初中数学1_成比例线段_学案2
24.2.1比例线段 学案

24.2.1《成比例线段》教学案一、课时学习目标:1、了解比例线段的概念。
知道与“线段的比”的区别与联系。
2、了解比例的基本性质,会进行简单的变形。
二、课前复习导学:1、什么是相似图形?2、问:这两张图形有什么联系?它们是 图形,它们 的形状 , 不相同,是相似形。
为什么有些图形是相似的,而有的图形看起来相像又不会相似呢?相似的两个图形有什么主要特征呢?为了探究相似图形的特征,本节课先学习线段的成比例。
三、课堂学习研讨1、由上面的格点图可知,B A AB ''=_________,C B BC ''=________,这样B A AB ''与C B BC ''之间有关系_______________.2、概括:像这样,对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比等于另外两条线段的比,如dc b a =(或a ∶b =c ∶d ),那么,这四条线段叫做成比例线段,简称比例线段.此时也称这四条线段成比例.3、问题1判断下列线段a 、b 、c 、d 是否是成比例线段: (1)a =4,b =6,c =5,d =10; (2)a =2,b =5,c =152,d =35. 解:(1)∵=ba = ,=dc = ,∴b adc ∴线段a,b,c,d 成比例线段。
(2)∵=b a= ,=dc = ,∴badc ∴线段a,b,c,d 成比例线段。
图24.2.14、练习:判断下列线段是否是成比例线段: (1)a =2cm ,b =4cm ,c =3m ,d =6m ; (2)a =0.8,b =3,c =1,d =2.4.5、新结论:对于成比例线段我们有下面的结论: 如果dc b a =,那么ad =bc . 如果ad =bc (a 、b 、c 、d 都不等于0),那么dc ba =.以上结论称为比例的基本性质.6、思考:请试着证明这两个结论。
九年级数学上册《成比例线段》教案、教学设计

(5)课堂小结:对本节课的主要内容进行总结,强调成比例线段的重要性。
3.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、合作交流、问题解决能力等方面,给予积极的评价和鼓励;
(2)终结性评价:通过课后作业、阶段测试等形式,了解学生对成比例线段知识的掌握情况,及时发现问题并进行针对性的辅导。
(四)课堂练习,500字
为了巩固学生对成比例线段知识的掌握,我将设计以下课堂练习:
1.基础练习:给出一些成比例线段的判定题,让学生独立完成;
2.提高练习:设计一些实际问题,让学生运用成比例线段知识解决;
3.拓展练习:给出一些复杂几何问题,如相似三角形中的成比例线段问题,让学生尝试解决。
在练习过程中,我会及时给予学生反馈,指导他们纠正错误,提高解题能力。
4.教学策略:
(1)关注学生的个体差异,提供个性化的辅导,使每个学生都能在原有基础上得到提高;
(2)注重培养学生的几何直观能力,引导学生通过观察、分析、归纳等方法探索几何规律;
(3)鼓励学生提问和质疑,培养学生的批判性思维和创新意识;
(4)整合现代教育技术,如多媒体、网络资源等,丰富教学手段,提高教学效果。
5.通过实际操作,培养学生的观察能力、空间想象能力和逻辑思维能力。
(二)过程与方法
在本章节的教学过程中,教师应注重以下过程与方法:
1.创设情境,引导学生自主探究成比例线段的概念;
2.通过实际例子,让学生感受成比例线段在生活中的应用,培养学生学以致用的意识;
3.采用问题驱动的教学方法,引导学生主动发现、提出和解决问题;
四、教学内容与过程
初中成比例线段教案

初中成比例线段教案教学目标:1. 理解成比例线段的概念及性质;2. 学会判断四条线段是否成比例;3. 能够运用成比例线段解决实际问题。
教学重点:成比例线段的概念及其性质。
教学难点:探索成比例线段的性质。
教学准备:课件、学案。
教学过程:一、导入(5分钟)1. 教师通过展示一些实际问题,引导学生发现其中存在的线段比例关系。
2. 学生观察并讨论,尝试解释这些比例关系。
二、新课讲解(15分钟)1. 教师介绍成比例线段的概念,解释线段比例关系的意义。
2. 学生跟随教师一起探究成比例线段的性质,通过示例和练习加深理解。
3. 教师强调成比例线段的判断方法,引导学生注意比例线段的性质。
三、课堂练习(15分钟)1. 学生独立完成练习题,巩固对成比例线段的理解。
2. 教师选取部分学生的作业进行点评,指出优点和需要改进的地方。
四、应用拓展(15分钟)1. 教师提出一些实际问题,引导学生运用成比例线段的知识解决。
2. 学生分组讨论,分享解题过程和答案。
3. 教师总结学生们的解题方法,强调成比例线段在实际问题中的应用。
五、总结(5分钟)1. 教师引导学生回顾本节课所学内容,总结成比例线段的概念和性质。
2. 学生分享自己对成比例线段的理解和收获。
教学反思:本节课通过引入实际问题,引导学生发现线段比例关系,激发学生的学习兴趣。
通过新课讲解和课堂练习,学生能够理解和掌握成比例线段的概念及其性质。
在应用拓展环节,学生能够将所学知识应用于实际问题中,提高解决问题的能力。
在教学过程中,教师应及时关注学生的学习情况,针对学生的掌握情况,调整教学节奏和难度,确保学生能够扎实掌握成比例线段的知识。
同时,教师应鼓励学生积极参与课堂讨论,培养学生的合作意识和沟通能力。
北师大版九年级数学上册导学案成比例线段2

北师大版九年级数学上册导学案年级九班级学科数学课题成比例线段(2)第 2 课时编制人审核人使用时间第周星期使用者课堂流程具体内容学习目标1.进一步了解比例线段的概念、巩固并掌握比例的基本性质.2.能推导并理解比例的等比性质和合比性质.3.能运用比例的性质解决与比例线段有关的几何问题.学法指导温故知新(1)成比例线段定义(2)比例的基本性质(3)若3m = 2n,你可以得到nm的值吗?mn呢?学生回答,3分钟操作(一)合比性质:1如果dcba==k(k为常数),那么ddcbba+=+成立吗?2、如果dcba=,那么ddcbba-=-成立吗?为什么?如果dcba=,那么。
(二)等比性质如图,HGADFGCDEFBCHEAB,,,的值相等吗?HGFGEFHEADCDBCAB++++++的值又是多少?在求解过程中,你有什么发现?每一个知识点的学习,都需要在一定的知识背景中去认识和练习才能得到巩固应用,从引例的结论中,引出“合比性质”及“等比性质”的学习。
4.1.2成比例线段(2)导学案

北师版九数上册第四章图形的相似4.1成比例线段(2) 主备人: 审核人: 学生姓名: 使用日期: 学习目标 掌握比例的基本性质的简单应用,掌握设比值法,熟练运用等比性质。
教学重点:等比性质的推导过程 教学难点:熟练运用等比性质学习过程一、知识链接1、什么是线段的比?什么是成比例线段?2、四条线段a 、c 、 d 、b 是成比例线段,则可表示为 。
3、若3m=2n ,你能得到m/n= ;n/m= . 二、自主探究阅读教材79---80页内容,思考下列问题:1、如果f e d c b a ==,那么ba f db ec a =++++成立吗?为什么? 2、如果d c b a =,那么dd c b b a ±=±成立吗?为什么? 3、如果d c b a ==…=n m (b +d +…+n ≠0),那么b a n d b m c a =++++++ 成立吗?为什么. 4、试猜想n m fe dc b a =⋅⋅⋅===(0≠+⋅⋅⋅+++n fd b )与n f d b me c a +⋅⋅⋅++++⋅⋅⋅+++相等吗?能否证明你的猜想?、让同学们讨论、交流、验证,从中得出结论:归纳:等比性质:如果n m d c b a =⋅⋅⋅==(0≠+⋅⋅⋅++n d b ),那么nd b m c a +⋅⋅⋅+++⋅⋅⋅++=ba . 等比性质中,为什么要0≠+⋅⋅⋅++n db 这个条件?北师版九数上册第四章图形的相似三、课堂检测A 组:1、已知0432≠==c b a ,则c b a +的值为( )A.54B.45C.2D.21 2、如果x ∶(x +y )=3∶5,那么x y =( ) A.32 B.38 C.23 D.853、若32=y x ,则3x -2y=( )A .3B .2C .1D .0、4、已知2=yx ,则=+y y x ;=-x y x . 5、已知,32===f e d c b a 则fb e a ++=___________. 6、已知2=-+b a b a ,那么b a 的值是 ; 3x =6y ,则y :x=________ . 7、若2x =3y =4z ≠0,则z y x 32+=________ B 组:1、已知2723=+b b a ,求b a 的值 2、已知a ∶b ∶c =4∶3∶2,且a +3b -3c =14.(1)求a ,b ,c (2)求4a -3b +c 的值.3、已知 3a=2b, 5b=4c,那么a:b:c=_______________四、谈收获。
北师大版九年级数学上册4.1.2成比例线段 教学设计与导学案

教学设计4.1成比例线段北师大版 | 九年级数学上 | 2018年10月27日4.1.2《成比例线段》教学设计一、教学目标1.理解并掌握比例的基本性质和等比性质;(重点)2.能运用比例的性质进行相关计算,能通过比例变形解决一些实际问题.(难点)二、情景导入配制糖水时,通过糖和水的比例来计算糖水的浓度,糖水的浓度= 若第一杯糖水含糖a 千克,糖水b 千克,则糖水浓度= 若第二杯糖水含糖c 千克,糖水d 千克,则糖水浓度= 若第三杯糖水含糖e 千克,糖水f 千克,则糖水浓度= 若三杯糖水的浓度相等,把它们糖水混合到一起后,浓度会发生改变吗?混合后浓度=fe d c b af d b e c a ===++++ 这种关系的数学根据是什么?三、合作探究 如图,已知2====HG AD FG CD EF BC HE AB ,求AB BC CD AD HE EF FG HG++++++ 解: ∵2=HEAB ∴AB= HE ∵2=EFBC ∴BC= EF ∵2=FGCD ∴CD= FG ∵2=HGAD ∴AD= HG ∴AB BC CD AD HE EF FG HG ++++++==++++++HG FG EF HE HG FG EF HE 2222HGFG EF HE HG FG EF HE ++++++)(2= 议一议:已知a 、b 、c 、d 、e 、f 满足k f e d c b a ===,那么fe d c b af d b e c a ===++++=k 吗?仿照上一题证明。
【知识小结】等比性质1.如果fe d c b a ===2 则①=++++f d b e c a __________ ②=++d b c a ________ ③=++f b e a __________ ④=++f d e c ⑤=--d c 33__________ ⑥=f e 55__________ ⑦=+-+-fd be c a 5353______________ ⑧=+-+-f d b e c a 119119______________ 【教师点拨】解多个比例式连在一起求值型试题的方法:①是引入参数,使其它的量都统一用含有一个字母(比如k )的式子表示,再求分式的值;②运用等比性质,即若a b =c d =…=m n (b +d +…+n ≠0),则a +c +…+mb +d +…+m =a b ,转化后求分式的值.2.已知a ∶b ∶c =4∶3∶2,且a -b +c =6. (1)求a ,b ,c 的值(2)求4a -3b +c 的值。
4.1.2成比例线段教学设计浙教版数学九年级上册

如果dcb a =,那么ad=bc. 如果ad=bc ,那么dcb a =.注意:a ,b ,c ,d 都不为0.活动意图说明:通过复习,激发学生学习动机和兴趣,吸引学生注意力,为引进新知识的学习做好心理准备。
环节二:探究成比例线段 教师活动2:如图:有两条线段,AB 的长度是m ,CD 的长度是n ,线段AB 与CD 的比是多少?AB CD mnAB :CD =m :n 两条线段的比两条线段的长度的比叫做这两条线段的比.如图,线段OC=2,OC'=4,线段OC 与OC'的比是2:4=21 ,记作;21OC'OC = .21B'A'AB ,记作212:22的比是B',线段AB与A'22B',A'2线段AB ====通过计算上述两条线段的比,你能发现什么?线段OC 与OC'的比和线段AB 与A'B'的比相等, 也就是.B'A'AB OC'OC =四条线段a ,b ,c ,d 中,如果a 与b 的比等于c学生活动2:学生思考,求出线段AB 与CD 的比。
师生总结两条线段的比的定义。
学生在教师的引导下总结什么叫成比例线段。
与d 的比,即dcb a =,那么这四条线段a ,b ,c ,d 叫作成比例线段,简称比例线段. 例如,图中OC ,OC',AB ,A'B'是比例线段. 注意:求两条线段的比必须选定同一长度单位,但比值与单位的大小无关.活动意图说明:学生在教师引导下探索成比例线段的定义,在教学中运用探究式教学模式,使学生体验教学再创造的思维过程,培养学生的创造意识和科学精神。
环节三:例题讲解 教师活动3:如图,在Rt △ABC 中,CD 是斜边AB 上的高. 请找出一组比例线段,并说明理由.分析:根据 ad=bcdc b a =, 问题可转化为找出四条线段,使其中两条线段的乘积等于另两条线段的乘积.解:记Rt △ABC 的面积为S ,则 AC · BC=2S ,CD · AB=2S , ∴ AC · BC=CD · AB ,,BCAB CD AC =∴∴AC ,CD ,AB ,BC 是一组比例线段. 下图表示我国台湾省几个城市的位置关系,问基隆市在高雄市的哪一个方向?到高雄市的实际距离是多少千学生活动3:学生在教师的指导下完成课本问题。
北师大版九年级上册数学 第1课时 线段的比和成比例线段导学案2(2)

第四章 图形的相似4.1 成比例线段第1课时 线段的比和成比例线段 学 习 目 标 1.知道两条线段的比的概念并且会计算两条线段的比 2.知道成比例线段的定义并会判断四条线段是否成比例重点:1、会求两条线段的比 2、知道成比例线段的定义难点:成比例线段的理解与运用。
导学过程:【自主学习,认真准备】小学里已经学过了比例的有关知识,请同学们口答下列 问题:1、若a 与b 的比值和c 与d 的比值相等,应记为:2、地理中的比例尺是指什么?【自主探究、合作交流】任务一:自学课本76页——77页内容,思考并完成下列练习:1、一张桌面的长a=1.25m ,宽b=0.75m ,那么长与宽的比是2、已知线段AB=1.5m ,线段CD=250cm ,那么线段AB 与CD 的比是3、已知A 、B 两地的实际距离是60km,画在地图上其距离A ’B ’是6cm,求这幅地图的比 例尺归纳定义:两条线段的比:____________________任务二:完成课本77页“做一做”:1、计算:=EFAB =EH AD =AD AB =EH EF 2、发现: 归纳定义:成比例线段:【展示交流】1 、如图,一块矩形绸布的长AB=am,AD=1m ,按照图中所示的方式将它裁成相同的三面 矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即 AD AE = ABAD ,那么a 的值应当是多少? 备注,2、已知a=3,b=6,c=9(1)若a,b,c,x是成比例线段,求x.(2)若a,x,b,c是成比例线段,求x【当堂练习】1、已知:线段a=5cm,b=2cm,则a b =2、已知a,b,m,n是成比例线段,其中a=2cm,b=3cm,n=9cm,则m= .若a=2,b=18,且a:x=x:b,则x=4、如图,△ABC中,AG DEAH BC,且DE=12,BC=15,AG=4,求AH.5、在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离为7.5cm,那么福州与上海之间的实际距离是多少?6、完成课本79页“随堂练习”2,3题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1 成比例线段
4.1.2 比例的基本性质
【学习目标】
1、(理解)能熟记比例的基本性质.
2、(掌握)能够运用比例的性质进行简单的计算和证明.
【学习重点】比例的基本性质及其应用.
【学习过程】
一、知识链接:
1、小学里已经学过了比例的有关知识,下面请同学们口答下列问题:
(1)如果a与b的比值和c与d的比值相等,应记为:。
(2)已知2:3=4:x,则x=。
2、上节课学习了两条线段的比,成比例线段
(1)比例线段及其相关概念
“成比例线段”的概念:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做。
(2)“成比例线段”和“线段的比”这两个概念有什么区别?
线段的比是指条线段的比的关系,成比例线段是指条线段之间的关系。
(3)注意:概念的有序性
线段的比有顺序性,a:b和b:a相等吗?请举例说明。
成比例线段也有顺序性,如能说成是b、a、c、d成比例吗?请举例说明。
二、预习交流:
(1)比例的基本性质是:。
请写出推理过程:
∵,在两边同乘以bd得, =
∴=
(2)合比性质:如果,那么
请写出推理过程:
∵,在两边同时加上1得, +=+ .
两边分别通分得:
思考:请仿照上面的方法,证明“如果,那么”.
(3)等比性质:
猜想(),与相等吗?能否证明你的猜想?(引导学生从上述实例中找出证明方法)
等比性质:如果(),那么=.思考:等比性质中,为什么要这个条件?
三、巩固练习:
1.在相同时刻的物高与影长成比例,如果一建筑在地面上影长为50米,高为1.5米的测竿的影长为
2.5米,那么,该建筑的高是多少米?
2.若则
3.若,则
四、本课小结:
1.比例的基本性质:a:b=c:d;
2. 合比性质:如果,那么;
3. 等比性质:如果(),。