氧负离子自由基与苯的反应机理研究
DFT研究C-H活化及Huisgen环加成反应机理

DFT研究C-H活化及Huisgen环加成反应机理DFT研究C-H活化及Huisgen环加成反应机理摘要:C-H活化反应是有机合成中的一种重要策略,能够直接将碳氢键转化为碳键,为有机合成提供了一种高效且环境友好的方法。
Huisgen环加成反应能够在无需催化剂的情况下实现合成1,2,3-三唑化合物,因此成为了有机合成中的重要工具。
本文采用密度泛函理论(DFT)方法研究了C-H活化及Huisgen环加成反应的机理,揭示了反应的关键步骤和反应路径,为合成方法的优化提供了重要的理论指导。
1. 引言C-H活化是一种将碳氢键转化为碳键的反应,具有高效、环境友好等优点,成为有机合成领域的热点研究方向。
Huisgen环加成反应是一种无需催化剂即可生成1,2,3-三唑化合物的重要反应,具有广泛的应用价值。
研究这两种反应的机理,可以深入了解反应的速率控制步骤及反应路径,从而指导实验研究,提高反应的效率。
2. 方法本研究采用密度泛函理论(DFT)方法,选用B3LYP/6-31G(d)作为计算方法,模拟了C-H活化及Huisgen环加成反应的热力学和动力学参数。
结合实验数据,揭示了反应机理中的关键步骤和反应路径。
3. 结果与讨论3.1 C-H活化机理C-H活化反应的机理可以分为氧化还原步骤、C-H活化步骤和反应产物生成步骤。
本研究以苯为例,探究了C-H活化反应的机理。
首先,在氧化还原步骤中,苯与氧分子发生反应生成苯氧自由基;其次,在C-H活化步骤中,苯氧自由基与金属催化剂反应,将苯环上的氢原子转化为碳氧键,得到苯酚产物;最后,在反应产物生成步骤中,苯酚与反应溶剂或其他反应物发生进一步反应生成目标产物。
3.2 Huisgen环加成机理Huisgen环加成反应可以分为亲核进攻步骤、环合步骤和负离子迁移步骤。
本研究以苯乙烯为例,探究了Huisgen环加成反应的机理。
首先,在亲核进攻步骤中,苯乙烯与亲核试剂进行反应,生成激发态的中间体;其次,在环合步骤中,中间体发生环合反应,生成1,2,3-三唑化合物;最后,在负离子迁移步骤中,负离子发生迁移,得到最终产物。
有机反应机理第六章(二)

6.5 有机自由基 自由基是指有一个未成对电子的原子或分子 自由基是缺电子的中间体,但不带电荷,其性质与 正碳离子和卡宾等缺电子的中间体差别较大
有机反应机理
6.5.1 自由基的结构和稳定性 烷基自由基具有7电子结构,因而是缺电子的
烷基自由基的中心碳原子杂化态处于sp2与sp3之间, 近似于sp2杂化,具有扁平的角锥型结构
自由基夺取氢的反应则相反, Me3C-H的氢容易 被自由基夺取, RO-H的氢则难以被自由基夺取, 因为RO-H键的BDE高于Me3C-H键的BDE
有机反应机理
由于上述原因,自由基反应常选择甲醇,水和苯作 溶剂
如果用乙醚,THF,CH2Cl2,丙酮或氯仿作溶剂, 常会发生自由基夺取溶剂分子中的氢的副反应
有机反应机理
O O O O
O 2 O
CH3 C CH3 N N
CH3 C CH3
hv
CH3 N2 + 2 C CH3
有机反应机理
通过键离解能可以判断化学键均裂的难易
H H BDE/kj/mol 435
Br Br 192
不难看出,Br-Br键易断裂,H-H键不易断裂
有机反应机理
一些键在光照下可使电子激发到*轨道上,形成 双自由基
The formation of cyclic amines from N-halogenated amines via an intramolecular 1,5-hydrogen atom transfer to a nitrogen radical is known as the Hofmann-Loffler-Freytag reaction (HLF reaction)
有机反应机理
第十章:酚醌

OHH 3CCH 3第十章 酚、醌羟基直接连接在芳环上的化合物称为酚(phenols )(Ar-OH), 该羟基称为酚羟基,以区别于醇羟基。
如下面两个化合物互为构造异构体,第一个化合物(羟基不是直接连在苯环上)属醇类化合物,第二个化合物属酚类化合物。
CH 2OHCH 3p -甲基苯甲醇 2,6-二甲基苯酚酚很容易被氧化成环状的不饱和二酮,我们把这种特殊的酮叫做醌(quinones )。
这两类化合物均是重要的工业原料,有许多具有很强的生理活性,有的甚至是生物体内不可缺少的,下面分别加以讨论。
第一节 酚一、结构和命名苯酚是平面分子,C -O键的键长比甲醇中的C -O键短。
偶极方向与甲醇的相反。
136pmH 3142pmH 3Cμ = 1.6D 1.7D苯酚和甲醇碳氧键长的差别是由于前面章节已提及过的其成键轨道的s 成分越多,键长越短;另外是由于苯酚氧原子的未共用电子对所占有p 轨道和苯酚π轨道共轭,氧上的未共用电子对可离域到苯环上,它的真实结构可用共振式表示:(1) (2) (3) (4)(1)最稳定,对共轭杂化体的贡献最大,(2)(3)和(4)式中有电荷的分离,虽不稳定,但对共振杂化体亦有较少的贡献。
因此碳氧间亦有部分双键的特征,使键长缩短,C-O键不易断裂,羟基不易被取代。
在甲醇中,羟基是吸电子基,偶极方向指向羟基。
但在苯酚中,由于羟基通过共轭对苯环所起的给电子作用超过了它对苯环的吸电子诱导作用,所以偶极方向指向苯环。
根据芳环上所连羟基的数目,可把酚类分为一元酚,二元酚,三元酚……,但常把含有一个以上羟基的酚称为多元酚。
命名时,都以苯酚(萘酚,蒽酚等)作为母体,它们的英文名都是以-ol结尾,如苯环上连接有其它取代基则可看作是苯酚的衍生物。
对于多元酚只须在“酚”字前面用二、三……等表示羟基的数目,并用阿拉伯数字1,2,3……等表明羟基和其它基团所在的位次。
例如:OH OHCH3苯酚4-甲(基)苯酚4-methyl phenolphenol 或对-甲基苯酚p-methyl phenolOHOH2-萘酚2-naphthalenol 9-蒽酚9-anthrol或β-萘酚β-naphthol 或γ-蒽酚γ- anthrol 多元酚类似于多元醇的系统命名。
有机化学反应机理+范例+原理

1.A rndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例2.Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。
3.Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例4.Birch还原芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物。
反应机理首先是钠和液氨作用生成溶剂化点子,然后苯得到一个电子生成自由基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭体系,(Ⅰ)表示的是部分共振式。
中科院有机化学考研常考机理25个

Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例Cannizzaro 反应凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。
此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步变成树脂状物质。
具有α-活泼氢原子的醛和甲醛首先发生羟醛缩合反应,得到无α-活泼氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反应,如乙醛和甲醛反应得到季戊四醇:反应机理醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上。
反应实例Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。
臭氧发生器的研究与应用

臭氧发生器的研究与应用臭氧发生器是一种利用风电离剂将空气中的氧分子转化成臭氧分子的设备。
臭氧是一种非常强的氧化剂,具有很强的杀菌、消毒、净化、脱臭和卫生保健功能,因此在许多领域中都有广泛的应用。
本文将探讨臭氧发生器的研究与应用。
一、臭氧发生器的原理及构成臭氧发生器主要由三部分组成:风机、离子发生器和臭氧发生器。
风机是产生风量的装置,用于将空气送入离子发生器。
离子发生器是将风中的氧分子转化为负离子的装置,通常采用电场离子化技术。
臭氧发生器则将负离子和氧分子反应生成臭氧,从而达到净化、消毒、脱臭等目的。
臭氧发生器使用的原理是空气中的氧分子与负离子碰撞后产生自由基,自由基与氧分子反应生成臭氧。
臭氧的生成过程可以用下面的反应式表示:O2 + e- → O2 + O•O• + O2 + M → O3 + M其中,O2为氧分子,e-为电子,O•为氧自由基,M为惰性分子。
二、臭氧发生器在水处理中的应用臭氧发生器在水处理中有广泛的应用,主要用于去除水中的杂质及微生物。
因为臭氧具有强氧化性和杀菌性,可以有效地去除水中的杂质和微生物,从而改善水质。
臭氧发生器可以在采用传统水处理方法的基础上进行升级,提高水的质量和安全性。
三、臭氧发生器在空气净化中的应用臭氧发生器在空气净化中的应用也很广泛。
由于空气中存在大量的有害物质和异味物质,臭氧发生器可以通过氧化、分解和催化等反应来净化空气,从而改善室内环境。
臭氧发生器可以净化空气中的花粉、尘埃、甲醛、苯等有害物质,从而提高室内空气质量。
四、臭氧发生器在饮水中的应用臭氧发生器在饮水中的应用可以去除水中有害物质、异味物质和色度,从而提高饮用水的质量。
臭氧发生器可以氧化有机物,杀灭细菌和病毒,因此可以有效地去除水中的异味、有机物和微生物,从而改善饮用水的口感和品质。
五、臭氧发生器的未来发展方向随着科学技术的不断进步,臭氧发生器在净化、消毒和助养等领域的应用将会越来越广泛。
未来,臭氧发生器的发展方向将会是提高效率、降低成本、减少排放和提高环保性。
实验室常用的几个反应机理必需掌握

Negishi偶联反应偶联反应,也写作偶合反应或耦联反应,是两个化学实体(或单位)结合生成一个分子的有机化学反应。
狭义的偶联反应是涉及有机金属催化剂的碳-碳键形成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应。
在偶联反应中有一类重要的反应,RM(R = 有机片段, M = 主基团中心)与R'X的有机卤素化合物反应,形成具有新碳-碳键的产物R-R'。
[1]由于在偶联反应的突出贡献,根岸英一、铃木章与理查德·赫克共同被授予了2010年度诺贝尔化学奖。
[2]偶联反应大体可分为两种类型:•交叉偶联反应:两种不同的片段连接成一个分子,如:溴苯 (PhBr)与氯)。
乙烯形成苯乙烯(PhCH=CH2•自身偶联反应:相同的两个片段形成一个分子,如:碘苯 (PhI)自身形成联苯 (Ph-Ph)。
反应机理偶联反应的反应机理通常起始于有机卤代烃和催化剂的氧化加成。
第二步则是另一分子与其发生金属交换,即将两个待偶联的分子接于同一金属中心上。
最后一步是还原消除,即两个待偶联的分子结合在一起形成新分子并再生催化剂。
不饱和的有机基团通常易于发生偶联,这是由于它们在加合一步速度更快。
中间体通常不倾向发生β-氢消除反应。
[3]在一项计算化学研究中表明,不饱和有机基团更易于在金属中心上发生偶联反应。
[4]还原消除的速率高低如下:乙烯基-乙烯基 > 苯基-苯基 > 炔基-炔基 > 烷基-烷基不对称的R-R′形式偶联反应,其活化能垒与反应能量与相应的对称偶联反应R-R与R′-R′的平均值相近,如:乙烯基-乙烯基 > 乙烯基-烷基 > 烷基-烷基。
另一种假说认为,在水溶液当中的偶联反应其实是通过自由基机理进行,而不是金属-参与机理。
催化剂偶联反应中最常用的金属催化剂是钯催化剂,有时也使用镍与铜催化剂。
钯催化剂当中常用的如:四(三苯基膦)钯等。
钯催化的有机反应有许多优点,如:官能团的耐受性强,有机钯化合物对于水和空气的低敏感性。
Birch 还原

Birch还原
芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物。
反应机理
首先是钠和液氨作用生成溶剂化点子,然后苯得到一个电子生成自由基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭体系,(Ⅰ)表示的是部分共振式。
(Ⅰ)不稳定而被质子化,随即从乙醇中夺取一个质子生成环己二烯自由基(Ⅱ)。
(Ⅱ)在取得一个溶剂化电子转变成环己二烯负离子(Ⅲ),(Ⅲ)是一个强碱,迅速再从乙醇中夺取一个电子生成1,4-环己二烯。
环己二烯负离子(Ⅲ)在共轭链的中间碳原子上质子化比末端碳原子上质子快,原因尚不清楚。
反应实例
取代的苯也能发生还原,并且通过得到单一的还原产物。
例如。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25%、OH- 33%. 而 Bruins 等[19]的双聚焦质谱实验测
量结果则表明, C6H5O- 的产物分支比大约是 C6H4- 的 两倍. 之后的实验通道分支比测量结果也略有不同:
C6H4- 48%、C6H5O- 39%、OH- 13%[20]. 这样, 不同的实 验方法和条件下得到的结果居然大相径庭. 因此, 利
由于氧负离子自由基与苯的反应可能提供非常
重要的有机中间体负离子 C6H5O- 和 C6H5- , 因此也吸 引了许多实验工作的注意. Stockdale 等[17]早在 1970
年第一次研究了该反应的动力学, 通过解离电子贴
附 技 术 (dissociative electron attachment, DEA) 产 生
(Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China)
Hodgson等[30]的 计 算 结 果 证 实, 当 中 性 氧 原 子 接近苯分子时, 将越过较低的势垒直接粘附到苯环 的碳原子上, 形成中间体自由基. 而 B3LYP 入口通 道计算则显示 O- +C6H6 的反应入口处具有完全不同 的势能面形状. 在所有的进攻空间方位中, O- 沿苯分 子的 C—H 键方向贴附的能量最低, 即生成复合物 [C6H6…O-]是碰撞反应最可能的初始产物(记为CM1).
反应物、产物、各种复合物中间体(用 CM 标记) 和过渡态(用 TS 标记)的分子优化构型、振动频率与 零点能(zero point energy, ZPE)均 在 B3LYP 理 论 水
平上得到. 为考察弥散电子对研究体系的影响, 在标 准基组 6-31G(d)的基础上增加了弥散函数和极化函 数(即 6-31+G(d, p)基 组), 比 较 扩 展 基 组 后 的 结 果. 同时, 采用 IRC 计算确认各过渡态所连接的反应物 和产物, 研究电子在反应最小能量途径中的传递机 制. 我们过去的理论研究[ 21-23]证 实 G2MP2 理 论[24]对 于开壳层体系的能量计算是非常合理和准确的. 因 此, 在各物种优化构型的基础上, 采用标准的 G2MP2 方法计算单点能, 得到各产物通道的相对能 量及反应焓, 与已有的实验数据比较. 其中, 为了减 小自旋污染的影响, 标准 G2MP2 方法中的 MP2 能 量改用投影后的能量 PMP2 代替; 而零点能和热能 修 正 则 采 用 B3LYP 计 算 的 振 动 频 率. 以 上 所 有 的 理论计算均采用 Gaussian-03 程序包完成[25].
Ab st r act The reaction mechanism between atomic oxygen radical anion and benzene has been investigated using
the density functional theory (DFT). Geometries of the reactants, products, complexes and transition states involved
O- , 使之与 C6H6 在气室中反应, 并用 时 间 飞 行 质 谱 (TOF-MS)探测该反应的离子产物, 得到相应的产物
通道分支比为
C6H
- 4
+H2O
57% ;
C6H5O - +H
43% ;
C6H5+OH- < 1%. 随 后, Futrell 等[18]利 用 类 似 的 研 究
方 法, 观 测 到 的 反 应 主 要 产 物 为 C6H4- 42%、C6H5O-
关键词: 氧负离子自由基, 苯, 反应机理 中图分类号: O641
Investigation of the Mechanism of the Reaction between Atomic Oxyge n R a d ica l An ion a n d Be n ze n e
ZHAO, Ying-Guo ZHOU, Xiao-Guo* YU, Feng DAI, Jing-Hua LIU, Shi-Lin
No.9
周晓国等: 氧负离子自由基与苯的反应机理研究
1097
图 1 反应中主要物种的 B3LYP /6-31+G(d, p)优化构型 F ig.1 Th e op t im ized str u ctu r es of main sp ecies at t h e
B3LYP /6-31+G(d, p) level bond length in nm, bond angle in degree
September [Article]
物理化学学报(Wuli Huaxue Xuebao) Act22(9): 1095~1100
1095 www.whxb.pku.edu.cn
氧负离子自由基与苯的反应机理研究
赵英国 周晓国* 于 锋 戴静华 刘世林
且也将为瞬态有机中间体的合成和液相化学的机理
研究提供重要的线索.
化学热力学表明, 氧负离子自由基 O- 与有机分
子反应可能的产物通道有
O- +RH"R+OH-
(1)
抽氢反应
"RO- +H
(2)
置换氢反应
"R′- +H2O
(3)
"R- +OH
(4)
生成水反应 羟基化反应
Received: March 27, 2006; Revised: April 14, 2006. * Correspondent, E-mail: xzhou@ustc.edu.cn; Tel: 0551-3600031; Fax: 0551-3602323 !Editorial office of Acta Physico-Chimica Sinica
ion
formation,
H+ 2
transfer,
and
proton
transfer,
are
confirmed
by
calculated
potential
energy
surface
of
this
reaction
described in this study. Based on the G2MP2 energies, a reasonable description has been proposed qualitatively to
2 计算结果与讨论
苯分子中存在强的大 π键作用, 导致负电荷分 配在六元环上, 而外侧的氢原子带部分正电荷. 这 样, 在电荷诱导作用下, 氧负离子自由基靠近苯分子 时将最可能与氢原子成键, 形成初始复合物, 继而发 生解离和异构等变化. 我们的理论计算也是基于这 样 的 分 析, 最 终 在 B3LYP 的 水 平 上 得 到 了 各 复 合 物、产物及过渡态的平衡构型; 而用不同基组 6-31G (d)和 6-31+G(d, p)得 到 的 结 构 并 无 明 显 差 异, 说 明 弥散电子在该反应体系的计算中作用不明显. 为简 化描述, 图 1 中只将各复合物、产物及过渡态的 B3LYP/6-31+G(d, p)优 化 构 型 参 数 列 出, 而 各 过 渡 态的虚频振动模式也一并标出. 同时, 各二重态物种 的 B3LYP 计算中,〈S2〉值在投影前处于 0.750~0.782 范围内, 与纯二重态的理论值 0.75 相差不大, 表 明 自旋污染程度较小. 最后, 反应物、产物、复合物及过 渡态的 G2MP2 能量列于表 1, 体系的反应机理和相 对 能 量 示 于 图 2. 由 表 1 可 见, G2MP2 计 算 的 各 产 物 通 道 反 应 热 ΔrH 与 实 验 数 据[26-29]也 非 常 接 近, 误 差小于 18 kJ·mol-1, 说明该方法对这个反应体系的 计算的确是适用和准确的.
表 1 反应中各物种的总能量、相对能量、反应焓及零点振动能 Table 1 Total energies, relative energies, reaction enthalpies, and
ZPEs of main species
Species !ai /cm-1 ZPE(hartree)b
应研究[10-15]中, 通过测量各种离子产物及通道分支比,
证实了以上四种产物通道在该类化学反应中同时存
在. Yamamoto 等[16]用 密 度 泛 函 理 论 计 算 了 O- 与 卤
代甲烷的反应, 得到了反应的绝热势能面信息, 由此
推断出反应机理, 认为反应速率主要决定于卤代甲
烷自身的偶极矩的大小, 结论与实验结果相符.
解释以往实验的矛盾结果, 为该反应的过程建立清
晰的图象.
1 计算方法
由于该体系带电, 具有典型的开壳层电子结构 特征, 自旋污染(spin contamination)将有可能比较严 重. 为此改用密度泛函理论(DFT)中的 B3LYP 方法 研究这个化学反应, 而过去的理论计算证明, B3LYP 方法能够较好地处理这类开壳层体系[16].
1096
Acta Phys. -Chim. Sin. (Wuli Huaxue Xuebao), 2006
Vol.22
自 从 Depuy[8-9]发 展 了 SIFT (selected ion flow
tube) 方法以来, 人们对于氧负离子自由基与中性分
子的反应进行了大量研究, 如在 O- 与卤代烷烃的反
用高水平的理论计算来推测 O- 与 C6H6 的反应过程, 辅助实验分析就十分必要了. 遗憾的是, 迄今为止这