博弈论的发展历史和基本内容
博弈论方法

博弈论方法博弈论是一门多学科交叉学科,将数学、经济学、心理学、社会学、政治学等视野结合起来,研究智能体之间的决策行为,从而获得更有效的结果。
一、定义:博弈论主要是根据博弈的模型,对研究对象的博弈行为进行建模分析,利用数学技术找出一种最佳策略,从而达到解决大型复杂博弈决策问题。
二、历史发展:1. 早期发展:早期博弈论由英国数学家凯恩斯(John C.H.Keynes)所提出,他将博弈论用于了经济学,对二人博弈的构造展开过研究;2. 现代发展:20世纪50-60年代,美国数学家约翰·哈德曼(John von Neumann)与奥地利数学家普林斯顿(Oskar Morgenstern)共同编写的著作《博弈论理论》,奠定博弈论现代发展的坚实基础。
三、理论基础:1. 互相博弈:智能体彼此之间进行决策对抗,考虑彼此策略以及环境变量等;2. 博弈模型:针对某一特定问题,整理分析有限信息,建立博弈模型,以助于解决决策问题;3. 决策理论:主要研究决策者为得到最优解而所采取的收益最大化和风险最小化的策略;4. 决策树:是一种类型的博弈模型,用来建模智能体之间可能发生的决定步骤,有助于确定最优解。
四、应用:1. 经济学和金融学:博弈论模型在经济学和金融学中应用广泛,可用于垄断定价和资源分配;2. 游戏论:引入了许多人工智能技术,在策略行为方面有众多研究成果;3. 决策-支持系统:主要服务于决策支持,利用博弈论及其衍生的技术来求解决策方案;4. 武器决策:根据双边或多边博弈模型,来评估武器的有效性。
五、总结:博弈论由于其充分结合各种科学视角建模决策,因此受到越来越多的重视,广泛应用于经济学、金融学、游戏论、决策支持系统等诸多领域,对提高决策效率具有重要意义和作用。
未来,随着科技和数学等方面的发展,博弈论也将会得到更全面、更有效的应用,从而发挥更大作用。
博弈论与管理学

博弈论与管理学现代管理的核心职能是激发人最大限度地皮挥主观能动性,创造性地开展工作,这其中自然包含了管理者和被管理者之间的博查。
本文从博弃论的基本概念出发,结合管理学基本理论,对博弈对管理学的作用做了简要阐述。
标签:博弈;管理;均衡;经济一、博弈论简介(一)博弈的起源和发展博弈论是-人在平等的对局中各白利用对方的策略变换自己的对抗策略,达到取胜的月的博弈论思想古已有之,中国古代的《孙子兵法》等蓍作就不仅是一部车事著作,而H算是最早的一部博弈著作。
博弈论最初主要研究家棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展:博弈仑考虑游戏中的个休的预测行为和实际行为,并研究它们的优化策略。
近代对博弈论的研究,开始F策梅洛(Zermclo),波菜尔(Borel)及冯。
诺依曼(von Neumann)。
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·若依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将人博弈推广到n人博弈结构并将博弈论系统地应州于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯纳什(Jchn Forbes Nash Jr)利用不动点定理证明I均衡点的存在,为博弈论的一-般化奠定I坚实的基础。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,莱因哈德·泽尔腾、约翰海萨尼的研究也对博来论发展起到推动作用。
今天博弈论已发展成--门较完善的学科。
二、博弈例证(一)囚徒困境两人医盗窃被捕,警方怀疑其有抢劫行为但木获得确出证据可以判他们犯了抢劫罪,除非有一人供认或两人都供认。
即使两人都不供认,也可以判他们犯盗窃物品的轻罪。
囚徒被分离审查,不允许他们之间或通信息,并交代政策如下:如果两人都供认,每个人都将因抢劫罪加盗窃罪被判3年监禁;如果两人都拒供,则两人都将因盗窃罪被判半年监禁;如果人供认而另个拒供,则供认这被认为有功而免受处罚,拒供者将因抢劫罪、盗窃罪以及拒供重判5年。
(完整word版)博弈论的发展历程.

博弈论的发展历程虽然早在18世纪初以前便开始了对具有策略依存特点的决策问题的零星研究,但博弈论真正的发展还是在20世纪。
20世纪初期是博弈论的萌芽阶段,其研究对象主要是从竞赛与游戏中引申出来的严格竞争博弈,即二人零和博弈.这类博弈中不存在合作或联合行为,对弈两方的利益严格对立,一方所得必意味着存在另一方的等量损失。
这符合下棋等二人室内游戏的情形,但应用在经济与政治上,则大多数情况并不合适。
此时,关于二人零和博弈理论有丰硕的研究成果,尤其是提出了博弈扩展型策略、混合策略等重要概念,为日后研究对象范围的拓展与研究的深化奠定了基础。
这一阶段最重要的成就是泽梅罗定理(1913)与冯·诺伊曼的最小最大定理(1928),后者为二人零和博弈提供了解法,同时对博弈论的发展产生了重大影响,例如非合作几人博弈中的基本概念——纳什均衡就是最小最大定理的延伸与推广。
1944年,美国数学家冯·诺伊曼(Von Neumann)和摩根斯坦(Morgensien)合著的《博弈论与经济行为》一书的出版,标志着系统的博弈理论的初步形成.该巨著汇集了当时博弈论的研究成果,将其框架首次完整而清晰地表述出来,使其作为一门学科获得了应有的地位。
同时身为经济学家的摩根斯顿首先清楚而全面地确认,经济行为者在决策时应考虑到经济学上的利益冲突性质.该书详尽地讨论了二人零和博弈,并对合作博弈作了深入探讨,开辟了一些新的研究领域.更重要的是将博弈论加以空前广泛的应用,尤其是在经济学上,由于博弈论数学上的严整性与经济学应用上的广泛性,一些经济学家将该巨著的出版视为数理经济学确立的里程碑。
接下来的一段时期对合作博弈的研究有了长足进步。
按豪尔绍尼(1966)的观点,如果一博弈中意愿表示--协议、承诺、威胁——具有完全的约束力并可强制执行,则该博弈是合作的。
如意愿表示不可强制执行,则为非合作博弈.非合作博弈随后发展起来,纳什、泽尔滕和豪尔绍尼因此而获奖,但当时注意力主要集中在合作博弈上。
博弈论百度百科

博弈论百度百科博弈论是一门研究决策制定和决策结果的学科,它是应用数学的一个分支,通过运用数学和逻辑工具,探讨参与者在互动决策中的最佳策略选择。
在博弈论中,参与者被称为玩家,他们根据自身利益和目标来做出决策。
博弈论适用于各种不同领域的情境,包括经济学、政治学、生物学等。
一、概述博弈论的研究对象是策略性互动。
在一个博弈中,每个玩家都会依据一定的策略选择进行行动,而这个选择可能会受到其他玩家的影响。
博弈论试图理解和分析在这种互动中,参与者如何做出决策,并找到最优的解决方案。
博弈论的核心概念是博弈,一个博弈可以用一个四元组表示:(N, A, U, F),其中:- N表示参与博弈的玩家集合;- A表示每个玩家可选的行动集合;- U表示每个玩家的效用函数,用于衡量不同结果对该玩家的好坏程度;- F表示每个玩家的信息集合。
信息集合是指每个玩家在博弈过程中所了解的信息。
二、博弈论的重要概念1. 纳什均衡纳什均衡是博弈论中最重要的概念之一,指的是在一个博弈中,所有玩家选择的策略组合,使得任何玩家都没有动机单方面改变自己的策略。
纳什均衡是一个稳定状态,玩家之间不再有改变策略的动机。
2. 零和博弈与非零和博弈博弈可以分为零和博弈和非零和博弈。
零和博弈是指参与博弈的玩家的收益之和为零,即一方获利必然导致另一方的损失。
非零和博弈是指参与博弈的玩家的收益之和不为零,即可以存在多方共同受益的情况。
3. 微观博弈与宏观博弈微观博弈是指研究个体玩家之间的策略性互动,关注的是个体决策的结果。
宏观博弈是指研究整体群体之间的策略性互动,关注的是全局结果。
三、应用领域博弈论的研究在众多领域中都具有广泛的应用。
以下是博弈论在一些领域的应用举例:1. 经济学博弈论在经济学领域中有着广泛的应用。
它可以用来研究市场竞争、合作与冲突、价格形成等经济问题。
例如,博弈论可以用来分析竞争市场中的价格战和垄断市场中的价格定价策略。
2. 政治学博弈论在政治学领域中也有着重要的应用。
博弈论概要

博弈论概要1.研究背景及意义在现实生活中,人们的利益冲突与一致具有普遍性,因此,几乎所有的决策问题都可以认为是博弈。
博弈论在政治学、经济学等许多领域都有着广泛的应用。
在经济学中博弈论作为一种重要的分析方法已渗透到几乎所有的领域,每一领域的最新进展都应用了博弈论,博弈论已经成为主流经济学的一部分,对经济学理论与方法正产生越来越重要的影响。
虽然博弈论是数学的一个分支,但其应用范围十分广泛,在经济学、管理学、社会学、政治学、法律学、军事学等领域都有许多成功运用博弈论的案例。
早在1994年,提出博弈均衡理论的纳什博士与他的伙伴哈尔萨尼教授、泽尔滕教授就共同分享了当年的诺贝尔经济学奖和93万美元的奖金。
2005年,瑞典皇家科学院再次把诺贝尔经济学奖颁给了有着以色列、美国双重国籍的罗伯特·奥曼和美国人托马斯·谢林,以表彰他们在博弈论领域作出的贡献。
纳什的贡献是在1944年与奥斯卡·摩根斯特恩合著了《博弈论与经济行为》一书,标志着现代系统博弈理论的的初步形成。
而谢林和奥曼两位博弈论先驱在政治理论、社会学甚至生物学等方面成功运用到了博弈学理论。
奥曼用数学分析为博弈论列出了精确的公式,谢林则是想通过实践来展示博弈论在社会各个领域的实际意义。
他们两位利用博弈论对商业谈判、种族隔离、武器控制等领域进行了实际分析,谢林教授认为博弈论运用的重要领域应该包括核威慑和武器控制,同时还可以研究种族关系、有组织犯罪、雇员关系乃至自我管理等方面。
2.博弈论相关概念与发展史综述2.1博弈论的概念2.1.1博弈论的定义博弈论(Game Theory,又称对策论)研究决策主体的行为在发生直接的相互作用时,人们如何进行决策以及这种决策的均衡问题。
博弈论是研究理性的决策者之间冲突与合作的理论。
在博弈论分析中,一定场合中的每个对弈者在决定采取何种行动时都策略地、有目的地行事,他考虑到他的决策行为对其他人的可能影响,以及其他人的行为对他的可能影响,通过选择最佳行动计划,来寻求收益或效用的最大化。
博弈对抗发展现状及未来趋势分析研究

案例四:人机交互中的博弈对抗应用研究
总结词
人机交互中的博弈对抗应用研究旨在实现更加自然、智 能的人机交互体验。
详细描述
人机交互是人与计算机之间进行交互和信息交换的过程 ,而博弈对抗技术则可以帮助实现更加智能、自然的人 机交互体验。例如,在语音识别、自然语言处理和计算 机视觉等领域,博弈对抗技术可以提高识别准确率和用 户体验。未来,博弈对抗应用研究将继续推动人机交互 技术的发展。
博弈对抗中,每个决策者都有一定的 策略空间和收益空间,需要根据自身 情况和对手情况选择合适的策略,以 获得最大的收益。
博弈对抗发展历程
博弈对抗理论起源于20世纪50年代,最早由冯·诺依曼和摩根斯坦提出,他们提出了静态博弈和动态博 弈的基本理论框架。
从20世纪80年代开始,博弈对抗理论得到了快速发展和应用,尤其是在经济学、政治学、军事战略等领 域。
案例五:金融风险管理中的博弈对抗实践探索
总结词
金融风险管理中的博弈对抗实践探索是一种利用博弈 对抗方法来管理和降低金融风险的尝试。
详细描述
金融风险管理是金融领域的重要任务之一,而博弈对 抗方法则可以为风险管理提供更加准确和有效的工具 。例如,在信用风险评估、市场风险预测和操作风险 防范等方面,博弈对抗方法可以提供更加准确的预测 和决策支持。未来,博弈对抗实践探索将在金融风险 管理领域发挥越来越重要的作用。
03
博弈对抗未来趋势分 析
博弈对抗技术革新
算法优化
博弈对抗领域将继续发展,并专注于算法的 优化和提升,以更好地适应复杂多变的博弈 环境。
机器学习
机器学习技术将在博弈对抗领域发挥越来越重要的 作用,通过学习大量数据,自主进行策略调整和优 化。
深度学习
博弈论的发展历程

博弈论的发展历程博弈论的发展历程(下)(ZZ)信息问题上的突破。
古典经济模型几乎无一例外地假设,个人(或厂商)的资源与偏好情况不仅为自己,也为他们的竞争对手所知,即完全信息假设。
这显然不符合实际。
不过,这并非模型建立者本身所希望的,而只是因为缺乏解决不完全信息问题的工具而不得不做出的简化。
博弈论的发展也遇到同样问题。
由于对不完全信息问题一度苦无良策,博弈论曾受到严厉批评。
因为局中人事实上不可能清楚关于对手决策的所有信息。
由此导致博弈理论建模的应用范围也受到了限制。
豪尔绍尼对这一问题的解决方法是将不完全信息建模为自然完成的一种抽彩。
这种抽彩决定局中人的特征。
而这些特征是局中人偏好与经验的总和,其中,每个局中人清楚自己的特征,但不知道别人的真实特征。
即他对整个博弈局势只有不完全信息。
据其特征,局中人可分为一些类型。
每个局中人知道自己的类型,不知道别人的类型,但知道类型上的联合分布,从而能对其它局人的类型作出先验分布判断。
不完全信息的这种博弈局势把实际中千变万化的不完全信息都№归结为局中人对他人的主观判断。
这种方法成功地将不易建模的不完全信息转化为数学上可处理的不完善信息:即局中人根据经验与知识对对手的类型得出关于可能性大小的主观判断,即数学上的一种先验分布。
不完全信息博弈的解是由纳什均衡概念推广而来的。
其均衡点(贝叶斯均衡点)是一个n重策略,每个局中人每种类型的个人策略均是对其它局中人的(n-1)重策略的那种类型的最佳应对。
以类型为基础的不完全信息博弈是豪尔绍尼(1967~1968年)提出的。
他运用这种方法来克服将局中人的信息与偏好以及他对其它局中人信息与偏好的了解进行建模时所遇到的复杂性。
这一思路极富创造性,使不完全信息博弈成为解决经济问题的一个有力工具。
其次是关于混合战略的解释。
混合战略概念的传统解释是,局中人应用一种随机方法来决定所选择的纯战略。
这种解释在理论与实际上均不能令人满意。
豪尔绍尼对此提出杰出的解释方法。
博弈论发展史及主要著作

博弈论发展史及主要著作博弈论发展史及主要著作纳什(JohnNash)、泽尔腾(ReinhardSelten)和海萨尼(JohnHarsany)三位博弈理论家和经济学家。
第一阶段:1944年以前,早期思想和基本概念的形成。
1838年,法国经济学家奥古斯汀古诺(AugustinCournot)在分析生产者竞争时,就利用均衡概念研究了寡头市场的情况,并使用了解的概念,该概念实际上是后来的纳什均衡的一种严格说法。
1881年英国经济学家埃奇沃斯(FrancisY.Edgworth)提出了"契约曲线(ContractCurve)"作为决定个体之间交易结果题目的一个解。
1913年,博弈论中第一个定理--泽梅罗定理(ZermeloTheorm)断言,国际象棋是严格确定的,尽管泽梅罗定理的适用范围是具有完全信息的两人零和博弈,但它的影响是巨大的,在五六十年代曾引起很多博弈论专家和经济学家的广泛深进研究。
1921― 1927年间,波莱尔(EmileBorel)发表了四篇关于策略博弈的文章,第一次给出了一个混合策略的现代形式,并找到了有3个或多个可能策略的二人博弈的最小最大解。
1928年,冯诺伊曼(JohnvonNeumann)证实了最小最大定理,该定理被以为是博弈论的精华,博弈论中的很多概念都与该定理相联系。
1930年泽尤森(F.Zeuthen)的著作《垄断题目与经济竞争》出版,在书中他提出了一个关于讨价还价题目的解,该解后来被海萨尼证实与纳什的讨价还价解是等价的。
此外,这一阶段还提出了博弈的扩展形式、纯策略、策略形式、混合策略、个体理性等重要概念。
第二阶段:1944~1959年,现代博弈论的建立与理论体系的基本形成。
1944年,美国普林斯顿大学的著名数学家冯诺伊曼和经济学家摩根斯坦(OskarMorg enstern)合著的《博弈论与经济行为》一书出版。
该书在详述两人零和博弈理论的同时,在博弈论的诸多方面做出了开创性研究,如合作博弈、可转移效用、同盟形式以及冯诺伊曼--摩根斯坦稳定集等,该书还说明了导致后来在经济学中广泛应用的公理化效用理论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要求参加者具有很强的计算 ,推理能力 。但是在现实中个人并不 是完全理性的 ,并且对信息的掌握并不是完全充分的 ,这就使这一 理论受到质疑 。
对纳什均衡博弈理论完全理性假定的质疑推动了进化博弈论 的出现 ,进化博弈理论以达尔文的生物进化论和拉马克的遗传基 因理论为基本思想 。该理论的基本概念是演进稳定战略 ESS,它的 典型模型包括参与人群体集合 ,各群体个人之间进行重复匿名博 弈 。进化博弈理论用系统论的观点看待群体行为的调整过程 ,主 要研究群体行为演化系统的变化即描述动态系统的状态变化 。该 理论对参加者的理性要求较少 ,因而对人类的群体行为可以做出 更好的预测 。
是指博弈中能独立决策 ,选择最大化效用并承担结果的参加 者 。博弈方可以是个人 、团队 、组织 ,乃至国家 。按参加者的数量 的多少 ,博弈可以分为单人博弈和多人博弈 。多人博弈又可以分 为合作博弈与非合作博弈 ,其中非合作博弈在经济学领域中应用 更为广泛 ,是目前博弈论的研究重点 ,而合作博弈在政治 、社会等 公共领域中表现地较为突出 。
80年代以后 ,博弈论开始走向成熟 ,理论框架逐渐完整和清 晰 ,和其他学科之间的关系也逐渐深入 ,并开始受到经济学家真正 的重视 ,特别是 90年代以来博弈论领域的经济学家已经三次获得 经济学诺贝尔奖 ,该理论已经对经济学产生重大的影响 。
3 博弈论的定义 、要素和分类 博弈论又称对策论 ,英文名称是 Game Theory,是研究一些个 人 ,一些团队或组织面对特定的环境条件 ,在一定的规则制约下 , 依靠所拥有的信息 ,同时或先后 ,一次或多次 ,从各自允许选择的 策略进行选择并加以行动 ,并从中各自取得相应结果或支付的过 程的理论 。 博弈论研究的主要目的是研究博弈方的行为特征 ,即各决策 立体的行为发生直接的相互作用时的决策特征 ;以及何种情况下 采取哪种策略 ,会达到什么样的结果即决策主体决策后的均衡问 题。
参考文献 [ 1 ] 张良桥 ,冯从文. 理性与有限理性 :论经典博弈理论与进化博弈理论
之关系 [ J ]. 世界经济 , 2001 (8). [ 2 ] 郭磊. 博弈论简论 [ J ]. 山东经济 , 1999 (6). [ 3 ] 张建英. 博弈论的发展及其在现实中的应用 [ J ]. 理论探索 , 2005 (2).
选择策略时都以自己的利益最大化为目标 ,但结果是无法实现最
一个完整的博弈应当包括以下几个要素 :
大利益 ,即他们的最佳选择和最优结局并不相同 ,这反映了个人理
3. 1 博弈方或局中人
·1·
Econom ic & T rade U pda te V ol. 5 Sum. N o. 70 June. 2007
时代经贸 2007 年 6月 第 5卷 总第 70期
理论探索
博弈论的发展历史和基本内容
王金炳 (四川大学公共管理学院 四川 成都 )
【摘要 】 博弈论凭着强大的理论优势 ,经过半个多世纪的短暂发展 ,已经发展成为经济学领域中一门重要的学 科 。经过由纳什均衡理论向进化博弈理论的发展 ,博弈论的理论体系日益成熟 ,地位不断提高 ,并对个人 、企业 、 国家之间的关系发展有巨大的指导作用 。 【关键词 】 博弈论 纳什均衡 进化博弈理论
到 20世纪 50年代 ,博弈论得到了巨大的发展 , Tucker于 1950 年提出了“囚徒困境 ”。纳什在 1950年和 1951年发表了两篇关于 非合作博弈的重要文章 ,提出了“纳什均衡 ”的概念 ,以及证明纳什 均衡存在的纳什定理 ,奠定了现代博弈论学科体系的基础 ,这个时 期的博弈论研究主要集中在对静态博弈模型的研究 。
·2·
3. 2 策略 又称战略 ,是指局中人在博弈中相应的可供选择的办法 ,它支 配参加者在什么时候选择什么行动 。每一种策略都对应一个相应 的结果 。按策略集合划分 ,博弈可以分为有限策略博弈和无限策 略博弈 。策略数量越多 ,博弈就越复杂 ,因此无限策略博弈比有限 策略博弈要复杂得多 。 3. 3 支付函数 又称得益 ,是参加者选择策略并加以实施后的结果 ,是参与人 从博弈中获得的效用水平高低的体现 。按各方得益情况划分 ,博 弈可以分为零和博弈 、常和博弈和变和博弈 。 3. 4 博弈的次序 即参加者策略选择并行动的先后次序 。依据是否考虑决策的 次序问题 ,博弈可以分为静态博弈和动态博弈 。静态博弈指参加 者可同时决策并行动的博弈 ,并不考虑决策的次序问题 。动态博 弈指参加者先后 、依次决策并且后行动者能够观察到先动者所选 择的策略和行动 。 3. 5 信息 即博弈方的信息结构 ,尤其对有关对手的策略和各博弈方得 益的了解程度 。从参加者的信息结构划分 ,博弈可以分为完全信 息博弈和不完全信息博弈 。完全信息博弈是指参加者对其他局中 人的策略空间 、行动特征及支付函数有完全的了解 ,否则就是不完 全信息博弈 。 其中一般的博弈至少要由前三个因素组成 。另外博弈论还有 其它一些基本概念 ,如行动 ,即参加者的在博弈的某个时点的决策 变量 ;结果 ,即参加者最感兴趣的要素的集合 ;均衡 ,指所有参加者 的最优战略组合 。 按照博弈的决策和信息综合起来进行划分 ,博弈可以分为 :完 全信息静态博弈 、完全信息动态博弈 、不完全信息静态博弈 、不完 全信息动态博弈 。其相应的均衡分别为纳什均衡 、子博弈完美纳 什均衡 、贝叶斯纳什匀衡 、完美贝叶斯纳什均衡 。其中前面论述的 “囚徒困境 ”属于完全信息静态博弈 ,相应的均衡为纳什均衡 。 4 纳什均衡博弈理论和进化博弈理论 纳什均衡博弈理论的基本概念是纳什均衡及其精练 。纳什均 衡可以描述为 :如果一个博弈存在一个战略组合 ,任何参与人要改 变这一战略组合都可能导致降低自身的效用水平 (或只能保持原 有的效用水平 ) ,因而任何参与人都没有积极去改变这一战略组 合 ,这一战略组合称为该博弈的纳什均衡 。 纳什均衡假设参加者是完全理性的 ,并且博弈信息是完全的 , 并且要求参加者正确地知道其他局中人将会如何选择 ,即预期要 满足一致性原则 。参加者在处理不完全信息时要假定参加者知道 世界的各种可能状态 ,知道在随机抽取状态上的客观概率分布 ,并
从纳什均衡博弈理论到进化博弈论是一个逐渐递进的过程 , 体现了从完全理性向有限理性转变 ,从完全信息向不完全信息转 变 ,从行为分析向制度分析转变 ,从简单博弈向重复博弈转变 ,从 静态博弈向动态博弈转变 ,从个体研究向群体研究转变 。
5 博弈论与其它学科及现实的关系 博弈论是研究理性的决策者之间冲突及合作的理论 ,可以对 实际决策提供理论基础和方向指导 。博弈论的最终追求结果是博 弈方达到利益最大化的均衡 ,已经在经济学 、政治学 、管理学 、国际 关系学 、人际关系学 、外交 、犯罪学等方面有着广泛的应用 。特别 是博弈论作为经济学的分析工具和重要分支 ,极大地改变了经济 学的面貌 :拓宽了经济学的研究领域 ,极大地推动了国际贸易理论 和产业组织理论的极大发展 ;改变了传统经济学的对个人孤立决 策和完全竞争条件下的均衡行为的研究 ,侧重于对多个利益主体 的行为特征及之间相互作用的分析 ,使经济分析更能反映人为因 素这一本质特征 。 博弈论与现实生活也有着密切的联系 。博弈论对现代企业管 理观念和方式的改变有重要的指导意义 ,我们生活中经常会遇到 各种价格大战和价格联盟 ,但这不一定会促进企业的良性发展 ,而 强化企业之间的合作和正和博弈将是企业获得双赢的一条捷径 。 在日常生活中 ,关系到我们个人的排队与不排队 ,让座与不让座 , 拾金不昧与据为之有等也体现了博弈的知识 。国家关系的发展尤 其是经济领域中的恶性贸易战是经常发生的 ,贸易战是不利于名 方利益实现的 ,只有合作博弈才能实现各国共赢 。 博弈论凭借自身的理论优势 ,已经发展为经济学的前沿知识 。 虽然它已经被普遍认可 ,但还存在一些问题 :有关博弈规则 、博弈 信息的理论基础薄弱 ;许多博弈理论还处在提出假设阶段 ,还需要 接受实践的的检验 ;理论范围有待扩展 ,理论体系有待严密 、统一 ; 合作博弈理论发展地不充分等等 。正是具有这些问题 ,博弈论才 有巨大的发展动力和广阔的发展前途 。我们相信在不久的将来 , 博弈论的发展会迈上一个新的台阶 ,对社会做出更大的贡献 。
于乙而言 ,不管甲选择何种策略 பைடு நூலகம்坦白是他的最佳策略 。因此 (坦
白 ,坦白 )构成了此博弈的最佳策略均衡 。
另外 ,我们从模型中可以看出 ,当甲和乙都不坦白时 ,将被各
判刑 1年 ,这要比他们的最后策略均衡的结局要好地多 。甲 、乙在
博弈论的正式提出是在 20世纪四十年代 ,但博弈的思想有着 悠久的历史 ,例如 2000多年前的“齐威王与田忌赛马 ”出色地运用 了这一思想 。1944年冯 ·诺伊曼和摩根斯特思合作出版了《博弈 论与经济行为 》一书标志着博弈理论的正式提出 。
将采取何种策略 。在这个模型中 ,甲 、乙两个博弈方对对方的可能
得益完全知晓 ,并会根据双方两种可能的选择分别考虑自己的最
后策略 ,并独立作出策略选择 。对于甲而言 ,当乙坦白时 ,甲会选
择坦白 ,被判 5年 ,当乙不坦白时 ,甲会选择坦白 ,被释放 。因此不
管乙选择何种策略 ,甲都会选择坦白 ,这是他的最佳策略 。同理对
博弈论经过半个多世纪的短暂发展 ,正逐渐成为现代经济理 性与集体理性的矛盾 ,在现实生活中具有相当的普遍性 。
论的一个重要组成部分 。1994年著名博弈论专家纳什 、泽尔藤 、豪
2 博弈论的发展历史
尔绍尼因在非合作博弈均衡领域的开创性贡献获得当年的诺贝尔
经济学奖 。2005年奥曼和谢林因“以博弈论分析方式增进了对冲
乙 ,但警察缺乏足够的相关证据指证他们的罪行 ,但是只要甲和乙
中至少一人承认犯罪 ,就能确认其罪名成立 。
为了得到口供 ,警察将二者关押并进行审讯 ,同时为了防止他
们串供 ,将他们分别关押 。警察告诉了他们面临的选择及可能的
结局 : ①如果两人都坦自认罪 ,他们将被各判型 5年 。 ②如果两人
中只有一个坦白 ,则坦白者立即释放 ,另一个会重判 10 年徒刑 。