最小二乘法和一元线性回归分析[1]

合集下载

第一课时 一元线性回归模型及其参数的最小二乘估计

第一课时 一元线性回归模型及其参数的最小二乘估计

解析 由题意得-x=3+4+4 5+6=4.5, -y=25+30+4 40+45=35. ∵回归直线方程^y=b^x+a^中b^=7,∴35=7×4.5+a^,解得a^=3.5, ∴^y=7x+3.5. ∴当 x=10 时,^y=7×10+3.5=73.5(万元). 答案 73.5
(2)列出下表,并用科学计算器进行有关计算.
i
1
2
3
4
5
xi
2
4
5
6
8
yi
30
40
60
50
70
xiyi
60
160
300
300
560
x2i
4
16
25
36
64
-x=5,-y=50,i=∑5 1x2i =145,i=∑5 1xiyi=1 380
5
∑xiyi-5-x

y
于是可得,b^=i=15
∑xi2-5-x 2
【训练2】 某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四 次实验,得到的数据如下:
零件的个数x(个) 加工的时间y(h)
23 2.5 3
45 4 4.5
(1)已知零件个数与加工时间线性相关,求出y关于x的线性回归方程; (2)试预测加工10个零件需要多少时间?
4
解 (1)由表中数据,得∑xiyi=2×2.5+3×3+4×4+5×4.5=52.5, i=1
【迁移2】 (变条件,变设问)本例中近似方程不变,每小时生产有缺点的零件件数是 7,估计机器的转速. 解 因为 y=5710x-67,所以当 y=7 时,7=5710x-67,解得 x≈11,即估计机器的转速约为 11 转/秒.

8.2一元线性回归模型参数的最小二乘估计(第二课时)课件-人教A版选择性必修第三册

8.2一元线性回归模型参数的最小二乘估计(第二课时)课件-人教A版选择性必修第三册
我们将 y
式,其图形称为经验回归直线. 这种求经验回归方程的方法叫做最小二乘法.
2. 什么是最小二乘估计?
经验回归方程中的参数计算公式为:
n

( xi x )( yi y )


bˆ i 1 n

2

(
x

x
)

i

i 1

aˆ y bx
n
x y
i 1
n
i
i
nx y
注意点:在含有一元线性回归模型中,决定系数R2=r2.在线性回归模型中有0≤R2≤1,
因此R2和r都能刻画用线性回归模型拟合数据的效果.
|r|越大,R2就越大,线性回归模型拟合数据的效果就越好.


1
2
3
4
5
6
7
8
t
1896
1912
1921
1930
1936
1956
1960
1968
0.591
-0.284

8.
两个经验回归方程的残差(精确到0.001)如下表所示.


1
2
3
4
5
6
7
8
t
1896
1912
1921
1930
1936
1956
1960
1968
0.591
-0.284
-0.301
-0.218
-0.196
0.111
0.092
0.205
-0.001
0.007
-0.012
0.015
-0.018

一元线性回归模型及参数的最小二乘估计课件-高二数学人教A版(2019)选择性必修第三册

一元线性回归模型及参数的最小二乘估计课件-高二数学人教A版(2019)选择性必修第三册
2.方法归纳:数形结合、转化化归. 3.常见误区:不判断变量间是否具有线性相关关系,盲目求解经验回归方程 致误.
§8.2 一元线性回归模型及其应用 第1课时 一元线性回归模型及参数的最小二乘估计
1 一元线性回归模型 2 最小二乘法和
经验回归方程
3 利用经验回归方程
进行预测
01 一元线性回归模型
知识梳理
一元线性回归模型:我们称
Y=bx+a+e, Ee=0,De=σ2
为Y关于x的_一__元__线__性__回__归_
8
∑i=1xiyi-8 x b^ = 8
∑i=1x2i -8 x
y
2
=132245-6-8×8×52×25982=14,
所以a^ = y -b^ x =98-14×52=12,故经验回归方程为y^=14x+12.
(2)若该次考试数学平均分为120分,物理平均分为91.5分,试由(1)的结 论预测数学成绩为128分的同学的物理成绩.
n
(xi- x )2
n
x2i -n x 2
i=1
i=1
由题意可得 x =15×(1+1.5+2+2.5+3)=2, y =15×(0.9+0.7+0.5+0.3+0.2)=0.52.
5
(xi- x )(yi- y )=-1×0.38-0.5×0.18+0.5×(-0.22)+1×(-0.32)
i=1
(1)(2)(3)(4)(5)回归模型,(6)(7)函数模型.
练1习1 若某地财政收入x与支出y满足一元线性回归模型y=bx+a+e(单
位:亿元),其中b=0.7,a=3,|e|≤0.5,如果今年该地区财政收入10亿
元,年支出预计不会超过
A.9亿元 C.10亿元

一元线性回归模型参数的最小二乘法估计

一元线性回归模型参数的最小二乘法估计

8.2.1一元线性回归模型1.生活经验告诉我们,儿子的身高与父亲的身高相关.一般来说,父亲的身高较高时,儿子的身高通常也较高.为了进一步研究两者之间的关系,有人调查了14名男大学生的身高及其父亲的身高,得到的数据如表1所示.编号1234567891011121314父亲身高/cm 174 170 173 169 182 172 180 172 168 166 182 173 164 180 儿子身高/cm 176 176 170 170 185 176 178 174 170 168 178 172 165 182从图上看,散点大致分布在一条直线附近根据我们学过的整理数据的方法:相关系数r =0.886.父亲身高/cm180 175 170 165 160160 165 170 175180 185 190 ·· ·· · · · 儿子身高/cm· · · · ·185 1).问题1:可以得到什么结论?由散点图的分布趋势表明儿子的身高与父亲的身高线性相关,通过相关系数可知儿子的身高与父亲的身高正线性相关,且相关程度较高.2).问题2:是否可以用函数模型来刻画?不能,因为不符合函数的定义.这其中还受其它因素的影响.3).问题3:那么影响儿子身高的其他因素是什么?影响儿子身高的因素除父亲的身外,还有母亲的身高、生活的环境、饮食习惯、营养水平、体育锻炼等随机的因素,儿子身高是父亲身高的函数的原因是存在这些随机的因素.4).问题4: 你能否考虑到这些随机因素的作用,用类似于函数的表达式,表示儿子身高与父亲身高的关系吗?用x表示父亲身高,Y表示儿子的身高,用e表示各种其它随机因素影响之和,称e为随机误差, 由于儿子身高与父亲身高线性相关,所以Y=bx+a.考虑随机误差后,儿子的身高可以表示为:Y=bx+a+e由于随机误差表示大量已知和未知的各种影响之和,它们会相互抵消,为使问题简洁,可假设随机误差e的均值为0,方差为与父亲身高无关的定值 . 2σ2即E e D eσ:()0,().==我们称①式为Y 关于x 的一元线性回归模型,其中,Y 称为因变量或响应变量,x 称为自变量或解释变量 . a 称为截距参数,b 称为斜率参数;e 是Y 与bx+a 之间的随机误差.2,()0,().Y bx a e E e D e σ=++⎧⎨==⎩① 2、一元线性回归模型如果用x 表示父亲身高,Y 表示儿子的身高,e 表示随机误差.假定随机误差e 的均值为0,方差为与父亲身高无关的定值 ,则它们之间的关系可以表示为2σ4.问题5:你能结合具体实例解释产生模型①中随机误差项的原因吗?产生随机误差e的原因有:(1)除父亲身高外,其他可能影响儿子身高的因素,比如母亲身高、生活环境、饮食习惯和锻炼时间等.(2)在测量儿子身高时,由于测量工具、测量精度所产生的测量误差.(3)实际问题中,我们不知道儿子身高和父亲身高的相关关系是什么,可以利用一元线性回归模型来近似这种关系,这种近似关系也是产生随机误差e的原因.8.2.2一元线性回归模型参数的最小二乘法估计二、自主探究问题1.为了研究两个变量之间的相关关系, 我们建立了一元线性回归模型表达式 刻画的是变量Y 与变量x 之间的线性相关关系,其中参数a 和b 未知,我们如何通过样本数据估计参数a 和b?2,()0,().Y bx a e E e D e σ=++⎧⎨==⎩问题2.我们怎样寻找一条“最好”的直线,使得表示成对样本数据的这些散点在整体上与这条直线最“接近”?从成对样本数据出发,用数学的方法刻画“从整体上看,各散点与蓝色直线最接近”利用点到直线y=bx+a 的“距离”来刻画散点与该直线的接近程度,然后用所有“距离”之和刻画所有样本观测数据与该直线的接近程度.父亲身高/cm180 175 170 165 160160 165 170 175180 185 190 ·· ·· · · · 儿子身高/cm· · · · ·185 父亲身高/cm180 175 170 165 160160 165 170 175 180 185 190·· ·· · · · 儿子身高/cm· · · · ·185设满足一元线性回归模型的两个变量的n 对样本数据为(x 1,y 1),(x 2,y 2),…,(x n ,y n )父亲身高/cm180 175170165 160160165 170 175 180 185 190·· · · · · · 儿子身高/cm· ·· · · 185()()(1,2,3,,-).i i i i i i i i i i i y bx a e i n y bx a e e x y x bx a =++=⋅⋅⋅+=+由),得(显然越小,表示点,与点,的距离越小,()0,.i i i x y =即样本数据点离直线y=bx+a 的竖直距离越小,如上图特别地,当e 时,表示点在这条直线上1-)ni i i y bx a =+∑因此可用(来刻画各样本观测数据与直线y=bx+a 的整体接近程度.()iix y ,y=bx+a()i i x bx a +,·[]21(,)()ni i i Q a b y bx a ==-+∑残差平方和: 即求a ,b 的值,使Q ( a ,b )最小残差:实际值与估计值之间的差值,即 使Q 取得最小值,当且仅当b 的取值为121()()()nii i nii xx y y b xx ==--=-∑∑b.,ˆ,ˆ的最小二乘估计叫做求得a b a b(,).x y 经验回顾直线必经过的符号相同与相关系数r b ˆ最小二乘法我们将 称为Y 关于x 的经验回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线,这种求经验回归方程的方法叫最小二乘法.ˆˆˆy bxa =+12111=i ni n22i ni n x x y y ˆb ,x x ˆˆa x y x y x xy b .i i i i i i ΣΣx )n ΣΣ(()()n ====⎧--⎪=⎪⎨-⎪⎪--=⎩-问题2:依据用最小二乘估计一元线性回归模型参数的公式,求出儿子身高Y 关于父亲身高x 的经验回归方程.儿子的身高不一定会是177cm ,这是因为还有其他影响儿子身高的因素,回归模型中的随机误差清楚地表达了这种影响,父亲的身高不能完全决定儿子的身高,不过,我们可以作出推测,当父亲的身高为176cm 时,儿子身高一般在177cm 左右.当x=176时, ,如果一位父亲身高为176cm,他儿子长大后身高一定能长到177cm 吗?为什么?177y ≈083928957ˆy .x .=+的意义?∧b残差的定义,e a bx Y ++=一元线性回归模型,,Y y 对于通过观测得响应到的数据称量为变观测值ˆ,y通过经验回归方程得到称为预报值的ˆ.ˆey y =-残观测值减去预报值称为即差判断模型拟合的效果:残差分析问题3:儿子身高与父亲身高的关系,运用残差分析所得的一元线性回归模型的有效性吗?残差图:作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据或体重估计值等,这样作出的图形称为残差图.从上面的残差图可以看出,残差有正有负,残差点比较均匀地分布在横轴的两边,可以判断样本数据基本满足一元线性回归模型对于随机误差的假设.所以,通过观察残差图可以直观判断样本数据是否满足一元线性回归模型的假设,从而判断回归模型拟合的有效性.所以,只有图(4)满足一元线性回归模型对随机误差的假设图(1)显示残差与观测时间有线性关系,应将时间变量纳入模型; 图(2)显示残差与观测时间有非线性关系,应在模型中加入时间的非线性函数部分; 图(3)说明残差的方差不是一个常数,随观测时间变大而变大图(4)的残差比较均匀地集中在以横轴为对称轴的水平带状区域内.根据一元线性回归模型中对随机误差的假定,残差应是均值为0,方差为 的随机变量的观测值.2σ观察以下四幅残差图,你认为哪一个残差满足一元线性回归模型中对随机误差的假定?1.残差等于观测值减预测值2.残差的平方和越小越好;3.原始数据中的可疑数据往往是残差绝对值过大的数据;4. 对数据刻画效果比较好的残差图特征:残差点比较均匀的集中在水平带状区域内.归纳小结(残差图中带状越窄,精度越高)1.关于残差图的描述错误的是( )A.残差图的横坐标可以是样本编号B.残差图的横坐标也可以是解释变量或预报变量C.残差点分布的带状区域的宽度越窄相关指数越小D.残差点分布的带状区域的宽度越窄残差平方和越小C 三、巩固提升2.根据如下样本数据:得到的经验回归方程为 ,则( ) A. >0, >0B. >0, <0C. <0, >0D. <0, <0 x 2 3 4 5 6 Y42.5-0.5-2-3a $a $a $a$$b $b$b$b $$ybx a =+$ B3.某种产品的广告支出费用x(单位:万元)与销售额Y(单位:万元)的数据如表:已知Y 关于x 的经验回归方程为 =6.5x+17.5,则当广告支 出费用为5万元时,残差为________. x 2 4 5 6 8Y 30 40 60 50 70$y当x=5时, =6.5×5+17.5=50,表格中对应y=60,于是残差为60-50=10.$y10一元线性回归模型的应用例1.经验表明,对于同一树种,一般树的胸径(树的主干在地面以上1.3m处的直径)越大,树就越高.由于测量树高比测量胸径困难,因此研究人员希望由胸径预测树高.在研究树高与胸径之间的关系时,某林场收集了某种树的一些数据如下表所示,试根据这些数据建立树高关于胸径的经验回归方程.编号 1 2 3 4 5 6胸径/cm 18.1 20.1 22.2 24.4 26.0 28.3树高/m 18.8 19.2 21.0 21.0 22.1 22.1编号7 8 9 10 11 12胸径/cm 29.6 32.4 33.7 35.7 38.3 40.2树高/m 22.4 22.6 23.0 24.3 23.9 24.7dh· · ·· · · · · · · · · 解: 以胸径为横坐标,树高为纵坐标作散点图如下:散点大致分布在一条从左下角到右上角的直线附近,表明两个变量线性相关,并且是正相关,因此可以用一元线性回归模型刻画树高与胸径之间的关系.0.249314.84h d =+··· ·· · · · · · · · 用d 表示胸径,h 表示树高,根据据最小二乘法,计算可得经验回归方程为0.249314.84h d =+根据经验回归方程,由胸径的数据可以计算出树高的预测值(精确到0.1)以及相应的残差,如下表所示.编号胸径/cm 树高观测值/m 树高预测值/m 残差/m1 18.1 18.8 19.4 -0.62 20.1 19.2 19.9 -0.73 22.2 21.0 20.4 0.64 24.4 21.0 20.9 0.15 26.0 22.1 21.3 0.86 28.3 22.1 21.9 0.27 29.6 22.4 22.2 0.28 32.4 22.6 22.9 -0.39 33.7 23.0 23.2 -0.210 35.7 24.3 23.7 0.611 38.3 23.9 24.4 -0.512 40.2 24.7 24.9 -0.2以胸径为横坐标,残差为纵坐标,作残差图,得到下图.30252015-1.0-0.5 0.0 0.5 1.0· · · · · · · 残差/m· · · ·· 354045胸径/cm观察残差表和残差图,可以看到残差的绝对值最大是0.8,所有残差分布在以横轴为对称轴、宽度小于2的带状区域内 .可见经验回归方程较好地刻画了树高与胸径的关系,我们可以根据经验回归方程由胸径预测树高.编号1 2 3 4 5 6 7 8 年份 1896 1912 1921 1930 1936 1956 1960 1968 记录/s 11.8010.6010.4010.3010.2010.1010.009.95例2.人们常将男子短跑100m 的高水平运动员称为“百米飞人”.下表给出了1968年之前男子短跑100m 世界纪录产生的年份和世界纪录的数据.试依据这些成对数据,建立男子短跑100m 世界纪录关于纪录产生年份的经验回归方程以成对数据中的世界纪录产生年份为横坐标,世界纪录为纵坐标作散点图,得到下图在左图中,散点看上去大致分布在一条直线附近,似乎可用一元线性回归模型建立经验回归方程.将经验回归直线叠加到散点图,得到下图:76913031.4902033743.0ˆ1+-=t y用Y 表示男子短跑100m 的世界纪录,t 表示纪录产生的年份 ,利用一元线性回归模型来刻画世界纪录和世界纪录产生年份之间的关系 . 根据最小二乘法,由表中的数据得到经验回归方程为:从图中可以看到,经验回归方程较好地刻画了散点的变化趋势,请再仔细观察图形,你能看出其中存在的问题吗?你能对模型进行修改,以使其更好地反映散点的分布特征吗?仔细观察右图,可以发现散点更趋向于落在中间下凸且递减的某条曲线附近.回顾已有的函数知识,可以发现函数y=-lnx的图象具有类似的形状特征注意到100m短跑的第一个世界纪录产生于1896年, 因此可以认为散点是集中在曲线y=f(t)=c1+c2ln(t-1895)的周围,其中c1、c2为未知参数,且c2<0.y=f(t)=c1+c2ln(t-1895)这是一个非线性经验回归函数,如何利用成对数据估计参数c1、c2令x=ln(t-1895),则Y=c2x+c1对数据进行变化可得下表:编号 1 2 3 4 5 6 7 8 年份/t 1896 1912 1921 1930 1936 1956 1960 1968 x 0.00 2.83 3.26 3.56 3.71 4.11 4.17 4.29 记录/s 11.80 10.60 10.40 10.30 10.20 10.10 10.00 9.95将x=ln(t-1895)代入:得 8012653.114264398.0ˆ2+-=x y上图表明,经验回归方程对于成对数据具有非常好的拟合精度.将经验回归直线叠加到散点图,得到下图: 8012653.114264398.0ˆ2+-=x y8012653.11)1895ln(4264398.0ˆ2+--=t y经验回归方程为对于通过创纪录时间预报世界纪录的问题,我们建立了两个回归模型,得到了两个回归方程,你能判断哪个回归方程拟合的精度更好吗?8012653.114264398.0ˆ2+-=x y① 2ˆ0.4264398ln(1895)11.8012653y t =--+② 我们发现,散点图中各散点都非常靠近②的图象, 表明非线性经验回归方程②对于原始数据的拟合效果远远好于经验回归方程①.(1).直接观察法.在同一坐标系中画出成对数据散点图、非线性经验回归方程②的图象(蓝色)以及经验回归方程①的图象(红色).28212811ˆ,ˆQ Q (()0.004)0.669i i i i eu ===≈=≈∑∑8012653.114264398.0ˆ2+-=x y① 2ˆ0.4264398ln(1895)11.8012653yt =--+②(2).残差分析:残差平方和越小,模型拟合效果越好.Q 2明显小于Q 1,说明非线性回归方程的拟合效果 要优于线性回归方程.R 2越大,表示残差平方和越小,即模型的拟合效果越好 R 2越小,表示残差平方和越大,即模型的拟合效果越差. 21212ˆ()11()n i i nii i y y y y R ==-=-=--∑∑残差平方和。

一元总体最小二乘线性回归与解算分析

一元总体最小二乘线性回归与解算分析
在一元线性回归模型中,当自变量为随机变量时,使用最小二乘准则进行回归参数估计可能会遇到二义性问题。为确保解算结果的唯一性和一致性,需采用总体最小二乘准则进行解算。总体最小二乘准则不仅考虑了因变量的误差,还同时考虑了自变量的误差,从而得到更稳健的参数估计。文档详细描述了总体最小二乘准则,并利用奇异值分解方法对解算公式进行了深入讨论。通过一数字算例,分别应用最小二乘法和总体最小二乘法进行了计算和结果分析。对比发现,总体最小二乘法在处理自变量为随机变量的线性回归问题时,具有更高的精度和稳健性。此方法对于工程实践中的数据分析具有较大的参考价值,特别பைடு நூலகம்在处理含有噪声或不确定性的数据时,能够提供更可靠的分析结果。

最小二乘法一元线性回归

最小二乘法一元线性回归
13
最小二乘法产生的历史
• 最小二乘法最早称为回归分析法。由著 名的英国生物学家、统计学家道尔顿 (F.Gallton)——达尔文的表弟所创。 • 早年,道尔顿致力于化学和遗传学领域 的研究。 • 他研究父亲们的身高与儿子们的身高之 间的关系时,建立了回归分析法。
14
最小二乘法的地位与作用
• 现在回归分析法已远非道尔顿的本意 • 已经成为探索变量之间关系最重要的方 法,用以找出变量之间关系的具体表现 形式。 • 后来,回归分析法从其方法的数学原 理——误差平方和最小(平方乃二乘也) 出发,改称为最小二乘法。
12
解决问题的思路——可能性
• 寻找变量之间直线关系的方法多多。于是,再接下 来则是从众多方法中,寻找一种优良的方法,运用 方法去求出线性模型——y=a+bx+u中的截距a=?; 直线的斜率b=?正是是本章介绍的最小二乘法。 • 根据该方法所得,即表现变量之间线性关系的直线 有些什么特性? • 所得直线可靠吗?怎样衡量所得直线的可靠性? • 最后才是如何运用所得规律——变量的线性关系?
• Y=f(X1,X2,…,Xk; ū)
2
• 三、随机误差和系统误差 • 1、随机误差:是由随机因素形成的误差。 所 谓随机因素,是指那些对被解释变量的作用不 显著,其作用方向不稳定(时正时负),在重 复试验中,正作用与负作用可以相互抵消的因 素。 • 2、系统误差:由系统因素形成的误差。所谓 系统因素,是指那些对被解释变量的作用较显 著,其作用方向稳定,重复试验也不可能相互 抵消的因素。
2 2 i 相同,即 ,并且随机干扰项彼此不相关,即对于 i≠j,
2 Y1 Y1 , Y2 Y2 , Y1 2 Y2 Var Y ... ... Yn , Y1 Yn , Y2

线性回归与最小二乘法

线性回归与最小二乘法

线性回归与最小二乘法线性回归是一种常用的统计分析方法,也是机器学习领域的基础之一。

在线性回归中,我们通过寻找最佳拟合直线来对数据进行建模和预测。

最小二乘法是线性回归的主要方法之一,用于确定最佳拟合直线的参数。

1. 线性回归的基本原理线性回归的目标是找到一条最佳拟合直线,使得预测值与实际值之间的误差最小。

我们假设线性回归模型的形式为:Y = β₀ + β₁X₁ +β₂X₂ + … + βₙXₙ + ε,其中Y是因变量,X₁、X₂等是自变量,β₀、β₁、β₂等是回归系数,ε是误差项。

2. 最小二乘法最小二乘法是一种求解线性回归参数的常用方法。

它的基本思想是使所有样本点到拟合直线的距离之和最小化。

具体来说,我们需要最小化残差平方和,即将每个样本点的预测值与实际值之间的差的平方求和。

3. 最小二乘法的求解步骤(1)建立线性回归模型:确定自变量和因变量,并假设它们之间存在线性关系。

(2)计算回归系数:使用最小二乘法求解回归系数的估计值。

(3)计算预测值:利用求得的回归系数,对新的自变量进行预测,得到相应的因变量的预测值。

4. 最小二乘法的优缺点(1)优点:最小二乘法易于理解和实现,计算速度快。

(2)缺点:最小二乘法对异常点敏感,容易受到离群值的影响。

同时,最小二乘法要求自变量与因变量之间存在线性关系。

5. 线性回归与其他方法的比较线性回归是一种简单而强大的方法,但并不适用于所有问题。

在处理非线性关系或复杂问题时,其他方法如多项式回归、岭回归、lasso回归等更适用。

6. 实际应用线性回归及最小二乘法广泛应用于各个领域。

在经济学中,线性回归用于预测GDP增长、消费者支出等经济指标。

在医学领域,线性回归被用于预测疾病风险、药物剂量等。

此外,线性回归还可以应用于电力负荷预测、房价预测等实际问题。

总结:线性回归和最小二乘法是统计学和机器学习中常用的方法。

线性回归通过拟合一条最佳直线,将自变量与因变量之间的线性关系建模。

最小二乘法与线性回归模型

最小二乘法与线性回归模型

最小二乘法与线性回归模型线性回归是一种常用的统计分析方法,用于研究因变量与一个或多个自变量之间的关系。

在线性回归中,我们经常使用最小二乘法来进行参数估计。

本文将介绍最小二乘法和线性回归模型,并探讨它们之间的关系和应用。

一、什么是最小二乘法最小二乘法是一种数学优化技术,旨在寻找一条直线(或者更一般地,一个函数),使得该直线与一组数据点之间的误差平方和最小化。

简而言之,最小二乘法通过最小化误差的平方和来拟合数据。

二、线性回归模型在线性回归模型中,我们假设因变量Y与自变量X之间存在线性关系,即Y ≈ βX + ε,其中Y表示因变量,X表示自变量,β表示回归系数,ε表示误差。

线性回归模型可以用来解决预测和关联分析问题。

三、最小二乘法的原理最小二乘法的基本原理是找到一条直线,使得该直线与数据点之间的误差平方和最小。

具体而言,在线性回归中,我们通过最小化残差平方和来估计回归系数β。

残差是观测值与估计值之间的差异。

在最小二乘法中,我们使用一组观测数据(x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ),其中x表示自变量,y表示因变量。

我们要找到回归系数β₀和β₁,使得残差平方和最小化。

残差平方和的表达式如下:RSS = Σ(yᵢ - (β₀ + β₁xᵢ))²最小二乘法的目标是最小化RSS,可通过求导数等方法得到最优解。

四、使用最小二乘法进行线性回归分析使用最小二乘法进行线性回归分析的一般步骤如下:1. 收集数据:获取自变量和因变量的一组数据。

2. 建立模型:确定线性回归模型的形式。

3. 参数估计:使用最小二乘法估计回归系数。

4. 模型评估:分析回归模型的拟合优度、参数的显著性等。

5. 利用模型:使用回归模型进行预测和推断。

五、最小二乘法与线性回归模型的应用最小二乘法和线性回归模型在多个领域都有广泛的应用。

1. 经济学:通过线性回归模型和最小二乘法,经济学家可以研究经济指标之间的关系,如GDP与失业率、通胀率之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y (xi,yi) yi
xi
图4么? 2. 如何确定 a, b ?
3. 如何确定 a, b 的置信度和测量列的离散程度? 4. 用直线作为回归方程是否合理?
x
从实验点 ( xi , y i ) 作回归直线 y = a + bx
下面我们分别来讨论这些问题。假定测量满足以下条件: (1)测量是等精度的; (2 ) x i 的 测量误差要比 y i 的测量误差小得多。 对于每一个测量点所对应的 x i 值,测量值 y i 和由理论回归方程 y = a + bx 计算所得的 y 值 (我们不妨称为理论值)的偏差为 ∆y i = y i − (a + bx i ) 。按统计学上的最小二乘法的原理,最佳 的 a, b 值应使所有测量点 y i 的测量值与理论值的偏差的平方和为最小。 于是寻找最佳线性回归方 程 y = a + bx 就相当于一个数学问题:如何选择 a, b ,使得 ϕ = 小值?对 ϕ 求一阶偏导数并令其为零,即
2
(16.1)
a = y − bx
其中字母上方的横线表示对所代表的变量求平均, 即x=
(16.2)
1 n
∑x
i =1
n
i
,y =
1 n
∑y
i =1
n
i
,xy =
1 n
∑x y
i =1
n
i i

x2 =
1 n
∑x
i =1
n
i
2
。把根据 n 组实验数据求出的 a, b 值代入方程 y = a + bx 便是最佳拟合曲线。
最小二乘法和一元线性回归分析
回归分析是通过一组实验数据找出物理量之间的解析表示式的数学方法。设有证据显示, 物 理 量 x, y 之 间 可 能 存 在 线 性 依 赖 关 系 y = a + bx 。 已 有 的 n 对 测 量 数 据 为 (xi , y i ) , 其 中
i = 1,2,...n 。我们要解决的问题是
∂ (∆y i ) ∂ (∆y i ) = −1 及 = − xi ,我们可以得到关于 a, b 应满足的方程组 ∂a ∂b na + b

i =1
n
xi =
∑y
i =1
n
i
a
由此可以解出

i =1
n
xi + b

i =1
n
x i2 =
∑x y
i =1
n
i i
b=
x ⋅ y − xy x − x2
∑ (∆yi )
i =1
n
2
=
∑ ( yi − a − bxi )
i =1
n
2
取得最
∂ϕ =2 ∂a i =1
n
(∆y ) ∑
i
n

∂ (∆y i ) =0 ∂a ∂ (∆y i ) =0 ∂b
(15.1 )
∂ϕ =2 ∂b i =1
注意到
(∆y ) ∑
i

(15.2)
i i =1
n
2
(17 )
由于测量列存在误差,导致拟合方程的参数 a, b 也存在误差。参数 a, b 的标准误差可以用误 差传递公式计算:
σ ai = σ yi
x2 n( x 2 − x )
1
2
(18.1 )
σ bi = σ yi
n( x 2 − x )
2
(18.2 )
用回归分析法求的回归方程,首要任务是选择合适的函数形式。上面介绍的方法没有涉及 如何选择函数形式的问题。原则上,我们可以用以上的方法对任何一组实验数据用直线来拟合。 对于同一组实验数据, 用不同形式的函数去拟合可以得到完全不同的结果。 为了判断所得结果是 否合理,往往需要作进一步的考证。对于一元线性回归,可以通过计算相关系数 γ 来判断用直线 拟合的合理程度。相关系数 γ 定义为
γ =
xy − x ⋅ y
( x 2 − x )( y 2 − y )
2 2
(19)
可以证明 γ ≤ 1 。若 γ 越接近于 1,表示实验结果的数据越接近线性分布,否则应考虑用其 它形式的函数去拟合。 当实验数据的相互关系明显偏离线性时, 可以考虑以下两种方法。 一是通过变量代换把关系变成
线性,例如对于 y = x 2 的关系,如果把 u = x 2 看作一个新变量,则 y 和 u 的关系就是线性了。二 是直接用计算机拟合, 把参数待定的函数形式和实验数据输入计算机, 计算机就会根据使所有测 量点 y i 的测量值与理论值的偏差的平方和
实验点对拟合曲线的离散度用测量列的标准误差 σ yi 来衡量。由于拟合曲线的参数 a, b 是由
n 组实验数据计算得出,参数 a, b 实际上成为 n 组实验数据的 2 个约束条件,实验数据的剩余自
由度为 (n − 2 ) 。进一步的分析可以证明测量列的标准误差 σ yi 为
σ yi =
1 n−2
∑ (∆y )
∑ (y
i =1
n
i
− y ) 为最小的原则找出最佳的参数。但值得注
2
意的是,无论采用那种方法,与线性情况相比,测量列的标准误差 σ yi ,拟合参数的标准偏差以 及相关系数 γ 的计算公式会有不同。
相关文档
最新文档