石油工程概论油藏流体和岩石的物理性质

合集下载

油藏及流体物理性质2

油藏及流体物理性质2

N Ah 1 Swc o / Bo
例题
例题2
某油藏含油面积为 14.4k ㎡,油层有效厚度 10m,孔隙度 20%,束缚水饱和度为 30%,原油 地下体积系数1.2(地下体积与地面脱气后体积 比 ),原油密度为 860kg/m ³,计算油藏的原始 含油储量。 So 1 Swc
实质是指油层压力每降低单位值时,单位体积岩石 内孔隙体积的变化量
1.2 储集层岩石的物理性质
三、岩石的渗透率
达西定律
Ap qK L
qL K Ap
例题
P1

P2
A
L
例题1
有一块砂岩岩心,长度为3cm,横截面积2c㎡ 其中只有水通过(百分之百含水)。水的粘度 1mPa〃s,在压差0.2mPa下通过岩心流量为 0.5cm³/s,求砂岩渗透率
二、岩石的压缩系数
pf
岩石骨架颗粒 岩石孔隙
岩石受压缩使孔隙体积减小的数值,用压缩系数 C f 表示
1.2 储集层岩石的物理性质
岩石的压缩系数 岩石受压缩使孔隙体积减小的数值,用压缩系数 C f 表示
dVp 1 Cf V f dp
dVp —油层压力降低 dp 时,孔隙体积的缩小值 V f —岩石表观体积
qL K Ap
1.2 储集层岩石的物理性质
四、岩石中的流体饱和度
油相饱和度 气相饱和度 水相饱和度 油水两相共存 三相共存
So
油相体积
Vo V 100% o 100% VP V f 气相体积
Sg
Sw
Vg VP
100%
Vg
V f
100%
水相体积
Vw V 100% w 100% VP V f

第一章__油层物理性质及渗流规律

第一章__油层物理性质及渗流规律
三、向井流动特性
2Kh( Pc Pwf ) qsc re Bo (ln S ) rw
K:油层有效渗透率 H:油层有效厚度
:地层原油粘度
(1.3.2)
(1.3.2)是油层以及油井动态分析的一个基本公式
Rw:井的完井半径
S:井壁阻力系数 Pe:油层压力 Pwf:井底流压
Re:供油面积半径:
K-岩石的渗透率,μm2
第一章 油层物理性质及渗流规律
§1.2 储层岩石物理性质
四、毛细管性质
1.表面张力:两种流体接触面上由于流体分子间引力不平衡引起 的界面张力
油水表面张力范围:20-40mN/m
2.岩石润湿性:当两种非混相流体同时呈现于固相介质表面 时,某一流体相优先润湿固体表面的能力 3.毛管压力:多孔介质的微细毛管中,跨越两种非混相流体弯
第一章 油层物理性质及渗流规律
§1.2 储层岩石物理性质
一、孔隙度φ
定义:岩石本身的空隙体积与岩石体积之比值 Φ=VΦ∕V= VΦ/(Vφ+VG)
Φ-孔隙度, VΦ-空隙体积cm3 ,VG-骨架体积,cm3
流动孔隙度:与含油岩石中流动着的流体体积相等的空隙体积
与岩石体积比值
二、饱和度SO 束缚水饱和度SWi,自由水或可动水饱和度SWm So+Sw+Sg=1
二、地层原油的性质参数
1.泡点压力Pb; 2.溶解气油比Rs; 3.原油的压缩系数Co;
第一章 油层物理性质及渗流规律
§1.1 油层流体物性
二、地层原油的性质参数(续)
4.原油的密度ρo; 5.原油的粘度μo ; 6.原油地层体积系数Bo;
7.总体积系数Bt;
三、地层水的性质参数
1.地层水的粘度μg; 2.地层水的体积系数Bw和密度ρw; 3.溶解气水比Rw; 4.地层水的压缩系数Cw;

油藏及流体物理性质ppt课件

油藏及流体物理性质ppt课件
通过曲线可以确定注水油层最终采收率
A
B
ER
Soi Sor Soi
100 %
0.8 0.15 0.8
100 %
81.3%
11
1.4 流体在地层中的渗流规律
根据下图相对渗透率曲线求注水油层最终采收率
0.25
0.9
ER
Soi Sor Soi
100 %
0.75 0.1100% 0.75
86.7%
12
3、溶解
Rs p
亨利定律
4、分离 接触分离
微分分离
3
上节内容回顾
二、地层原油高压物性
1、溶解气油比(Rs)
每立方米地面原油在地下所溶解的天然气在标准状况下的立方米数
2、体积系数(Bo)
原油在地下的体积与在地面脱气后的体积之比 3、粘度(μ) 当速度梯度为1时单位面积上流体的内摩擦力
三、地层水高压物性
二、多相流体的渗流规律
绝对渗透率:指单相流体在多孔介质中流动,不与之发生物理化学 作用的渗透率。大小只取决于岩石本身,而与实验流体无关。
有效渗透率:当岩石中有两种以上流体共存时,岩石对某一相流体的 通过能力,又称相渗透率。
Ko Kw Kg K
相对渗透率:当岩石中有多种流体共存时,每一种流体的有效渗透
上部:汽油(C5~C9)
中部:煤油(C10~C15)


下部:柴油(C11~C20)

底部:重油(C16、天然气高压物性
1、压缩因子(Z)
一定温度和压力条件下,一定质量气体实际占有的体积与在相同条件下理 想气体占有的体积之比。
2、粘度(μ)
表征气体或液体流动时分子之间摩擦力大小的参数

油藏的岩石物理性质

油藏的岩石物理性质
集场所。 特点: 单一圈比 统一的水动力系统 统一的油水界面 油田:一个地区地下所有的油藏构成油田。
石油管理局 采油厂(清河、东兴) 油田 油藏
油藏流体:油藏中的石油、天然气、地层水
特点:处于高温、高压,石油中溶有大量的天然气,地层水矿化度高。
开采—地下流体的相态发生变化—最终影响采收率。 更高效的开发油藏,有必要弄清地下流体的相态、物性 随压力的变化。
油藏的岩石物理性质
石油深埋在地下岩石空隙中,是一种不可再 生资源。油田开发的好坏,很大程度上取决于 对油藏得认识程度。
目前的开发现状:
我国多数老油田已进入开发的中后期,含水高,但 采出程度很低;新油田逐渐转向特殊油田的开发(稠油、 低渗、缝洞、海上油田)。开发难度越来越大。
目前原油采收率普遍较低:海上油田小 于18%,陆上油田15-40%。(天然能量、轻质 油田) 地下还有大量的石油等待开发,只是就 目前的技术开发难度较大。对油藏的地质认 识和工程技术水平要求越来越高。
石油地质 物理化学 有机化学 渗流力学 油藏工程 油藏数值模拟 采油工程
油藏物理
油层物理的主要内容:
(1)油藏流体(油、气、水)的高压物性; (2)油藏岩石的物理性质; (3)饱和多相流体的油藏岩石的物理性质;
油藏流体的物理性质
油层:能储集油气、并能让油气在其中流动的多孔介质。 油藏:深埋在地下的油气聚

第二章油藏流体的物理性质

第二章油藏流体的物理性质

第二章油藏流体的物理性质第二章油藏流体的物理性质油藏包括两个部分:油藏岩石和油藏流体。

油藏流体是指油藏岩石孔隙中的石油、天然气和地层水。

油藏流体的特点是处于高温高压下,特别是其中的石油溶解有大量的烃类气体,使其与地面的性质有较大的差别。

由于地下压力温度各油藏十分不同,因此油藏中流体处于不同的相态,可能为单一液相,也可能是单一的气相,可能处于油气两相等。

油藏流体在什么压力、温度条件下出现什么相态,各相态的物理性质和物理化学性质如何?这就是本章所要研究的内容。

第一节天然气的高压物理性质一、天然气的组成及特点1、定义:1)地下采出来的可燃气体统称为天然气。

2)是指在不同地质条件下生成,并以一定压力储集在地层中的气体。

2、组成以石碏族低分子饱和烃气体和少量非烃气体组成的混合物。

其化学组成:甲烷(CH4)占绝大部分,乙烷(C2H6),丙烷(C3H6),丁烷(C4H10)和戊烷(C5H12)含量不多。

此外天然气中还含有少量非烃气体,如硫化氢、CO2、CO、N2、He、Ar等。

3、天然气分类1)按矿藏特点气藏气、油藏凝析气、油藏气。

2)按组成干气:每一标准m3井口流出物中,C5以上烷液体含量<13.5cm3。

湿气:每一标准m3井口流出物中,C5以上烷液体含量>13.5cm3。

富气:每一标准m3井口流出物中,C3以上烷液体含量>94 cm3。

贫气:每一标准m3井口流出物中,C3以上烷液体含量<94 cm3。

3)按硫含量净气(洁气):每m3天然气中含硫<1g。

酸气(酸性天然气):每m3天然气中含硫>1g。

4、天然气组成的表示方法重量组成体积组成,摩尔组成。

二、天然气的分子量和比重1、分子量天然气是多组份的混合气体,本身没有一个分子式,因此不能象纯气体那样,由分子式算出其恒定的分子量。

视分子量:把0oC,760mmHg,体积为22.4ml的天然气所具有的重量定义为天然气的分子量。

天然气的视分子量是根据天然气的组分和每种组分的含量百分数计算出来的,也就是说天然气的组成不同,其视分子量也不同,天然气的组成相同,而各组分的百分数比不同,其视分子量也不同。

油藏及流体物理性质

油藏及流体物理性质

1.3 油藏流体的物理性质
石油的组成
烷烃(alkane):C5~C16 塔顶:炼厂气(C1~C4)
蒸馏 分馏塔
上部:汽油(C5~C9)
中部:煤油(C10~C15)
热 裂
下部:柴油(C11~C20)

底部:重油(C16~C45)
1.3 油藏流体的物理性质
一、天然气的高压物性
天然气在高温高压下的物理特性
天然气的摩尔质量
n
M yiM i i 1
组分i的摩尔分数 组分i的摩尔质量
1.3 油藏流体的物理性质
1.天然气的状态方程
理想气体状态方程
pV nRT
pV ZnRT
P-气体压力,Pa; V-在压力P下的气体体积,m³; T-绝对温度,K; n-气体摩尔数; R-通用气体常数,通常为8.314J/(mol·K)
Vo -地面脱气原油体积,m³
1.3 油藏流体的物理性质
溶解气油比
油藏原始压力下的溶解气 油比与泡点压力下溶解气 油比相等。
当压力降低至泡点压力, 随着压力的降低,溶解气 油比减小
油藏条件下,温度升高,溶解气油比降低
1.3 油藏流体的物理性质
地层油体积系数
原油在地下的体积与在地面脱气后的体积之比
•油藏流体
石油(petroleum) 天然气(gas)
储层烃类:C、H
(reservoir fluid)
地层水(stratumtous water)
•油藏流体的特点(the characteristic of reservoir fluid ):
高温高压,且石油中溶解有大量的烃类气体; 随温度、压力的变化,油藏流体的物理性质也会发生变化。 烃类流体的密度小,比水轻。

油藏流体及岩石物理性质

(2)影响因素 ① 油气性质
油气密度差异越小,地层油的溶解气油比越大。
② 压力
③ 温度 油藏条件下,T升高,Rs降低
第一节 油藏流体物理性质 三、地层原油高压物性
3、压缩系数(Co) (1)定义
在温度一定的条件下,单位体积地层油随压力变化的体积变
化率,1/MPa
1 Co Vf V f P T
•油藏流体
(reservoir fluid)
地层水(stratumtous water)
•油藏流体的特点(the characteristic of reservoir fluid ): 高温高压,且石油中溶解有大量的烃类气体; 随温度、压力的变化,油藏流体的物理性质也会发生变化。 同时会出现原油脱气、析蜡、地层水析盐或气体溶解等相态 转化现象。 烃类流体的密度小,比水轻。
第一节 油藏流体物理性质 四、天然气高压物性
1、压缩因子(Z)
一定温度和压力条件下,一定 质量气体实际占有的体积与在相同 条件下理想气体占有的体积之比。 压缩因子Z的物理意义: 理想气体的假设条件: 1.气体分子无体积; 2.气体分子间无作用力; 3.气体分子间是弹性碰撞;
V实际 Z= = V理想 nRT P
ln Co 2.4615 1.43 ln p 0.395 ln pb 0.39 ln T 17.78 1 0.455 ln Rsb 0.262 ln 0.929 o
第一节 油藏流体物理性质
(2)影响因素分析:
1 Co Vf V f P T

其中: pb -饱和压力,MPa;
o -地面脱气原油相对密度;
tR -地层温度,℃;

石油工程概论全册简介





最后,原油被输送到炼油厂进行加工, 以成品油外输。

石油工程是根据油气和储层特性建立适宜的流 动通道并优选举升方法,经济有效地将地下油气从 油气藏中开采到地面所实施的一系列工程和工艺技 术的总称。按目前我国石油生产 的专业和管理的门 类划分,石油工程领域覆盖了油藏工程、钻井工程 和采油工程三个相互独 立又相互衔接的工程领域。 也就是说,石油工程是一个集多种学科、多种工艺 技术和工程措 施于一体的多种工艺技术相互衔接、 相互渗透、相互促进和发展的综合工程。


常温下不同石油组分的状态
表2-1某一典型的油气烃类组成
成分(碳分子数) 汽油(C4~C10) 煤油(C11~C12) 柴油(C13~C20) 润滑油(C21~C40) 重量百分比 分子类型 31 10 15 20 烷烃 环烷烃 芳香烃 沥青 重量百分比 30 19 15 6
残地层原油的高压物性
地层油处于高温高压状态下,并溶解有大量的 天然气,其物性与地面原油有很大差别,如粘度、 密度和压缩系数等都大不相同。在油藏开采过程中, 随压力、温度的降低以及油中溶解气的不断释出, 地层油的性质也在不断变化。因此,了解地层油物 性的变化情况及其影响因素,对于分析油藏开采动 态、渗流计算及开采工艺设计等都是必不可少的。
层的油气不向四周方向运移的圈闭条件也称为保护层。

(二)形成油气藏的必要条件 综上所述,油气藏形成的过程可以概括为:

石油生成——运移——聚集——保存。油气藏形成 的条件可归结为四个必要条件,即有生油层、储油 层、盖层和保护层,简称之为生、储、盖、保四要 素。

(三)油气藏的类型 按照圈闭条件的不同,可以将油气藏分为构造 油气藏、地层油气藏和岩性油气藏三种主要类型。

油藏物理 第六章

《油藏物理》课程
油藏物理
第二篇 储层岩石的物理特性
第六章 储层岩石的流体渗透性
一、砂岩的粒度组成
第六章 储层岩石的流体渗透性
孔隙度(porosity)评价储层的储集性; 饱和度(saturation)评价储层中的含油气性
P1 L P2 A
如何描述岩石让流体

Q1
A
问题
通过的能力?
Q与哪些因素有关?
二、岩石绝对渗透率的测定原理
注意:
理论上:油、气、水都可作K 的测定流体
实际上:除线性流动条件外,其它条件在实验室条件下难 以严格满足。例如: 油测时,物理吸附→孔隙表面形成油膜→孔隙空间↓→岩 石K↓
水测时,水敏性矿物膨胀→岩石K↓;
气测时,气体膨胀、流量变化→Darcy公式不能用 气体滑脱效应→岩石K↑ 据Darcy公式用任何流体测定岩石K都存在误差
即为K∞
四、影响岩石渗透率的因素
1. 储层岩石骨架构成及构造力的影响
(1) 岩石骨架构成(微观因素)
颗粒:组成和结构(大小、分选、排列等)
胶结物:含量、胶结类型等 骨架结构决定岩石φ、S 大小 影响岩石K
★颗粒越粗,分选越好,胶结物含量越少,渗透率越高
四、影响岩石渗透率的因素
(2) 构造力(宏观因素)

p2
p1
KPdP
L
0
Q0 P0 dL A
得气测K 公式:

P2
P 1
KPdP
L
0
Q0 P0 dL A
2Q0 P0 L Ka (混合单位制) 2 2 A( P 1 P 2 )
式中:Ka—气测岩石绝对渗透率,μm2
P1、P2—岩心进、出口端压力,atm

2-1油藏流体的物理性质

(2)温度的影响:温度↗粘度↘ (3)溶解气的影响: Rs↗粘度↘ (4)压力的影响:P<Pb,P ↗粘度↘ P>Pb,P ↗粘度↗
P=Pb,粘度最小
§2-4 天然气的高压物性
一、天然气的压缩因子 二、天然气的体积系数 三、天然气的压缩系数 四、天然气的粘度
一、天然气的压缩因子
不计分子的体积
(1) 理想气体状态方程:
CnH2n+2 环烷烃:碳链:单键、环状链;分子式:CnH2n 芳香烃:分子中具有苯环结构。 少量其它化合物,如氧、硫、氮等的化合物:沥青、 脂肪酸、环烷酸等。
2. 石油馏分:
汽油(C4~C10); 煤油(C ~C12); 柴油(C13~C20);
11
润滑油(C21~C40);残渣(C41以上);
3. 石油的分类
不计分子间作用力 分子间为弹性碰撞
PV理想 nRT
(2) 实际气体状态方程
PV实际=ZnRT
Z= V实际 V理想
Z-压缩因子
压缩因子的物理意义?
二、天然气的体积系数Bg
(Formation volume factor of natural gas)
定义:一定质量天然气在地下的体积与其 在地面标准状况(20℃,0.1MPa)下的体积 之比。 V
u Boi Bo
Pb
P
地面
Vs =1m3
Vs Rs
Vs Rsi
三、地层油等温压缩系数Co: (Isothermal Compressibility of oil)
定义:温度一定,单位体积地层油的体积随 压力的变化率。 1 Vof Co 1 MP a V P
of
一般用某一压力区间的平均压缩系数表示, 如Pi与Pb之间: 1 Vob Vof 1 Bob Boi Co Vof Pb Pi Boi Pi Pb Vof—高压下体积
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

● 砂岩的粒度组成:构成砂岩的各种颗粒的相对含量。 描述岩石颗粒大小的均匀程度。
● 粒度组成的分析方法: 薄片法 筛析法 沉降法
● 粒度组成分析结果的表示方法: 粒度频率分布曲线(或直方图),
数字法 曲线法 粒度组成累计曲线
粒度组成概率曲线
● 粒度评价指标: ①不均匀系数
=d60 d10
②分选系数 S d75 d25
2m3
2. 地层水的体积系数
Bw
V wf V ws
油藏条件下的体积 地面条件下的体积
Bw 1
3. 等温压缩系数
Cw
1 Vw
Vw P
T
Cw(10.0R 5g)Cw '
无溶解气地层水压缩系数
4 . 地层水的粘度
地层水粘度与温度、压力、矿化度关系
a - 水的粘度与温度、压力关系; 1. 0.1MPa;2. 50MPa b - 水的粘度与温度、矿化度关系; 1.纯水;2.矿化度60000mg/L
碎屑岩的孔渗特性 决定于碎屑颗粒的大小及其组合或结合关系
碳酸盐岩的孔渗特性 决定于碳酸盐岩的结构组分及其组合或结合关系
第一节 砂岩的骨架性质
岩石的骨架
砂粒 性质不同、形状各异、大小不等
胶结物 除构成岩石骨架的碎屑颗粒以外 的化学沉淀物质
孔隙:砂粒间未被胶结物或固体物质充填的空间
砂粒的大小、形状、排列方式、胶结物的数量、性质 及其胶结方式都将影响到岩石的孔渗特性。
一、地层油的溶解气油比Rs
1. 定义 ①在油藏温度和压力下地层油中溶解的气量,标m3/m3。 ②单位体积地面油在油藏条件下所溶解的标准状况下 的气体体积,标m3/m3。
Rs V g Vo
地层油的溶解气油比是用接触脱气的方法得到的。
二、地层油的密度和相对密度
1.地层油的密度
地层油的密度是指单位体积地层油的质量,kg/m3。
<1
渗透性极差
三、有效渗透率和相对渗透率 1、有效渗透率 (1)定义:多相流体共存时,岩石允许每一相流体通过的能力。 (2)有效渗透率与绝对渗透率之间的关系
KoKwKgK
2、相对渗透率
(1)定义:多相流体共存时,每一相的有效渗透率与 岩石绝对渗透率的比值。
K rl
Kl K
(2)相对渗透率的大小
多相流体共存时,各相流体相对渗透率之和总是小于1。
(完)
第三章 油藏岩石的物理性质
油气储集层(油藏)
储集油气的岩石 储集其中的流体
岩石
孔隙 裂缝 溶洞
为油气提供
储集空间 渗流通道
孔隙性 渗透性
岩石
沉积岩 岩浆岩 变质岩
如碎屑岩、碳酸盐岩等 如花岗岩、玄武岩等 如大理岩、片麻岩等
沉积岩层
(世界99%以上)
碎屑岩储集层 碳酸盐岩储集层
我国大部分油田 波斯湾盆地 华北古潜山油田
达西方程:
Q K AP
L
渗透率
达西实验装置
绝对渗透率: 渗透率是油藏岩石的性能参数,其大小只 取决于岩石本身,而与实验流体无关。
二、油藏岩石渗透率的评价
级别 1 2 3 4 5
储层渗透率评价
K×10-3μm2
储层评价
>1000
渗透性极好
1000~100
渗透性好
100~10
渗透性一般
10~1
渗透性差
压缩 因子
压缩因子:
一定温度和压力条件下,一定质量气体实际占有 的体积与在相同条件下理想气体占有的体积之比。
Z = V 实际 V 理想
= V 实际 nRT P
实际气体的状态方程:
PVZnRT
压缩因子Z的物理意义: 实际气体与理想气体的差别。
Z<1 实际气体较理想气体易压缩 Z=1 实际气体成为理想气体 Z>1 实际气体较理想气体难压缩
第二节 油藏岩石的孔隙性
一、储层岩石的孔隙和孔隙结构
1、孔隙 岩石中未被碎屑颗粒、胶结物或其它 固体物质充填的空间。
孔隙
空隙
孔隙 空洞 裂隙(缝)
砂岩的孔隙大小和形态取决于砂粒的相互接触关系、 后来的成岩后生作用引起的变化以及胶结状况
2、孔隙结构: 岩石中孔隙和喉道的几何形状、大小、 分布及其相互连通关系
阴离子 Cl-1、CO3-2、SO4-2、HCO3-1
2、矿化度 水中矿物盐的质量浓度,通常用mg/l表示
地层水的总矿化度表示水中正负离子的总和 不同油藏的地层水矿化度差别很大
三、地层水的高压物性
地层水溶解盐类是影响地层水高压物性的根本原因
1. 溶解气
很少
压力在10MPa下,1m3地层水中溶解天然气不超过
◆ 岩石的孔隙结构与颗粒的大小、分选性质、颗粒接触 方式等密切相关。 ◆ 孔隙结构对岩石储集性能和渗透能力有影响。
二、储层岩石的孔隙度 1.定义:岩石孔隙体积与岩石外表体积之比;
或:单位岩石体积中孔隙体积所占的比例。
Vp Vp Vf Vs
Vf Vs Vp Vf
第三节 油藏流体饱和度
一、油藏流体饱和度 单位孔隙体积中流体所占的比例。
o
mo Vo
一般,地层油的密度小于地面油的密度。
2.地面油的相对密度
20℃时的地面油密度与4℃时水密度之比。
o
o 20 w4
五、地层油的粘度
根据牛顿内摩擦定律: 影响因素分析:
=-xy
/
ux y
①组成 轻烃组分所占比例↗, μo ↘
②溶解气油比
Rs ↗, μo ↘
③温度
T↗,μo↘
④压力
当P<Pb时, P↗, μo ↘
压缩因子Z可以由图版查得。
二、天然气的体积系数
地面标准状态下单位体积天然气在地层条件下的体积。
三、天然气的等温压缩系数
Bg
Vg V sc
在等温条件下单位体积气体随压力变化的体积变化率。
Cg
1 V
V PT
四、天然气的粘度
1. 低压下
①气体的粘度随温度的增加而增加; ②体的粘度随气体分子量的增大而减小; ③低压范围内,气体的粘度几乎与压力无关。
高压下,气体的粘度具有类似于液态粘度的特点。
(三) 地层水的高压物性
地层水 油层水(与油同层)和外部水(与油不同层)的总称
油层水
底水 边水 层间水
束缚水
上层水 外部水 下层水
构造水
地层水长期与岩石和地层油接触
地层水中含有大量的无机盐
一、地层水的矿化度
1、地层水中的离子
阳离子
Na+1、K+1、Ca+2、Mg+2
第二章 油藏流体的物理性质
•油藏流体
石油 天然气 地层水
•油藏流体的特点:
储层烃类:C、H
(1)高温高压,且石油中溶解有大量的烃类气体;
(2)随温度、压力的变化,油藏流体的物理性质也 会发生变化。同时会出现原油脱气、析蜡、地层水析 盐或气体溶解等相态转化现象。
(一)、 地层油的高压物性
地层油: 高温高压,溶解有大量的天然气
Cf
1 Vf
Vp P
T
矿场常用:
Cp
1 Vp
Vp P
T
Cp
以岩石的孔隙体积为基数的压缩系数,1/MPa;
Cf CP
第五节 油藏岩石的渗透性
岩石的渗透性: 在一定的压差作用下,储层岩石让流体在 其中流动的性质。
其大小用渗透率表示。
一、达西定律
1856年、法国人、享利·达西 未胶结砂充填模型 水流渗滤试验
KroKrwKrg1
3、相对渗透率曲线 (1)定义:相对渗透率与流体饱和度关系曲线 (2)典型的相对渗透率曲线
A区: Sw≤Swi;
B区: Swi<Sw<1-Sor;
C区: Sw≥1-Sor;
KroKrw1
油水相对渗透率
S l V l/V P V l/V f
SoSwSg 1 (同一油藏)
二、束缚水饱和度
1、束缚水 分布和残存在岩石颗粒接触处角隅和微细孔隙 中或吸附在岩石骨架颗粒表面,不可流动的水
2、束缚水饱和度Swc 单位孔隙体积中束缚水所占的比例
第四节 油藏岩石的压缩系数
一、油藏岩石的压缩系数
油藏压力每变化单位压降时岩石孔隙体积的变化率。
当P>Pb时, P↗, μo↗ 当P=Pb时,μo= μomin
μo ~P、T 关系
(二) 天然气的高压物性
压缩因子 体积系数 压缩系数 粘度
一、天然气的压缩因子方程
理想气体状态方程: PV=nRT
理想气体的假设条件:
1.气体分子无体积,是个质点;
2.气体分子间无作用力;
3.气体分子间是弹性碰撞; 天然气处于高温、高压状态多组分混合物,不 是理想气体
相关文档
最新文档