七年级数学第一学期第四章:几何图形单元测试卷及答案人教新课标版
【数学】新人教版七年级上数学单元测试卷:第四章几何图形初步(word版,含答案).doc

人教版七年级上册第四章《几何图形初步》单元测试(解析版)一、选择题1、如图所示,该几何体的主视图是()A. B. C. D.2、图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.① B.② C.③ D.④3、已知一个几何体的三种视图如图所示,则这个几何体是()A.圆柱 B.圆锥 C.球体 D.正方体4、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有( )A.①② B.①③ C.②④ D.③④5、已知∠AOB=30°,自∠AOB顶点O引射线OC,若∠AOC︰∠AOB=4︰3,那么∠BOC的度数是()A.10° B.40° C.70° D.10°或70°6、.下列说法正确的是()A.两点之间的连线中,直线最短 B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点 D.若A,B,C在同一直线上,且AB=2,BC=3,则AC=57、如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm8、如图,下列说法中错误的是()A.OA的方向是东北方向 B.OB的方向是北偏西60°C.OC的方向是南偏西60° D.OD的方向是南偏东60°9、钟表盘上指示的时间是10时40分,此刻时针与分针之间的夹角为()。
(A)60°(B)70°(C)80°(D)85°10、如图,已知∠AOC=∠BOD=900, ∠AOD=1500,则∠BOC的度数为()A、450B、300C、500D、60011、∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是()A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对;12、如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD的度数是()A. 20°;B. 40°;C. 50°;D. 80°;二、填空题13、一个角的余角比这个角的补角的一半小40°,则这个角为度.14、17°14′24″=___度.15、.计算:153°﹣26°40′=_______.16、如图所示,将图沿虚线折起来,得到一个正方体,那么“我”的对面是(填汉字).17、图1,是一个由边长为1的小正方形木块摆放在地上而成的图形,图2,图3也是由边长为1的小正方体木块叠放在地上而成,要给露在外面的小正方体表面涂上油漆(底面不涂),按照这样的规律继续叠放下去,到第7个叠放的图形中,涂到油漆部分的面积是.18、五棱柱有__________个顶点,有__________个面,有__________条棱.19、如图,AC=CD=DE=EB,则点C是线段的中点,点D是线段的中点,如果AB=8 cm,则AD= cm,AE= cm。
七年级数学上学期第四单元几何图形初步测试卷5套带答案

第4章 单元测试题(时间100分钟 满分100分)一、选择题:(每小题3分,共30分)1.如图1所示的棱柱有( )A.4个面B.6个面C.12条棱D.15条棱C(2)A DB2.如图2,从正面看可看到△的是( )3.如图3,图中有( )A.3条直线B.3条射线C.3条线段 D.以上都不对4.下列语句正确的是( )A.如果PA=PB,那么P是线段AB的中点;B.作∠AOB的平分线CDC.连接A、B两点得直线AB;D.反向延长射线OP(O为端点)5.如图4,比较∠α、∠β、∠γ 的大小得( )A. ∠γ>∠β>∠α;B. ∠α=∠β;C. ∠γ>∠α>∠β;D. ∠β>∠α>∠γ.6.5点整时,时钟上时针与分钟之间的夹角是( )A.210°B.30°C.150°D.60°7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( )A.互余B.互补C.既不互余也不互补D.不确定8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( )A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对9.如果∠α=3∠β, ∠α=2∠θ,则必有( )2310.如图5所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为( )A.8°B.4°C.2°D.1°二、填空题:(每小题3分,共30分)11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.13.57.32°=_______°_______′_______″;27°14′24″=_____°.14.已知∠a=36°42′15″,那么∠a 的余角等于________.15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.航线铁路公路(6)A B18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……,____________cm.20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线.三、解答题:(21、24、25、26每题6分,22、23题每题8分)21.根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC;(3)反向延长OC 得射线OD;(4)分别在射线OA、OB、OD 上画线段OE=OF=OG=2cm;(5)连接EF、EG、FG;(6)你能发现EF、EG、FG 有什么关系?∠EFG、∠EGF、∠GEF 有什么关系?22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长.23.如图,直线AB、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.25.测量员沿着一块地的周围测绘.从A向东走600米到B,再从B向东南(∠ABC= 135°)走500米到C,再从C向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA的长(精确到10米)和DA的方向(精确到1°).北D CA B26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.参考答案一、选择题1.D2.C3.C4.D5.C6.C7.B8.B9.C 10.B二、填空题11.12cm 12.两点之间,线段最短 13.57、19、12;27.2414. 53°17′45″ 15.同角的补角相等16.140° 17.90 18.180°;19°38′29″. 19. 20.1或4或6三、解答题21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°22.AM=7cm或3cm23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.第4章 单元测试题2检测时间:45分钟,满分:100分班级 学号 姓名 得分一、填空题:(每空2分,共46分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 。
新人教版七年级数学上册第四章《几何图形初步》单元测试卷及答案详细解析

新人教版七年级数学上册第四章《几何图形初步》单元测试卷一、选择题1、下列错误的判断是( )A.任何一条线段都能度量长度B.因为线段有长度,所以它们之间能比较大小C.利用圆规配合尺子,也能比较线段的大小D.两条直线也能进行度量和比较大小2、已知线段AB=3cm,点C在线段AB所在的直线上,且BC=1cm,则线段AC的长度为()A.4cm B.2cm C.2cm或4cm D.3cm3、如图所示的各图中,不是正方体表面展开图的是()A.B.C.D.4、由若干个相同的小正方体组合而成的一个几何体从不同方向看到的图形如图,则组成这个几何体的小正方体的个数是()A.3 B.4 C.5 D.65、把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富 B.强 C.文 D.民6、一个锐角和它的余角之比是5∶4,那么这个锐角的补角的度数是()A.100°B.120°C.130°D.140°7、如图:OC是AOB的平分线,OD是BOC的平分线,下列各式中正确的是()A.∠COD=∠AOC B.∠AOD=∠AOBC.∠BOD=∠AOB D.∠BOC=∠AOB8、如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON ⊥OM,若∠CON=55°,则∠AOM的度数为()A.35°B.45°C.55°D.65°9、如图,已知点M是直线AB上一点,∠AMC=52°48′,∠BMD=72°19°,则∠CMD等于()A.49°07′B.54°53′C.55°53′D.53°7′10、下列说法正确的个数是().①角是由两条射线组成的图形;②角的大小与边的长短无关,只与两条边张开的角度有关;③角的两边是两条射线,④把一个角放到一个放大10倍的放大镜下观看,角度数也扩大10倍.A.1个B.2个C.3个D.4个二、填空题11、一个角的余角比这个角的补角的一半小40°,则这个角为________度.12、用两个钉子就可以把木条钉在墙上,其依据是_________.13、已知如图:直线AB和CD相交于点O,若AOD=5AOC,则BOC=___________。
人教版七年级上册数学第四章《几何图形》单元测试卷(Word版,含答案)

人教版七年级上册数学第四章《几何图形》单元测试卷(满分100分,时间90分钟)一、选择题(本大题共十小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是正确的.)1.下列说法不正确的是()A.用一个平面去截一个正方体可能截得五边形B.五棱柱有10个顶点C.沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆柱D.将折起的扇子打开,属于“线动成面”的现象2.下列图形中,经过折叠不能围成一个正方体的是()A.B.C.D.3.图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()A.B.C.D.4.已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是()A.∠1=∠3B.∠1=∠2C.∠1<∠2D.∠2=∠35.如图是顺义区地图的一部分,小明家在怡馨家园小区,小宇家在小明家的北偏东约15°方向上,则小宇家可能住在()A.裕龙花园三区B.双兴南区C.石园北区D.万科四季花城6.一个正方体的展开图如图所示,将它折成正方体后,数字“0”的对面是()A.数B.5 C.1 D.学7.如图,∠AOB是一直角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()A.65°B.50°C.40°D.25°8.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形,其中作法错误的为()A.B.C.D.9.如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC的余角是()A.15°B.30°C.45°D.75°10.某乡镇的4个村庄A,B,C,D恰好位于正方形的4个顶点上,为了解决农民出行难问题,镇政府决定修建连接各村庄的道路系统,使得每两个村庄都有直达的公路,设计人员给出了如下四个设计方案(实线表示连接的道路)在上述四个方案中最短的道路系统是方案()A.一B.二C.三D.四二、填空题(本大题共10小题,每小题2分,共20分)11.有一正角锥的底面为正三角形.如果这个正角锥其中两个面的周长分别为27,15,则此正角锥所有边的长度和为.12.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是.13.如图是一个立方体的平面展开图形,每个面上都有一个自然数,且相对的两个面上两数之和都相等,若13,9,3的对面的数分别是a,b,c,则a2+b2+c2﹣ab﹣ac﹣bc的值为.14.用一根长28分米的木条截开后刚好能搭一个长方体的架子,这个长方体的长、宽、高的长度都是整数分米,且都不相等,那么这个长方体的体积等于立方分米.15.经过A,B两点的直线上有一点C,AB=10,CB=6,D和E分别是AB,BC的中点,则DE 的长是.16.上午8:30钟表的时针和分针构成角的度数是.17.下列几何体属于柱体的有个.18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,平面内不同的七个点最多可确定条直线.19.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).20.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.三、解答题(21 ~23题每题7分,25题8分,26题8分,27题8分)21.如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC的中点.(1)求线段BC,MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M,N分别是线段AC,BC的中点,求MN的长度.22.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,已知正方体相对两个面上的代数式的值相等.求a+的值.。
人教版初一七年级上册数学 《第四章 几何图形初步》单元测试卷02(含答案)

人教版七年级数学上册《第四章几何图形初步》单元测试卷一、选择题(共8小题,4*8=32)1.下列能用∠C表示∠1的是()2.A,B两点间的距离是()A.连结两点间的直线B.连结两点的线段C.连结两点间的直线的长度D.连结两点的线段的长度3.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为()A.1B.2C.3D.44.已知线段AB=15cm,点C是直线AB上一点,BC=5cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.10cm B.5cmC.10cm或5cm D.7.5cm5.α与∠β的度数分别是(2m-67)°和(68-m)°,且∠α与∠β都是∠γ的补角,那么∠α与∠β的关系是()A.互余但不相等B.互为补角C.相等但不互余D.互余且相等6.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cmC.7cm或3cm D.7cm7.已知∠AOB=30°,自∠AOB的顶点O引射线OC,若∠AOC:∠AOB=4:3,则∠BOC=()A.10°B.40°C.40°或70°D.10°或70°8.已知直线AB上有一点O,射线OC和射线OD在直线AB的同侧,∠BOC=50°,∠COD =100°,则∠BOC与∠AOD的平分线的夹角的度数是()A.130°B.135°C.140°D.145°二、填空题(共6小题,4*6=24)9.如图,AB+BC>AC,其理由是____.10.如图,在横线上填上适当的角:∠AOB=-∠COB=∠AOD-.11.如图,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC的_____倍.12.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.13.已知线段AB=5cm,点C在直线AB上,且BC=3cm,则线段AC=________.14.归纳与猜想:(1)观察下图填空:图1中有个角;图2有个角;图3中有个角;(2)根据(1)猜想:在一个角内引n-2条射线可组成个角.三、解答题(共5小题,44分)15.(6分)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来.16.(8分)王老师到市场买菜,发现如果把10千克的菜放到秤上,指示盘上的指针转了180°,如图.第二天王老师就给同学们出了两个问题:(1)如果把0.6千克的菜放在秤上,指针转过多少角度?(2)如果指针转了7°12′,这些菜有多少千克?AB,点E是17.(8分)如图,已知A,B,C三点在同一直线上,AB=24cm,BC=38 AC的中点,点D是AB的中点,求DE的长.18.(10分)如图,已知∠AOB=12∠BOC,∠COD=∠AOD=3∠AOB,求∠AOB和∠COD的度数.19.(12分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB,CD 的中点E,F之间的距离是10cm,求AB,CD的长.参考答案1-4CDBC5-8CBDC9.两点之间线段最短10.∠AOC ,∠DOB11.312.155°13.2cm 或8cm14.3,6,10;n (n -1)215.解:如图所示。
七年级数学上册《第四章 几何图形初步》单元测试卷及答案(人教版)

七年级数学上册《第四章几何图形初步》单元测试卷及答案(人教版) 一、单选题1.已知∠α=76°22′,则∠α的补角是().A.103°38′B.103°78′C.13°38′D.13°78′2.下列图形沿着某一直线旋转180°后,一定能形成圆锥的是()A.直角三角形B.等腰三角形C.矩形D.扇形3.已知α是某直角三角形内角中较大的锐角,β是某五边形的外角中的最大角,甲、乙、丙、丁计算1(α6+β)的结果依次为10°、15°、30°、35°,其中有正确的结果,则计算正确的是()A.甲B.乙C.丙D.丁4.图中所示的网格是正方形网格,则下列关系正确的是()A.∠1>∠2B.∠1<∠2C.∠1+∠2=90°D.∠1+∠2=180°5.如图,C为线段AB上一点,D为线段BC的中点,已知AB=10,AD=7,则AC的长为()A.5 B.4 C.3 D.26.如图,直线AB,CD相交于点O,OF平分∠AOC,若∠AOD=50°,则∠COF=()A.60°B.50°C.45°D.65°7.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.20°或50°B.20°或60°C.30°或50°D.30°或60°8.如图,一平面经过圆锥的顶点截圆锥所得到的截面形状是( )A.A B.B C.C D.D二、填空题9.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,平面内不同的六个点最多可确定条直线.10.在数轴上表示﹣10的点与表示﹣4的点的距离是.11.如图,在2×3的方格图案中,正方形和长方形的个数分别为.12.如图,将一副三角板的直角顶点重合,摆放在桌面上.若∠AOD=150°,则∠BOC= °.13.如图,∠AOB与∠COD都是直角,∠AOD= 140°21′,则∠COB= °.三、作图题14.如图,已知四点A、B、C、D(1)画直线AB;(2)画射线AC;(3)连接BC;(4)画点P,使PA+PB+PC+PD的值最小四、解答题15.写出如图的符合下列条件的角.(图中所有的角均指小于平角的角).(1)能用一个大写字母表示的角;(2)以点A为顶点的角.16.如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点,若AB=15,CE=4.5求出线段AD的长度.17.已知正方体的展开图如图所示,如果正方体的六个面分别用字母A,B,C,D,E,F表示,当各面上的数分别与它对面的数互为相反数,且满足B=1,C=﹣a2﹣2a+1,D=﹣1,E=3a+4,F=2﹣a时,求A面表示的数值.18.如图,已知线段AB 和CD 的公共部分为BD ,且BD = 14 AB = 16 CD ,线段AB ,CD 的中点E ,F 之间的距离是30,求线段AB ,CD 的长.19.如图,O 为直线AB 上的一点,∠AOC =50°,OD 平分AOC ,∠DOE =90°①求∠BOD 的度数;②OE 是∠BOC 的平分线吗?为什么?20.如图所示的长方体的容器,AB=BC ,BB ’=3AB 且这个容器的容积为192立方分米.(1)求这个长方体容器底面边长AB 的长为多少分米?(2)若这个长方体的两个底面和侧面都是用铁皮制作的,则制作这个长方体容器需要多少平方分米铁皮?(不计损耗)参考答案1.A2.B3.C4.B5.B6.D7.C8.B9.1510.611.8,10 12.30 13.39°39′14.(1)解:如图(2)解:如图(3)解:如图(4)解:如图,连接AC 、BD ,两线交点为P点P 就是所求作的点.15.解:(1)能用一个大写字母表示的角有∠C ,∠B(2)以点A 为顶点的角有∠CAB ,∠CAD 和∠DAB16.解:∵点C 为线段AB 的中点, AB =15∴BC =12AB =12×15=7.5∴BE =BC −CE =7.5−4.5=3∴AE =AB −BE =15−3=12∵点D 为线段AE 的中点∴AD =12AE =12×12=617.解:根据题意∵E 面和F 面的数互为相反数∴3a+4+2﹣a=0∴a=﹣3把a=﹣3代入C=﹣a 2﹣2a+1解得:C=﹣2∵A 面与C 面表示的数互为相反数∴A 面表示的数值是2.18.解:设BD =x ,则AB =4x ,CD =6x.∵点E 、点F 分别为AB 、CD 的中点∴AE = 12 AB =2x ,CF = 12 CD =3xAC=AB+CD﹣BD=4x+6x﹣x=9x.∴EF=AC﹣AE﹣CF=9x﹣2x﹣3x=4x.∵EF=20∴4x=20解得:x=5.∴AB=4x=20,CD=6x=30.19.解:①∵∠AOC=50°,OD平分AOC∴∠1=∠2= 1∠AOC=25°2∴∠BOD的度数为:180°﹣25°=155°;②∵∠AOC=50°∴∠COB=130°∵∠DOE=90°,∠DOC=25°∴∠COE=65°∴∠BOE=65°∴OE是∠BOC的平分线.20.(1)解:设AB=x∵ AB=BC,BB’=3AB∴BC=x BB′=3x 由这个容器的容积为192立方分米∴x•x•3x=192∴x3=64∴x=4∴AB=4(分米).(2)解:∵AB=BC=4 BB′=12∴长方体的表面积为:2×4×4+4×4×12=32+192=224(平方分米)∴制作这个长方体容器需要224平方分米的铁皮。
人教版七年级上册第四章几何图形初步 单元测试含答案

人教版七年级上册第四章几何图形初步单元测试(用时:90分钟)一、选择题(每题3分,共30分)1.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是(党)A.的B.中C.国党.梦2.下列叙述正确的是(B)A.180°是补角B.120°和60°互为补角C.120°和60°是补角党.60°是30°的补角3.下列说法中,不正确的是(A)A.若点C在线段BA的延长线上,则BA=AC-BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段BA外党.若A,B,C三点不在同一条直线上,则AB<AC+BC4.如图所示,关于线段、射线和直线的条数,下列说法正确的是(C)A.五条线段,三条射线B.一条直线,三条线段C.三条线段,两条射线,一条直线党.三条线段,三条射线5.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是(C)A.垂线段最短B.线段有两个端点C.两点确定一条直线党.两点之间线段最短6.分别从一个几何体的正面、左面、上面观察得到的平面图形如图所示,则这个几何体是( B )A .圆柱B .圆锥C .球党.棱柱7.如果线段AB =10 cm ,MA +MB =15 cm ,那么下面说法中正确的是( 党 ) A .M 点在线段AB 上B .M 点在直线AB 上C .M 点在直线AB 外党.M 点可能在直线AB 上,也可能在直线AB 外 8.用度、分、秒表示91.34°为( A ) A .91°20′24″ B .91°34′ C .91°20′4″党.91°3′4″9.如图,平面内有公共端点的射线OA ,OB ,OC ,O 党,OE ,OF ,从射线OA 开始按逆时针依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在( A )A .射线OF 上B .射线OB 上C .射线O 党上党.射线OE 上10.已知在线段上依次添加1个点,2个点,3个点,……,原线段上所成线段的总条数如下表:若在原线段上添加n 个点,则原线段上所有线段总条数为( B ) A .n +2 B .1+2+3+…+n +n +1 C .n +1 党.n (n +1)2二、填空题(每题3分,共30分)11.如图,若CB=4 cm,党B=7 cm,且党是AC的中点,则AC=__6_cm__.12.已知∠AOB=30°,又自∠AOB的顶点O引射线OC,若∠AOC∶∠AOB=4∶3,那么∠BOC=__70°或10°__.13.已知线段AB=6 cm,在直线AB上画线段AC=2 cm,则BC的长是__4或8__cm.14.已知∠α与∠β互余,且∠α=40°,则∠β为__50°__.15.立方体木块的表面标有六个字1,2,3,4,5,6,下图是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是__7__.16.如图,OM,ON分别是∠BOC和∠AOC的平分线,∠AOB=84°.(1)∠MON=__42°__;(2)当OC在∠AOB内绕点O转动时,∠MON的值__不会__改变.(填“会”或“不会”)错误!错误!17.如图,从甲地到乙地有四条道路,其中最短的路线是__从甲经A到乙__,最长的路线是__从甲经党到乙__.18.如下图,在已知角内画射线,画1条射线,图中共有__3__个角;画2条射线,图中共有__6__个角;画3条射线,图中共有__10__个角;求画n条射线所得的角的个数是__(n+1)(n+2)2__.19.观察下列各正方形图案,每条边上有几个圆点,每个图案中圆点的总数是几.按此规律推断出S与n的关系式为__S=4n-4__.20.如图,已知AOB是一条直线,∠1=∠2,∠3=∠4,∠AOF=∠BOF=90°.则(1)∠AOC的补角是__∠COB__;(2)__∠3,∠4__是∠AOC的余角;(3)∠COF的补角是__∠AOE__.三、解答题(共60分)21.(8分)知识是用来为人类服务的,我们应该把它们用于有意义的地方.下面就两个情景请你作出评判.情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.情景二:A,B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由.你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?解:情景一:两点之间的所有连线中,线段最短;情景二:如图所示:(需画出图形,并标明P点位置)理由:在两点之间的所有连线中,线段最短.赞同情景二中运用知识的做法.理由略(根据情况,只要观点无误即可).22.(8分)下面是小马解的一道题:在同一平面上,若∠BOA =70°,∠BOC =15°,求∠AOC 的度数.解:根据题意可画出图形∠AOC =∠BOA -∠BOC =70°-15°=55°.若你是老师,会判小马满分吗?若会,说明理由.若不会,请将小马的错误指出,并给出你认为正确的解法.解:小马不会得满分的.小马考虑的问题不全面,除了上述问题∠BOC 在∠BOA 内部以外,还有另一种情况∠BOC 在∠BOA 的外部.解法如下:根据题意可画出图形如图所示,∴∠AOC =∠BOA +∠BOC =70°+15°=85°.综合以上两种情况,∠AOC =55°或85° 23.(10分)下面是由同一型号的黑白两种颜色的等边三角形瓷砖按一定规律铺设的图形. 仔细观察图形可知:图1中有1块黑色的瓷砖,可表示为1=(1+1)×12 ;图2中有3块黑色的瓷砖,可表示为1+2=(1+2)×22; 图3中有6块黑色的瓷砖,可表示为1+2+3= (1+3)×32; 实践与探索:(1)请在图4中的虚线框内画出第4个图形;(2)第10个图形有多少块黑色的瓷砖?第n 个图形呢?解:(1)如图所示:(2)1+2+3+…+10=10×112=55; 1+2+3+…+n =12n (n +1)(n 为正整数) .24.(10分)如图,已知C 是AB 的中点,党是AC 的中点,E 是BC 的中点. (1)若AB =18 cm ,求党E 的长; (2)若CE =5 cm ,求党B 的长.解:(1)∵C 是AB 的中点,∴AC =BC =12AB =9 cm.∵党是AC 的中点,∴A 党=党C =12AC =92 cm.∵E 是BC 的中点,∴CE =BE =12BC =92 cm.又∵党E =党C +CE ,∴党E =92 cm +92cm =9 cm.(2)由(1)知A 党=党C =CE =BE ,∴CE =13B 党.∵CE =5 cm ,∴B 党=15 cm.25.(12分)把一副三角板的直角顶点O 重叠在一起,(1)如图1,当OB 平分∠CO 党时,则∠AO 党和∠BOC 的和是多少度? (2)如图2,当OB 不平分∠CO 党时,则∠AO 党和∠BOC 的和是多少度? (3)当∠BOC 的余角的4倍等于∠AO 党时,则∠BOC 是多少度?解:(1)当OB 平分∠CO 党时,有∠BOC =∠BO 党=45°,于是∠AOC =90°-45°=45°, ∴∠AO 党+∠BOC =∠AOC +∠CO 党+∠BOC =45°+90°+45°=180°. (2)当OB 不平分∠CO 党时,有∠AOB =∠AOC +∠BOC =90°,∠CO 党=∠BO 党+∠BOC =90°,于是∠AO 党+∠BOC =∠AOC +∠BOC +∠BO 党+∠BOC =∠AOB +∠CO 党=90°+90°=180°.(3)由(2)得∠AO 党+∠BOC =180°,有∠AO 党=180°-∠BOC, 180°-∠BOC =4(90°-∠BOC ),∴∠BOC =60°26.(12分)(1)如图,已知点C 在线段AB 上,AC =6 cm ,且BC =4 cm ,M ,N 分别是AC ,BC 的中点,求线段MN 的长度;(2)在(1)题中,如果AC =a cm ,BC =b cm ,其他条件不变,你能猜出MN 的长度吗?请你用一句简洁的话表述你发现的规律;(3)对于(1)题,如果我们这样叙述它:“已知线段AC =6 cm ,B C =4 cm ,点C 在直线AB 上,M ,N 分别是AC ,BC 的中点,求MN 的长度.”结果会有变化吗?如果有,求出结果.解:(1)5 cm (2)MN =a +b2cm.MN 的长度为线段AC ,BC 长度和的二分之一. (3)有变化.已知AC =6 cm ,BC =4 cm. 当AB 在点C 同侧时,MN =1 cm.。
2023年人教版七年级数学上册 第四章 几何图形初步 单元测试卷及答案

2023年人教版七年级数学上册第四章几何图形初步单元测试卷及答案七年级数学·上时间:90分钟满分:120分一、选择题(每题3分,共30分)1.下列几何体中,是圆锥的为()2.【2021·百色】已知∠α=25°30′,则它的余角为()A.25°30′ B.64°30′ C.74°30′ D.154°30′3.下列作图语句错误..的是()A.延长线段ABB.延长射线ABC.直线m和直线n相交于点PD.在射线AB上截取线段AC,使AC=3 cm4.下列立体图形中,都是柱体的为()5.如图,表示∠1的其他方法中,不正确...的是()A.∠ACBB.∠CC.∠BCAD.∠ACD6.如图所示的几何体从上面看到的图形为()17.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有()①平板弹墨线②建筑工人砌墙③会场摆直茶杯④弯河道改直A.1个B.2个C.3个D.4个8.【教材P138例4变式】如图,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的度数为()A.69°B.111°C.141°D.159°9.在直线上顺次取A,B,C三点,使得AB=5 cm,BC=3 cm,如果O是线段BC的中点,那么线段AO的长度是()A.8 cm B.7.5 cm C.6.5 cm D.2.5 cm 10.如图,点A,B是正方体的两个顶点,将正方体按如下方式展开,则在展开图中点A,B的位置标注正确的是()二、填空题(每题3分,共24分)11.【2020·广州】已知∠A=100°,则∠A的补角等于________.12.七棱柱有________个面,________个顶点.13.【教材P130习题T10改编】已知线段AB=8 cm,在直线AB上画线段BC,使2它等于3 cm,则线段AC=______________.14.用“度、分、秒”表示21.24°为__________.15.【教材P136例1变式】【中考·大连】如图,点O在直线AB上,射线OC平分∠BOD,若∠COB=35°,则∠AOD等于________.(第15题)(第17题)(第18题)16.【教材P134练习T1改编】钟表在8:25时,时针与分针的夹角是________度.17.如图是由一些相同的小正方体搭成的几何体从正面、左面、上面看到的形状图,则搭成这个几何体的小正方体的个数是________.18.如图,将一副三角尺叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB =________.三、解答题(19~22题每题10分,其余每题13分,共66分)19.【教材P128练习T2改编】如图,已知线段a,b,画一条线段,使它等于3a -b(用直尺和圆规画图,不要求写画法).20.一个角的余角比它的补角的13还少20°,求这个角的度数.3421.一个几何体从三个方向看到的图形如图所示(单位:cm). (1)写出这个几何体的名称:__________;(2)若其从上面看为正方形,根据图中数据计算这个几何体的体积.22.如图,点C 是AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB .若AB =24 cm ,求线段CE 的长.23.如图,OD 平分∠BOC ,OE 平分∠AOC ,∠BOC =60°,∠AOC =58°.(1)求∠AOB的度数.(2)①求∠DOC和∠ADE的度数;②判断∠DOE与∠AOB是否互补,并说明理由.24.已知在同一平面内,∠AOB=90°,∠AOC=60°.(1)∠COB=____________.(2)若OD平分∠BOC,OE平分∠AOC,则∠DOE的度数为________.(3)在(2)的条件下,将题目中的∠AOC=60°改成∠AOC=2α(α<45°),其他条件不变,你能求出∠DOE的度数吗?若能,请写出求解过程;若不能,说明理由.5答案一、1.B 2.B 3.B 4.C 5.B 6.C7.A8.C9.C10.A二、11.80°12.9;1413.11 cm或5 cm14.21°14′24″15.110°16.102.517.518.180°点思路:根据角的和差关系,将∠AOC表示为∠AOD+∠COD,则∠AOC+∠DOB=∠AOD+∠DOB+∠COD=∠AOB+∠COD=90°+90°=180°.三、19.解:如图,AE=3a-b .20.解:设这个角的度数为x.依题意得90°-x+20°=13(180°-x),解得x=75°.答:这个角的度数为75°. 21.解:(1)长方体(2)体积为3×3×4=36(cm3).22.解:因为点C是AB的中点,所以AC=BC=12AB=12×24=12(cm).所以AD=23AC=23×12=8(cm).所以CD=AC-AD=12-8=4(cm).因为DE=35AB=35×24=14.4(cm),所以CE=DE-CD=14.4-4=10.4(cm).23.解:(1)∠AOB=∠BOC+∠AOC=60°+58°=118°.(2)①因为OD平分∠BOC,OE平分∠AOC,所以∠DOC=∠BOD=12∠BOC=12×60°=30°,∠AOE=∠COE=12∠AOC=12×58°=29°.6②∠DOE与∠AOB不互补.理由:因为∠DOC=30°,∠COE=29°,所以∠DOE=∠DOC+∠COE=59°.所以∠DOE+∠AOB=59°+118°=177°.所以∠DOE与∠AOB不互补.24. 点易错:本题根据题目条件解答时,OC是在∠AOB内部,还是在∠AOB外部,其位置不确定,且它们都符合条件,因此解答本题应分OC在∠AOB 外部和内部两种情况讨论.解:(1)30°或150°(2)45°(3)能求出∠DOE的度数.需要分两种情况讨论:①当OC在∠AOB内部时,如图①所示.因为OD平分∠BOC,OE平分∠AOC,所以∠COD=12∠BOC ,∠COE=12∠AOC.所以∠DOE=∠COD+∠COE=12∠BOC+12∠AOC=12(90°-2α)+12·2α=45°.②当OC在∠AOB外部时,如图②所示.因为OD平分∠BOC,OE平分∠AOC,所以∠COD=12∠BOC,∠COE=12∠AOC.所以∠DOE=∠COD-∠COE=12∠BOC-12∠AOC=12(90°+2α)-12·2α=45°.综上所述,∠DOE的度数是45°.78。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)15︒65︒东(5)BA O北西南2009——2010学年度第一学期七年级数学第四章:几何图形单元测试卷(时间:90分钟 总分:100分)班级: 姓名: 得分: 一、填空题:(每空1分,共28分)1.82°32′5″+______=180°.2.如图(1),线段AD 上有两点B 、C,图中共有______条线段.(2)CBA O E D 4321(3)CBA O ED(4)C BAO ED3.一个角是它补角的一半,则这个角的余角是_________.4.线段AB=8cm,CJ 是线段AB 上的一点,BC=5cm,则AC=________.5.如图(2),直线AB 、CD 相交于点O,OE 平分∠COD,则∠BOD 的余角______, ∠COE 的补角是_______,∠AOC 的补角是______________________.6.如图(3),直线AB 、CD 相交于点O,∠AOE=90°,从给出的A 、B 、C 三 个答案中选择适当答案填空.(1)∠1与∠2的关系是( ) (2)∠3与∠4的关系是( )(3)∠3与∠2的关系是( )(4)∠2与∠4的关系是( )A.互为补角B.互为余角C.即不互补又不互余7.如图(4),∠AOD=90°,∠COE=90°,则图中相等的锐角有_____对. 8.如图(5)所示,射线OA 表示_____________方向,射线OB 表示______________方向. 9.四条直线两两相交时,交点个数最多有_______个.10.如果一个角是30°,用10倍的望远镜观察,这个角应是_______°.11.38°41′的角的余角等于________,123°59′的角的补角等于________.12.如果∠1的补角是∠2,且∠1>∠2,那么∠2的余角是________(用含∠1 的式子表示). 13.如果∠α与∠β互补,且∠α:∠β=5:4,那么,∠α=_______,∠β=_________. 14.根据下列多面体的平面展开图,填写多面体的名称.(1)__________,(2)__________,(3)_________.15.圆锥由_______面组成,其中一个是_______面 ,另一个是_______面.16.已知:∠AOB =35°,∠BOC =75°,则∠AOC = .二、选择题:(每题2分,共14分)17、如图,是一个正方体纸盒的展开图,若在其中三个正方形A 、B 、C 中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A 、B 、C 、中的三个数依次是 ( )A 、1、-3、0B 、0、-3、1C 、-3、0、1D 、-3、1、018.如图(8),直线a 、b 相交,∠1=130°,则∠2+∠3=( ) A.50° B.100° C.130° C.180°b a312(8)cba (9)O19.轮船航行到C 处观测小岛A 的方向是北偏西48°,那么从小岛A 观测轮船在C 处的方向是( )A.南偏东48°B.东偏北48°C.东偏南48°D.南偏东42° 20.如图(9),三条直线相交于O 点,则图中相等的角(平角除外)有( )对 A.3对 B.4对 C.6对 D.8对 21.下列图形不是正方体展开图的是( )ABCD22.从正面、上面、左面看四棱锥,得到的3个图形是( )ABC23.某测绘装置上一枚指针原来指向南偏西55°,把这枚指针按逆时针方向旋转80°, 则结果指针的指向( )A .南偏东35º B.北偏西35º C .南偏东25º D.北偏西25º三、判断题:(每题1分,共10分)24.射线AB 与射线BA 表示同一条射线.( ) 25.直角都相等.( )26.若∠1+∠2=900,∠1+∠3=900,则∠2=∠3.( ) 27.钝角的补角一定是锐角.( )东西南北55°28.一条射线把一个角分成两个角,这条射线叫这个角的平分线.( ) 29.两点之间,直线最短.( )30.连结两点的线段叫做两点之间的距离.( )31.20050ˊ=20.50.( )32.互余且相等的两个角都是450.( )33.若AC+CB=AB,则C 点在线段AB 上.( )四、计算题:(35小题6分,其余每题5分,共36分)34. 如图(10),已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点. (1)若AB=18cm,求DE 的长;(2)若CE=5cm,求DB 的长.B(10)35.如图(11),已知直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE, ∠COF=34°,求∠BOD 的度数.C B AEODF(11) 36.一个角的余角比它的补角的13还少20°,求这个角.37.一个角的补角是123°24′16″,则这个角的余角是多少?38.如图,A 、B 两地隔着湖水,从C 地测得CA=50m,CB=60m,∠ACB=145°,用1 厘米代表10米(就是1:1000的比例尺)画出如图的图形.量出AB 的长(精确到1毫米), 再换算出A 、B 间的实际距离.CABOABCEF39.如图,直线AB 与CD 相交于点O,那么∠1=∠2吗?请说明你的理由.231OBADC40.(8分)如图3所示,︒=∠90AOB ,OE 、OF 分别平分AOB ∠、BOC ∠,如果︒=∠60EOF ,求BOC ∠的度数.五、作图题:(每题4分,共12分)41. 如图,已知∠1,∠2,画出一个角,使它等于3∠1-∠2.1242.用三角板画出一个75°的角和一个105°的角.43、如图,是由小立方块塔成的几何体,请分别从前面看、左面看和上面看,试将你所看到的平面图形画出来。
答案:一、1.97°27′55″2.63.30°4.13cm 或3cm5.∠AOE ∠DOE ∠AOD 与∠BOC6.(1)B (2)A (3)B (4)C7.2 8.北偏西65°或西偏北25°方向;南偏东15°或东偏南75°方向. 9.6 10.30° 11.51°19′ 56°1′. 12.1(12)2∠-∠或∠1-90°13.100° 80° 14.(1)长方体 (2)三棱柱 (3)三棱锥15. 两个;曲面;平面 16.40°或110°二、17.A 18.B 19.A 20.C 21.C 22.C 23.C三、24.× 25.∨ 26.∨ 27.∨ 28.× 29.× 30.× 31.× 32. ∨ 33.× 四、34. (1)由题意可知:AD=DC=CE=EB=41AB=41×18=29cm,DE=2CE=2×29=9cm(2)由(1)知AD=DC=CE=BE, BD=3CE=3×5=15cm .35.解:由题意可知∠AOB=∠AOD=180°∠COE=90°,∠COF=34°, ∴∠EOF=90°-34°=56°. ∵OF 平分∠AOE,∴∠AOE=∠EOF=56°.∴∠AOC=∠AOF-∠COF=56°-34°=22°.∵∠AOC=180°-∠AOD ∠BOD=180°-∠AOD∴∠AOC=∠BOD ∴∠BOD=22°.36.解:设这个角为α,则这个角的余角为90°-α,补角为180°-α, 依题意,得 00190(180)203αα-=--,解得α=75°.答:这个角为75°.37.解:设这个角为α,则余角为90°-α,由题意,得 α=180°-123°24′16″=56°35′44″,∴90°-α=90°-56°35′44″=33°24′16″. 答:这个角的余角是33°24′16″. 38.作图(略),AB 长约10.5cm,换算成实际距离约为105m.39.答: ∠1=∠2这是因为直线AB 与CD 相交于点O, ∠AOB=∠COD=180°。
∠2=180°-∠3, ∠2=180°-∠3,这就是∠1=∠2。
40.解:由︒=∠90AOB ,OE 平分AOB ∠,得︒=∠45BOE 又︒=∠60EOF ,故有︒=∠15BOF .而OF 平分BOC ∠,所以.302︒=∠=∠BOF BOC五、41.审题及解题迷惑点:要作一角等于3∠1-∠2,就须先以O 为顶点,以OA 为一边作∠AOD=3∠1,然后在∠AOD 的内部以∠AOD 的一边为边作一个角等于∠2即可. 解:(1)以∠1的顶点O 为圆心,以适当的长为半径画弧,分别交射线OA 、OB 于点E 、F(2)在弧上依次截取 ,FG GH ,并使 FG GH EF ==.(3)自O点过H点作射线OD,则∠AOD即为3∠1.(4)以∠2的顶点为圆心,适当长为半径画弧交∠2的两边于M′、N′两点.(5)以O为圆心,以同样长为半径画弧交OA于点M.(6)以M为圆心,以M′N′为半径画弧交前弧于点N.(7)自O点为N点作射线OC.∠COD即为所求.42.解:用三角板中的45°的角和30°的角,让其顶点和一边重合在一起,可以画出75°的角,同样的道理,用三角板中的60°的角和45 °的角可以画出105°的角.43.前面看左面看上面看。