奥秘ꎬ由此一来ꎬ不仅在几何情景课堂创设方面收获意想不到的良好效果ꎬ同时还有助于培养初中学生的学习能力.比如ꎬ在学习证明三角形全等㊁角与角之间的关系时ꎬ教师可以向学生们发出疑问ꎬ两个三角形三个角的度数都一样就是全等三角形吗?学生们几乎都回答是ꎬ然后老师拿出两个角度相同但边长不等的两个三角形卡片ꎬ让学生们动手将两个三角形重合ꎬ学生们在亲自动手实践之后发现ꎬ两个三角形卡片大小不一致ꎬ根本不能说是全等三角形.学生们会继续思考ꎬ具备怎样的条件才能是全等三角形?进而对初中几何的学习兴趣愈加浓厚.在初中数学学习当中ꎬ几何部分的学习对于初中生来讲非常重要ꎬ也是很多学生认为较难的学习内容ꎬ很多几何图形较为抽象ꎬ需要学生在脑海中建立立体模型ꎬ所以ꎬ在初中几何学习中ꎬ教师要逐步降低几何题目的解题难度ꎬ对学生看到几何题目后的解题思路与寻找解题路径能力方面进行强化ꎬ可以借助图形㊁添加辅助线等来找到解题思路ꎬ帮助学生正确运用综合法和分析法ꎬ帮助学生很快解决几何试题的求证ꎬ提高学生几何解题能力.加强师生之间的沟通与交流ꎬ重点监督学生几何试题解题思路能力的掌握程度以及几何图形绘图能力.在学生掌握基础知识的同时ꎬ重点指导学生综合法和解析法在初中几何解题中的应用情况.㊀㊀参考文献:[1]查书平.浅析综合法和解析法在初中几何解题中的应用[J].数学学习与研究ꎬ2019(15):142.[2]黄德诚.浅谈 双垂直模型中的射影定理 在初中几何解题中的应用[J].科学咨询(教育科研)ꎬ2018(11):85.[3]毕明东.基于解题能力培养的初中几何教学探析[J].成才之路ꎬ2018(03):61.[责任编辑:李㊀璟]初中数学课堂激发学生学习兴趣的有效途径党大庆(陕西省咸阳师范学院附属中学㊀712000)摘㊀要:学生对于数学的学习兴趣是学生接受知识ꎬ提升自己数学素养的基础ꎬ教师在实际教学过程中ꎬ应针对性地采用科学且合理的教学方式与手段ꎬ通过激发学习兴趣的方式ꎬ让学生将兴趣转化为学习动力.文章主要分析与介绍激发学习兴趣对于初中数学课堂教学的重要价值与意义ꎬ并且针对当前初中数学教学存在的不足提出强化与激发学生学习兴趣的策略措施ꎬ期望可有效解决当前初中数学课堂教学中存在的部分问题.关键词:初中ꎻ数学课堂ꎻ学习兴趣中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)23-0008-02㊀㊀初中阶段的学生虽然已经具备一定的认知与理解能力ꎬ但是其各方面的发展整体而言并不完善.因此ꎬ教师在实际的教学过程中应采取科学合理的教学方法ꎬ达到高质量的教学目的.激发学生学习兴趣对于学生的发展有着重要价值与意义ꎬ兴趣是最好的动力ꎬ只有将学生的内在动力激发出来ꎬ才能让学生在实际学习过程中更加的集中与专注ꎬ充分提升学习的效率和质量.㊀㊀一㊁激发学生学习兴趣的重要价值与意义激发学习兴趣一直以来都是提升教学效率与教学质量的重要手段ꎬ教育界一直在致力于探索如何激发学生学习兴趣的有效途径.虽然ꎬ取得了一定的成果ꎬ但是大多停留在理论阶段ꎬ在实际的教学应用过程中还存在部分问题.激发学生学习趣对于教师教学㊁学生学习均有着极其重要的价值与意义ꎬ具体内容如下:1.提供学习动力激发学生学习兴趣对于初中数学教学有着积极的正面意义ꎬ兴趣可作为学生学习数学知识的动力来源之一ꎬ让学生在实际学习的过程中充分将自身的优势发挥出来ꎬ从而达到提升学习效率的目的.初中生正处于快速吸。
京改版九年级数学下册第二十六章 综合运用数学知识解决实际问题重点解析试题(含答案解析)

第二十六章综合运用数学知识解决实际问题重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、由邯郸到北京的某一次列车,运行途中停靠的车站依次是:邯郸—邢台—石家庄—保定—北京,那么要为这次列车制作的火车票有()A.9种B.20种C.10种D.72种2、“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.B.C.D.3、一个物体从A 点出发,沿坡度为1:7的斜坡向上直线运动到B ,AB =30米时,物体升高( )米.A .307B .C .306D .以上的答案都不对4、某校数学兴趣小组为测量学校旗杆AC 的高度,在点F 处竖立一根长为1.5米的标杆DF ,如图所示,量出DF 的影子EF 的长度为1米,再量出旗杆AC 的影子BC 的长度为6米,那么旗杆AC 的高度为( )A .6米B .7米C .8.5米D .9米5、为了求2320111+3+3+3++3…的值,可令2320111+3+3+3++3S =…,则233+3+S =320123++3…,因此2012331S S -=-,所以2012312S -=,仿照以上推理计算出2320151+7+7+7++7…的值是( ) A .2015712- B .2016712- C .2015716- D .2016716- 6、已知0a b m >>>,设,,,b m b m a m a m M N P Q a m a m b m b m +-+-====+-+-则M ,N ,P ,Q 四数中最大的是( )A .MB .NC .PD .Q7、大象是世界上最大的陆栖动物,它的体重可达到好几吨,下面哪个动物的体重相当于它的百万分之一( )A .啄木鸟B .蚂蚁C .蜜蜂D .公鸡 8、已知14a a +=,则331a a +=( ) A .64 B .52 C .24 D .169、郑州市某校建立了一个学生身份识别系统.利用图1的二维码可以进行身份识别,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生,请问,表示4班学生的识别图案是()A.B.C.D.10、纳米技术和纳米材料的应用几乎涉及各个领域,纳米指的是( )A.长度单位B.面积单位C.体积单位D.以上都不对第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“60”的“金蛋”共________个。
分析综合法

提要分析法就是执果索因的解题方法,即首先抓住问题的结论,追索结论成立的条件,该条件找到后,在追索该条件成立的另一个条件,这样一直追索下去,直到最后出现显然成立的条件;综合法是一种由因索果的解题方法,从顺序上看其与分析法恰好相反,是从已知到未知(即从题设到结论)的推理方。
解题时,分析法和综合法是交替使用的。
知识全解一.分析法的概念解数学问题,若从命题的结论出发,根据已知的定义、公理和定理逐步寻找这个结论成立的条件,直至这个结论成立的条件就是已知条件,这种方法叫作分析法。
它的思维形式是逆向推理。
对问题的分析过程不能代替解答过程的书写,通常是“倒退着分析”,书写解题过程时则需反过来“顺着书写”。
二.综合法的概念解数学问题,若从已知条件出发,运用已学过的公理、定义和定理逐步推理,直到推出结论为止,这种方法叫作综合法。
用综合法进行推理时,语气是肯定的,且每一步推理都必须是正确的。
书写时应先写原因后写结论,一般都用“因为……,所以……”来表述推理。
在叙述过程中,当前面一步陈述的结论,同时是后面一步陈述的条件时,常把后一步推理的条件省略不写。
三.分析综合法的概念对于比较复杂的数学问题,利用分析法和综合法很难解决问题,常常将分析法和综合法结合起来使用。
一方面从已知条件入手,看能推出什么结论;另一方面从结论着眼,想需要找到什么条件,从而找到解题途径。
这种方法称为分析综合法。
寻求解题要因题而异,有时用分析法,有时用综合法;有时用分析法分析思路,用综合法书写表达;有时分析法,综合法同时并用,一边分析,一边综合或交替使用。
四.分析法,综合法的解题策略应用分析法证明数学问题,尤其是证明几何问题时,语言是假定的;若要证明A成立则先证明B成立,若要证明B成立,则先证明C成立……应用综台法时,语气是肯定的,且每一步的推理都必须是正确的。
解题时,分析是为了综合,综合又必须根据分析。
因而有的题目往往同时应用两种方法:一边分析,一边综合,有时甚至交替运用。
小学六年级数学解题技巧方法

小学六年级数学解题技巧方法小学数学是一门很有趣的课程,可以启迪孩子的心智,可以培养孩子的逻辑思维,六年级是学生学习数学的重要阶段,不仅体现在难度上,还体现在应试压力上。
下面是小编为大家整理的关于小学六年级数学解题技巧,希望对您有所帮助!六年级数学题解题小技巧1、以不变应万变阳光印刷厂有150名职工,其中男职工占2/5,后来又进来一批男职工,现在男、女职工人数的比是3:2。
后来又进来多少名男职工?提示:在这一题中,关键是抓住女职工的人数不变,“以静制动”,也就是说女职工从职工总数(150人)的3/5转变成变化后的职工总数的2/5,职工总数的变化原因就是因为又进来了一批男职工,也就先求变化后的单位一。
2、转化单位一兄弟三人合买一幢别墅,老大出50万元,老二出资额是另外两弟兄总额的1/2,老三出资是另外两兄弟总额的1/3.这幢别墅售价多少万元?提示:此题老二出资额是另外两弟兄总额的1/2 ,老二出资额是三弟兄总额的1/3;同理,老三出资是三弟兄总额的1/4,三弟兄总额就是50÷(1-1/3-1/4)=120万元。
3、找对应分率一根绳子用去1/3后,又接上了16米,结果超过了原来的1/5,原来绳子有多长?提示:可以画线段图,明白接上的16米不仅填补了“用去的1/3”,还“超过了原来的1/5”,也就是16米的对应分率是(1/3+1/5)4、理解重点句甲乙两人从AB两地相向而行,甲每小时行50千米,乙每小时行40千米,若干小时后,他们在距离中点30米处相遇,AB两地相距多少千米?提示:此题的“相遇”非“常规相遇”,理解他们在距离中点30米处相遇就是要弄明白甲比乙多走了60千米,而他们的速度差是10千米,相遇时间则是30×2÷(50-40)=6(小时),两地距离也就迎刃而解了。
5、活用假设策略从甲地去乙地,先上坡后下坡,共用5小时,甲乙间相距150千米,上坡速度每小时15千米,下坡速度每小时40千米,问上坡有多少千米?提示:行程问题的题目对学生来说不容易想到“鸡兔同笼”,因此关键是引导学生找等量关系,活用假设策略:假设全当上坡算,则(150-5×15)÷(40-15)=3(小时)就能算出下坡时间。
六年级数学专题复习二

(5)列方程:部分应用题传统的算术方法思考、解答比较困难,而 列方程解应用题,用字母表示未知数,将未知数直接参与计算,思考时 就比较方便。
及路程就是在相同的时间(追及时间)内一方比另一方多走的路程。 在流水问题中,顺水速度=船速+水流速度 逆水速度=船速—水流速
度 典例解析及同步练习
典例1 从A到B是1千米的下坡路,从B到C是3千米的平路,从C到D 是2.5千米的上坡路,小张和小王步行,下坡路速度都是每小时6千米, 平路速度都是每小时4千米,上坡路速度都是每小时2千米。小张和小王 分别从A、D同时出发相向而行,经过多长时间两人相遇?
3、已知大小两个数的差,还知道大数是小数的几倍,求大小两个 数各是多少的应用题,我们通常把它叫做差倍问题。差倍问题也是一种 典型的应用题。那么,如何解决差倍问题呢?和解答和倍问题类似的, 我们仍可以用画线段图的方法来帮助分析、思考,它具有形象、直观等 特点。我们可以通过分析数量关系,发现条件和问题之间的内在联系, 找出解题规律,正确列式解答。常用的数量关系式有:两数差÷(倍数 —1)=小数;小数×倍数=小数+差=大数。 典例解析及同步训练
3、甲河是乙河的支流,甲河水流速度为3千米/时,乙河水流速度 为2千米/时,一艘船沿乙河逆流行驶6小时,行驶84千米到达甲河,在 甲河还要顺流航行133千米,这艘船一共航行多少小时?
4、甲、乙两个码头相距130千米,汽船从乙码头逆流行驶6.5小时 到达甲码头,又知汽船在静水中每小时行驶23千米。汽船从甲码头顺流 开回乙码头需要几小时?
《数学思维方法》题库

小教101班数学思维方法题库一、选择题:1、以下说法正确的是:()见课本P.97~98A.专注与灵感是创造性思维的主要标志。
B.发散性思维与收敛性思维结合是创造性思维的基本图式。
C.积极的创造是创造性思维的重要环节。
D.创见性与新颖性是创造性思维的重要特点。
答案:B2、下列关于数学概念之间的关系的说法中错误的是()A最小的质数与最小的正偶数这两个概念是同一关系B平行四边形与长方形这两个概念是从属关系C等腰梯形与直角梯形这两个概念是矛盾关系D等腰三角形与直角三角形这两个概念是交叉关系答案:C。
(分值:3分)解释:C选项的说法是错误的,等腰梯形与直角梯形的外延互相排斥,尽管它们都包含于梯形的概念之中,它们是对立关系而不是矛盾关系。
A选项正确,最小的质数和最小的正偶数均为2,这两个概念的外延相同,为同一关系;B选项正确,平行四边形包含长方形,长方形属于平行四边形的一种,页脚内容1二者为从属关系;D选项正确,等腰直角三角形就是等腰三角形和直角三角形这两个概念的重合,二者为交叉关系。
3、分析法与综合法的区别在于A.分析法、综合法——已知到未知B. 分析法——已知到未知、综合法——未知到已知C.分析法、综合法——未知到已知D. 分析法——未知到已知、综合法——已知到未知答案:D4、选择题:在△ABC中,求cosA+ cosB+ cosC的最大值( )A.3B. 2C. 1.5D. 1参考答案:解题思路(直觉思维):可以从三角形内角和与三角函数值的角度直觉的猜得,即A=B=C=60°时可取得最大值1.5。
4x-4 x≤ 15、f (x)={ 求与g(x)=log2X的交点数量()x^2-4x +3 x>1页脚内容2A. 1B.2C. 3D.4答案是C6、一个多边形的内角和为720°,这是一个()边形。
(3分)A. 四B.五C.六D.七答案:BC7、在指导学生运用观察与实验的方法学习数学时,应注重数学自身的结构,鼓励学生的_________,增强学生对数学的兴趣与信心,学会运用数学_________。
分析法——精选推荐

分析法分析演绎归纳类⽐推理分析法是"综合法"的对称。
把复杂的经济现象分解成许多简单组成部分,分别进⾏研究的⽅法。
其实质是: 通过调查研究,找出事物的内在⽭盾,并对⽭盾的各个⽅⾯进⾏深⼊研究。
剔除那些偶然的、⾮本质的东西,抽象出必然的、本质的因素,并由此得出⼀些反映本质的简单规定,以把握⽭盾的各个⽅⾯的特殊性。
分析法所提供的只是对于经济现象的⽚⾯理解,它还不能从总体上、从各个部分之间的相互联系上来把握经济现象。
因此,在分析的基础上,还必须运⽤综合的⽅法,使分析得到的各个⽅⾯的本质规定,按照经济现象内在的逻辑联系,形成有机的体系,这样才能全⾯、深刻地认识经济现象,提出解决问题的有效办法。
从已知数量与已知数量的关系⼊⼿,逐步分析已知数量与未知数量的关系,⼀直到求出未知数量的解题⽅法叫做综合法。
分析法--通过对事理原因或结果的周密分析,从⽽证明论点的正确性、合理性的论证⽅法。
也称为因果分析。
事物都有⾃⼰的原因和结果。
从结果来找原因,或从原因推导结果,就是找出事物产⽣、发展的来龙去脉和规律,这就起到了证明论点的合理性和正确性的作⽤。
综合分析法是指运⽤各种统计综合指标来反映和研究社会经济现象总体的⼀般特征和数量关系的研究⽅法。
主要释义1.从求解的问题出发,正确地选择出两个所需要的条件,依次推导,⼀直到问题得到解决的解题⽅法叫做分析法。
2.⽤分析法解题时如果解题所需要的两个条件,(或其中⼀个条件)是未知的时候,就要分别求解找出这两个(或⼀个)的条件,⼀直到问题都是已知的时候为⽌。
3.分析法指从要证的结论出发,逐步寻求使它成⽴的充分条件,直到归结为判定⼀个显然成⽴的条件(已知量、定义、公理、定理、性质、法则等)为⽌,从⽽证明论点的正确性、合理性的论证⽅法。
也称为因果分析、逆推证法或执果索因法。
数学思想从求证的不等式出发,"由果索因",逆向逐步找这个不等式成⽴需要具备的充分条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙源期刊网
综合法与分析法:数学解题运用解析
作者:袁青超
来源:《数学大世界·上旬刊》2019年第09期
综合法与分析法是数学解题中两个最基本的方法,是思维方向截然相反的两种方法,它们在数学解题过程中有着十分重要的作用。
因此,我们在平时的教学中要有意识地渗透给学生,让他们切实地掌握这两种方法,形成真正的分析问题和解决问题的能力,这也是发展学生思维能力的需要。
综合法是从问题的已知条件出發,经过逐步的逻辑推理,最后达到待证结论或需求问题,即“已知→结论”;分析法是从问题的待证结论或需求问题出发,一步一步地探索下去,最后到题设的已知条件,即“结论→已知”。