导数导学案

合集下载

导数导学案

导数导学案

导数的综合应用学习目标:1、利用导数研究单调性、最值、零点等问题。

2、掌握导数与不等式结合的问题。

3、体会分类讨论思想,数形结合思想,转化与化归思想在解决问题中的应用。

一、课前热身1、已知函数)(3)(3R a ax x x f ∈-=,若直线0=++m y x 对任意的R m ∈都不是曲线)(x f y =的切线,则a 的取值范围为2、设函数x x x f +=3)(,若02πθ<≤时,(cos )(1)0f m f m θ+->恒成立,则实数的取值范围是_ .3、已知关于x 的方程3||3x kx x =+有三个不同的实数解,则实数k 的取值范围是 4、在平面直角坐标系xOy 中,设A 是曲线1C :31(0)y ax a =+>与曲线2C :2252x y +=的一个公共点,若1C 在A 处的切线与2C 在A 处的切线互相垂直,则实数a 的值是二、课堂互动1、数(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)若函数在区间内单调递增,求的取值范围.()(0)kxf x xe k =≠()y f x =(0,(0))f ()f x ()f x (1,1)-k2、(1)()ln (0,)a x f x x x a R x-=->∈. (1)试求f (x )的单调区间;(2)当a >0时,求证:函数f (x )的图像存在唯一零点的充要条件是a =1;(3)求证:不等式111ln 12x x -<-对于(1,2)x ∈恒成立.3、已知函数.32)(2x x e x f x -+=(I )求曲线))1(,1()(f x f y 在点=处的切线方程;(Ⅱ)求证函数)(x f 在区间[0,1]上存在唯一的极值点,并用二分法求函数取得极值时相 应x 的近似值(误差不超过0.2);(参考数据e ≈2.7,e ≈1.6,e 0.3≈1.3) (III )当,1)3(25)(,212恒成立的不等式若关于时+-+≥≥x a x x f x x 试求实数a 的取 值范围。

苏教版高中数学选修(1-1)-3.1《导数》导学案1

苏教版高中数学选修(1-1)-3.1《导数》导学案1

3.1.2瞬时变化率—导数:导数一、学习目标:1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的广阔背景,体会导数的思想及内涵.2.掌握导数的概念二、课前预习1.函数()y f x =在点 经x 0处的导数0'()f x 的几何意义就是曲线()y f x =在点P(x 0,,0'()f x )处的 .2.导数的物理意义是指如果物体运动的规律是s=s(t),那么物体在时刻t 的瞬时速度即为v (t )= .3.设函数()f x 可导,则△x 无限趋近于0时,(1)(1)3f x f x+-无限趋近于 三、课堂探究例1. 已知 ()f x =2x +2.(1)求()f x 在x=1处的导数.(2)求()f x 在x=a 处的导数.例2.过曲线3y x =上一点P 作切线,使该切线与直线153y x =--垂直,求此切线的方程.例3.一动点沿Ox 轴运动,运动规律由2105x t t =+给出,式中t 表示时间(单位:s ),x 表示距离(单位:m ),求在20≤t≤20+△t 的时间段内动点的平均速度,其中①△t=1,②△t=0.1,③△t=0.01.当t=20时,这时的瞬时速度是多少?四、巩固训练1.设()4,f x ax =+若'(1)f =2,则a= .2.函数223y x x =+的导数为3. 若函数()y f x =在点(1,1)x ∈-内的导函数为'()f x ,则正确的是(1).在x=x 0处的导数为0'()f x (2).在x=1处的导数为'(1)f(3).在x=—1处的导数为'(1)f - (4).在x=0处的导数为'(0)f4.若()()f x f x -=对任意实数x 都成立,且00'()(0),'()f x k k f x -=-≠则等于5.已知成本 C 与产量q 的函数关系式为2()34C q q q =+,则当产量q=6时,边际成本 '(6)C 为6.过点P (—1,2),且与曲线2342y x x =-+在点M (1,1)处的切线平行的直线方程是 .7.若300(),'()3,f x x f x x ==则= .8.曲线3y x =在点(a ,a 3)(a ≠0)处的切线与x 轴、直线x=a 所围成的三角形的面积为16,则a= .9.当常数k 为何值时,直线y=x 才能与22y x k =+相切?试求出该切点.10.已知抛物线2y ax bx c =++过点(1,1),且在点(2,—1)处与直线3y x =-相切,求a 、b 、c 的值.五、课堂总结1.导数的几何意义:2.导数的物理意义:3.由定义求导数的步骤六、反思总结。

导数学案(有答案)

导数学案(有答案)

3.1.1平均变化率课时目标 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的实际问题.1.函数f(x)在区间[x1,x2]上的平均变化率为____________.习惯上用Δx表示________,即__________,可把Δx看作是相对于x1的一个“__________”,可用__________代替x2;类似地,Δy=__________,因此,函数f(x)的平均变化率可以表示为________.2.函数y=f(x)的平均变化率ΔyΔx=f(x2)-f(x1)x2-x1的几何意义是:表示连接函数y=f(x)图象上两点(x1,f(x1))、(x2,f(x2))的割线的________.一、填空题1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号)①在[x0,x1]上的平均变化率;②在x0处的变化率;③在x1处的变化率;④以上都不对.2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________.3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则Δy Δx=________.4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________.5.如图,函数y=f(x)在A,B两点间的平均变化率是________.6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________.7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______.8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________.二、解答题9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.能力提升11.甲、乙二人跑步路程与时间关系如右图所示,试问甲、乙二人哪一个跑得快?12.函数f(x)=x2+2x在[0,a]上的平均变化率是函数g(x)=2x-3在[2,3]上的平均变化率的2倍,求a的值.3.1.2 瞬时变化率——导数(二)课时目标 1.知道导数的几何意义.2.用导数的定义求曲线的切线方程.1.导数的几何意义函数y =f(x)在点x 0处的导数f ′(x 0)的几何意义是:________________________________.2.利用导数的几何意义求曲线的切线方程的步骤: (1)求出函数y =f(x)在点x 0处的导数f ′(x 0);(2)根据直线的点斜式方程,得切线方程为y -y 0=f ′(x 0)·(x -x 0).一、填空题1.曲线y =1x在点P(1,1)处的切线方程是________.2.已知曲线y =2x 3上一点A(1,2),则A 处的切线斜率为________. 3.曲线y =4x -x 3在点(-1,-3)处的切线方程是____________. 4.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为______________.5.曲线y =2x -x 3在点(1,1)处的切线方程为________.6.设函数y =f(x)在点x 0处可导,且f ′(x 0)>0,则曲线y =f(x)在点(x 0,f(x 0))处切线的倾斜角的范围是________.7.曲线f(x)=x 3+x -2在点P 处的切线平行于直线y =4x -1,则P 点的坐标为______________.8.已知直线x -y -1=0与曲线y =ax 2相切,则a =________. 二、解答题9.已知曲线y =4x在点P(1,4)处的切线与直线l 平行且距离为17,求直线l 的方程.10.求过点(2,0)且与曲线y =1x相切的直线方程.能力提升11.已知曲线y=2x2上的点(1,2),求过该点且与过该点的切线垂直的直线方程.12.设函数f(x)=x3+ax2-9x-1 (a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求a的值.1.利用导数可以解决一些与切线方程或切线斜率有关的问题.2.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则切线方程为y-f(x0)=f′(x0) (x-x0);若已知点不在切线上,则设出切点(x0,f(x0)),表示出切线方程,然后求出切点.3.1.2 瞬时变化率——导数(一)课时目标 1.掌握用极限形式给出的瞬时速度及瞬时变化率的精确定义.2.会用瞬时速度及瞬时变化率定义求物体在某一时刻的瞬时速度及瞬时变化率.3.理解并掌握导数的概念,掌握求函数在一点处的导数的方法.4.理解并掌握开区间内的导数的概念,会求一个函数的导数.1.瞬时速度的概念作变速直线运动的物体在不同时刻的速度是不同的,把物体在某一时刻的速度叫____________.用数学语言描述为:设物体运动的路程与时间的关系是s =f(t),当Δt 趋近于0时,函数f(t)在t 0到t 0+Δt 之间的平均变化率f (t 0+Δt )-f (t 0)Δt趋近于常数,我们这个常数称为______________. 2.导数的概念设函数y =f(x)在区间(a ,b)上有定义,x 0∈(a ,b),当Δx 无限趋近于0时,比值ΔyΔx=____________无限趋近于一个常数A ,则称f(x)在点x =x 0处________,并称该常数A 为______________________________,记作f ′(x 0). 3.函数的导数若f(x)对于区间(a ,b)内任一点都可导,则f(x)在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f(x)的导函数,记作f ′(x). 4.瞬时速度是运动物体的位移S(t)对于时间t 的导数,即v(t)=________. 5.瞬时加速度是运动物体的速度v(t)对于时间t 的导数,即a(t)=________.一、填空题1.任一作直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度是________.2.设f(x)在x =x 0处可导,则当Δx 无限趋近于0时f (x 0-Δx )-f (x 0)Δx的值为________.3.一物体的运动方程是s =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度是________.4.已知f(x)=-x 2+10,则f(x)在x =32处的瞬时变化率是________.5.函数y =x +1x在x =1处的导数是________.6.设函数f(x)=ax 3+2,若f ′(-1)=3,则a =________. 7.曲线f(x)=x 在点(4,2)处的瞬时变化率是________.8.已知物体运动的速度与时间之间的关系是:v(t)=t 2+2t +2,则在时间间隔[1,1+Δt]内的平均加速度是________,在t =1时的瞬时加速度是________. 二、解答题9.用导数的定义,求函数y =f(x)=1x在x =1处的导数.10.枪弹在枪筒中可以看作匀加速直线运动,如果它的加速度是a=5×105m/s2,枪弹从枪口射出时所用的时间为1.6×10-3s.求枪弹射出枪口时的瞬时速度.能力提升11.已知函数y=ax2+bx+c,求函数在x=2处的导数.12.以初速度v0 (v0>0)垂直上抛的物体,t秒时间的高度为s(t)=v0t-12gt2,求物体在时刻t0处的瞬时速度.1.利用定义求函数在一点处导数的步骤:3.2.1 常见函数的导数课时目标 1.理解各个公式的证明过程,进一步理解运用概念求导数的方法.2.掌握常见函数的导数公式.3.灵活运用公式求某些函数的导数.1.几个常用函数的导数: (kx +b)′=______;C ′=______ (C 为常数); x ′=______; (x 2)′=______; ⎝⎛⎭⎫1x ′=________. 2(cos x)′=________一、填空题1.下列结论不正确的是________.(填序号) ①若y =3,则y ′=0;②若y =1x,则y ′=-12x ;③若y =-x ,则y ′=-12x;④若y =3x ,则y ′=3.2.下列结论:①(cos x)′=sin x ;②⎝⎛⎭⎫sin π3′=cos π3;③若y =1x 2,则f ′(3)=-227.其中正确的有______个.3.设f 0(x)=sin x ,f 1(x)=f ′0(x),f 2(x)=f ′1(x),…,f n +1(x)=f ′n (x),n ∈N ,则f 2 010(x )=________. 4.已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为______________. 5.质点沿直线运动的路程s 与时间t 的关系是s =5t ,则质点在t =4时的速度为_________.6.若函数y =f (x )满足f (x -1)=1-2x +x 2,则y ′=f ′(x )=________.7.曲线y =cos x 在点A ⎝⎛⎭⎫π6,32处的切线方程为__________________.8.曲线y =x 2上切线倾斜角为π4的点是__________.二、解答题9.求下列函数的导数.(1)y =log 4x 3-log 4x 2; (2)y =2x 2+1x -2x ; (3)y =-2sin x2⎝⎛⎭⎫2sin 2 x 4-1.10.已知曲线y =x 2上有两点A (1,1),B (2,4).求: (1)割线AB 的斜率k AB ;(2)在[1,1+Δx ]内的平均变化率; (3)点A 处的切线斜率k AT ; (4)点A 处的切线方程.能力提升11.若曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,则实数a 的取值范围为__________. 12.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系:p (t )=p 0(1+5%)t ,其中p 0为t =0时的物价,假定某种商品的p 0=1,那么在第10个年头,这种商品的价格上涨的速度大约是多少?(注ln 1.05≈0.05,精确到0.01)1.求函数的导数,可以利用导数的定义,也可以直接使用基本初等函数的导数公式. 2.对实际问题中的变化率问题可以转化为导数问题解决.§3.2 导数的运算3.2.2 函数的和、差、积、商的导数课时目标 1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用求导公式和四则运算法则求函数的导数.1.两个函数的和(或差)的导数,等于这两个函数的导数的__________,即[f (x )±g (x )]′=______________.2.两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上________________________________________,即[f (x )·g (x )]′=________________.特别地[Cf (x )]′=__________(其中C 为常数).3.两个函数的商的导数,等于分子的导数与__________减去________________与分子的积,再除以______________.即_______________________________.一、填空题1.已知f (x )=x 3+3x +ln 3,则f ′(x )=__________.2.曲线y =x e x +1在点(0,1)处的切线方程是____________.3.已知函数f (x )=x 4+ax 2-bx ,且f ′(0)=-13,f ′(-1)=-27,则a +b =________. 4.曲线y =x (x -1)(x -2)…(x -6)在原点处的切线方程为__________.5.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为________.6.已知函数f (x )=f ′(π4)cos x +sin x ,则f (π4)的值为__________.7.曲线C :f (x )=sin x +e x+2在x =0处的切线方程为____________.8.某物体作直线运动,其运动规律是s =t 2+3t(t 的单位是秒,s 的单位是米),则它在第4秒末的瞬时速度应该为________ m/s. 二、解答题9.求下列函数的导数. (1)y =10x ;(2)y =x +cos x x -cos x;(3)y =2x cos x -3x log 2 011x ; (4)y =x ·tan x .10.求曲线y =x 2+sin x 在点(π,π2)处的切线方程.能力提升11.已知点P在曲线y=4e x+1上,α为曲线在点P处的切线的倾斜角,则α的取值范围为__________.12.求抛物线y=x2上的点到直线x-y-2=0的最短距离.1.理解和掌握求导法则和公式的结构规律是灵活进行求导运算的前提条件.2.对于一些应用问题如切线、速度等,可以结合导数的几何意义,利用公式进行计算.3.1.1 平均变化率知识梳理 1.f (x 2)-f (x 1)x 2-x 1x 2-x 1 Δx =x 2-x 1 增量 x 1+Δx f (x 2)-f (x 1) Δy Δx2.斜率 作业设计 1.①2.f (x 0+Δx )-f (x 0) 3.4+2Δx解析 Δy =f (1+Δx )-f (1)=2(1+Δx )2-1-2×12+1=4Δx +2(Δx )2, ∴Δy Δx =4Δx +2(Δx )2Δx =4+2Δx . 4.s (t +Δt )-s (t )Δt解析 由平均速度的定义可知,物体在t 到t +Δt 这段时间内的平均速度是其位移改变量与时间改变量的比.所以v =Δs Δt =s (t +Δt )-s (t )Δt.5.-1解析 Δy Δx =f (3)-f (1)3-1=1-32=-1.6.0.41 7.1解析 由平均变化率的几何意义知k =2-11-0=1.8.4.1解析 质点在区间[2,2.1]内的平均速度可由Δs Δt 求得,即v =Δs Δt =s (2.1)-s (2)0.1=4.1.9.解 函数f (x )在[-3,-1]上的平均变化率为: f (-1)-f (-3)(-1)-(-3)=[(-1)2-2×(-1)]-[(-3)2-2×(-3)]2=-6.函数f (x )在[2,4]上的平均变化率为: f (4)-f (2)4-2=(42-2×4)-(22-2×2)2=4.10.解 ∵Δy =f (1+Δx )-f (1)=(1+Δx )3-1 =3Δx +3(Δx )2+(Δx )3, ∴割线PQ 的斜率Δy Δx =(Δx )3+3(Δx )2+3Δx Δx=(Δx )2+3Δx +3. 当Δx =0.1时,割线PQ 的斜率为k ,则k =ΔyΔx=(0.1)2+3×0.1+3=3.31.∴当Δx =0.1时割线的斜率为3.31.11.解 乙跑的快.因为在相同的时间内,甲跑的路程小于乙跑的路程,即甲的平均速度比乙的平均速度小.12.解 函数f (x )在[0,a ]上的平均变化率为 f (a )-f (0)a -0=a 2+2aa =a +2.函数g (x )在[2,3]上的平均变化率为 g (3)-g (2)3-2=(2×3-3)-(2×2-3)1=2.∵a +2=2×2,∴a =2.3.1.2 瞬时变化率——导数(二)知识梳理1.曲线y =f (x )上过点x 0的切线的斜率 作业设计1.x +y -2=0解析 Δy Δx =11+Δx-1Δx =-Δx 1+Δx Δx =-11+Δx,当Δx 无限趋近于0时,ΔyΔx无限趋近于-1,∴k =-1,∴切线方程为y -1=-(x -1),即x +y -2=0. 2.6解析 ∵y =2x 3, ∴Δy Δx =2(x +Δx )3-2x 3Δx=2(Δx )3+6x (Δx )2+6x 2Δx Δx=2(Δx )2+6x Δx +6x 2.∴当Δx 无限趋近于0时,ΔyΔx无限趋近于6x 2,∴点A (1,2)处切线的斜率为6. 3.x -y -2=0解析 Δy Δx =4(x +Δx )-(x +Δx )3-4x +x 3Δx=4-(Δx )2-3x 2-3x (Δx ),当Δx 无限趋近于0时,ΔyΔx无限趋近于4-3x 2,∴f ′(-1)=1.所以在点(-1,-3)处的切线的斜率为k =1, 所以切线方程是y =x -2. 4.4x -y -3=0解析 与直线x +4y -8=0垂直的直线l 为4x -y +m =0,即y =x 4在某一点的导数为4,而y ′=4x 3,所以y =x 4在(1,1)处导数为4,此点的切线方程为4x -y -3=0. 5.x +y -2=0解析 Δy Δx=2-(Δx )2-3x 2-3x (Δx ),当Δx 无限趋近于0时,ΔyΔx无限趋近于2-3x 2,∴y ′=2-3x 2,∴k =2-3=-1.∴切线方程为y -1=-(x -1),即x +y -2=0.6.⎝⎛⎭⎫0,π2 解析 k =f ′(x 0)>0,∴tan θ>0,∴θ∈⎝⎛⎭⎫0,π2. 7.(1,0)或(-1,-4)解析 设P (x 0,y 0),由f (x )=x 3+x -2, ΔyΔx=(Δx )2+3x 2+3x (Δx )+1, 当Δx 无限趋近于0时,ΔyΔx无限趋近于3x 2+1.∴f ′(x )=3x 2+1,令f ′(x 0)=4, 即3x 20+1=4,得x 0=1或x 0=-1, ∴P (1,0)或(-1,-4). 8.14解析 Δy Δx =a (x +Δx )2-ax 2Δx=2ax +a Δx ,当Δx 无限趋近于0时,2ax +a Δx 无限趋近于2ax , ∴f ′(x )=2ax .设切点为(x 0,y 0),则f ′(x 0)=2ax 0,2ax 0=1,且y 0=x 0-1=ax 20,解得x 0=2,a =14. 9.解 Δy Δx =f (x +Δx )-f (x )Δx =4x +Δx -4xΔx=-4Δx x Δx (x +Δx )=-4x (x +Δx ), 当Δx 无限趋近于0时,-4x (x +Δx )无限趋近于-4x 2,即f ′(x )=-4x2.k =f ′(1)=-4,切线方程是y -4=-4(x -1), 即为4x +y -8=0,设l :4x +y +c =0,则17=|c +8|42+12,∴|c +8|=17,∴c =9,或c =-25,∴直线l 的方程为4x +y +9=0或4x +y -25=0.10.解 (2,0)不在曲线y =1x 上,令切点为(x 0,y 0),则有y 0=1x 0.①又Δy Δx =1x +Δx -1x Δx =-1x (x +Δx ), 当Δx 无限趋近于0时,-1x (x +Δx )无限趋近于-1x 2.∴k =f ′(x 0)=-1x 20.∴切线方程为y =-1x 20(x -2).而y 0x 0-2=-1x 20.②由①②可得x 0=1,故切线方程为x +y -2=0.11.解 Δy Δx =2(1+Δx )2-2Δx=4Δx +2(Δx )2Δx=4+2Δx ,当Δx 无限趋近于0时,ΔyΔx无限趋近于4,∴f ′(1)=4.∴所求直线的斜率为k =-14.∴y -2=-14(x -1),即x +4y -9=0.12.解 ∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1)=(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3, ∴Δy Δx=3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2. 3.1.2 瞬时变化率——导数(一)课时目标 1.掌握用极限形式给出的瞬时速度及瞬时变化率的精确定义.2.会用瞬时速度及瞬时变化率定义求物体在某一时刻的瞬时速度及瞬时变化率.3.理解并掌握导数的概念,掌握求函数在一点处的导数的方法.4.理解并掌握开区间内的导数的概念,会求一个函数的导数.1.瞬时速度的概念作变速直线运动的物体在不同时刻的速度是不同的,把物体在某一时刻的速度叫____________.用数学语言描述为:设物体运动的路程与时间的关系是s =f(t),当Δt 趋近于0时,函数f(t)在t 0到t 0+Δt 之间的平均变化率f (t 0+Δt )-f (t 0)Δt趋近于常数,我们这个常数称为______________. 2.导数的概念设函数y =f(x)在区间(a ,b)上有定义,x 0∈(a ,b),当Δx 无限趋近于0时,比值ΔyΔx=____________无限趋近于一个常数A ,则称f(x)在点x =x 0处________,并称该常数A 为______________________________,记作f ′(x 0). 3.函数的导数若f(x)对于区间(a ,b)内任一点都可导,则f(x)在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f(x)的导函数,记作f ′(x). 4.瞬时速度是运动物体的位移S(t)对于时间t 的导数,即v(t)=________. 5.瞬时加速度是运动物体的速度v(t)对于时间t 的导数,即a(t)=________.一、填空题1.任一作直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度是________.2.设f(x)在x =x 0处可导,则当Δx 无限趋近于0时f (x 0-Δx )-f (x 0)Δx的值为________.3.一物体的运动方程是s =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度是________.4.已知f(x)=-x 2+10,则f(x)在x =32处的瞬时变化率是________.5.函数y=x+1x在x=1处的导数是________.6.设函数f(x)=ax3+2,若f′(-1)=3,则a=________.7.曲线f(x)=x在点(4,2)处的瞬时变化率是________.8.已知物体运动的速度与时间之间的关系是:v(t)=t2+2t+2,则在时间间隔[1,1+Δt]内的平均加速度是________,在t=1时的瞬时加速度是________.二、解答题9.用导数的定义,求函数y=f(x)=1x在x=1处的导数.10.枪弹在枪筒中可以看作匀加速直线运动,如果它的加速度是a=5×105m/s2,枪弹从枪口射出时所用的时间为1.6×10-3s.求枪弹射出枪口时的瞬时速度.能力提升11.已知函数y=ax2+bx+c,求函数在x=2处的导数.12.以初速度v0 (v0>0)垂直上抛的物体,t秒时间的高度为s(t)=v0t-12gt2,求物体在时刻t0处的瞬时速度.3.1.2 瞬时变化率——导数(一)知识梳理1.瞬时速度 瞬时速度 2.f (x 0+Δx )-f (x 0)Δx可导 函数f (x )在点x =x 0处的导数4.S ′(t ) 5.v ′(t ) 作业设计 1.3解析 Δs Δt =s (Δt )-s (0)Δt =3Δt -(Δt )2Δt=3-Δt ,当Δt 无限趋近于0时,ΔsΔt无限趋近于3.2.-f ′(x 0)解析 ∵f (x 0-Δx )-f (x 0)Δx=f (x 0)-f (x 0-Δx )-Δx=-f (x 0)-f (x 0-Δx )Δx,∴当Δx 无限趋近于0时,原式无限趋近于-f ′(x 0). 3.at 0解析 Δs Δt =s (t 0+Δt )-s (t 0)Δt =12a Δt +at 0,当Δt 无限趋近于0时,ΔsΔt无限趋近于at 0.4.-3解析 ∵Δf Δx =f ⎝⎛⎭⎫32+Δx -f ⎝⎛⎭⎫32Δx=-Δx -3,当Δx 无限趋近于0时,ΔfΔx无限趋近于-3.5.0解析 ΔyΔx =(1+Δx )+11+Δx -2Δx=(1+Δx )2+1-2(1+Δx )Δx (1+Δx )=(Δx )2Δx (1+Δx )=Δx 1+Δx, 当Δx 无限趋近于0时,ΔyΔx无限趋近于0.6.1解析 ∵f (-1+Δx )-f (-1)Δx=a (-1+Δx )3-a (-1)3Δx=a (Δx )2-3a Δx +3a .∴当Δx 无限趋近于0时,ΔfΔx无限趋近于3a ,即3a =3,∴a =1. 7.14解析 Δf Δx =f (4+Δx )-f (4)Δx =4+Δx -2Δx=14+Δx +2,∴当Δx 无限趋近于0时,Δf Δx 无限趋近于14.8.4+Δt 4解析 在[1,1+Δt ]内的平均加速度为Δv Δt =v (1+Δt )-v (1)Δt=Δt +4,当Δt 无限趋近于0时,ΔvΔt无限趋近于4. 9.解 ∵Δy =f (1+Δx )-f (1)=11+Δx -11=1-1+Δx 1+Δx =-Δx1+Δx ·(1+1+Δx )∴ΔyΔx =-11+Δx ·(1+1+Δx ), ∴当Δx 无限趋近于0时,-11+Δx ·(1+1+Δx )无限趋近于-12,∴f ′(1)=-12.10.解 运动方程为s =12at 2.因为Δs =12a (t 0+Δt )2-12at 20=at 0Δt +12a (Δt )2,所以Δs Δt =at 0+12a Δt .所以当Δt 无限趋近于0时,ΔsΔt无限趋近于at 0. 由题意知,a =5×105 m/s 2,t 0=1.6×10-3s , 所以at 0=8×102=800 (m/s).即枪弹射出枪口时的瞬时速度为800 m/s.11.解 ∵Δy =a (2+Δx )2+b (2+Δx )+c -(4a +2b +c ) =4a Δx +a (Δx )2+b Δx , ∴Δy Δx =4a Δx +a (Δx )2+b Δx Δx=4a +b +a Δx , 当Δx 无限趋近于0时,ΔyΔx无限趋近于4a +b .所以函数在x =2处的导数为4a +b .12.解 ∵Δs =v 0(t 0+Δt )-12g (t 0+Δt )2-⎝⎛⎭⎫v 0t 0-12gt 20 =(v 0-gt 0)Δt -12g (Δt )2,∴Δs Δt =v 0-gt 0-12g Δt , 当Δt 无限趋近于0时,ΔsΔt无限趋近于v 0-gt 0.故物体在时刻t 0处的瞬时速度为v 0-gt 0.3.2.1 常见函数的导数知识梳理1.k 0 1 2x -1x22.1.②解析 y ′=⎝⎛⎭⎫1x ′=(x -12)′=-1232x -=-12x x .2.1解析 直接利用导数公式.因为(cos x )′=-sin x ,所以①错误;sin π3=32,而⎝⎛⎭⎫32′=0,所以②错误;⎝⎛⎭⎫1x 2′=(x -2)′=-2x -3,则f ′(3)=-227, 所以③正确. 3.-sin x解析 f 0(x )=sin x ,f 1(x )=f ′0(x )=cos x ,f 2(x )=f ′1(x )=-sin x ,f 3(x )=f ′2(x )=-cos x ,f 4(x )=f ′3(x )=sin x ,….由此继续求导下去,发现四个一循环,从0到2 010共2 011个数,2 011=4×502+3,所以f 2 010(x )=f 2(x )=-sin x . 4.(-1,-1)或(1,1)解析 y ′=3x 2,∵k =3,∴3x 2=3,∴x =±1, 则P 点坐标为(-1,-1)或(1,1).5.110523解析 s ′=155t 4.当t =4时,s ′=15·1544=110523.6.2x解析 ∵f (x -1)=1-2x +x 2=(x -1)2, ∴f (x )=x 2,f ′(x )=2x .7.x +2y -3-π6=0解析 ∵y ′=(cos x )′=-sin x ,∴k =-sin π6=-12,∴在点A 处的切线方程为y -32=-12⎝⎛⎭⎫x -π6, 即x +2y -3-π6=0.8.⎝⎛⎭⎫12,14解析 设切点坐标为(x 0,x 20),则tan π4=f ′(x 0)=2x 0,∴x 0=12.∴所求点为⎝⎛⎭⎫12,14.9.解 (1)∵y =log 4x 3-log 4x 2=log 4x ,∴y ′=(log 4x )′=1x ln 4.(2)∵y =2x 2+1x -2x =2x 2+1-2x 2x =1x .∴y ′=⎝⎛⎭⎫1x ′=-1x 2. (3)∵y =-2sin x2⎝⎛⎭⎫2sin 2 x 4-1 =2sin x2⎝⎛⎭⎫1-2sin 2 x 4 =2sin x 2cos x2=sin x .∴y ′=(sin x )′=cos x .10.解 (1)k AB =4-12-1=3.(2)平均变化率Δy Δx =(1+Δx )2-1Δx=2Δx +(Δx )2Δx=2+Δx .(3)y ′=2x ,∴k =f ′(1)=2, 即点A 处的切线斜率为k AT =2.(4)点A 处的切线方程为y -1=2(x -1), 即2x -y -1=0. 11.(-∞,0)解析 ∵f ′(x )=5ax 4+1x,x ∈(0,+∞),∴由题知5ax 4+1x =0在(0,+∞)上有解.即a =-15x5在(0,+∞)上有解.∵x ∈(0,+∞),∴-15x5∈(-∞,0).∴a ∈(-∞,0).12.解 ∵p 0=1,∴p (t )=(1+5%)t =1.05t . 根据基本初等函数的导数公式表,有 p ′(t )=(1.05t )′=1.05t ·ln 1.05. ∴p ′(10)=1.0510·ln 1.05≈0.08(元/年).因此,在第10个年头,这种商品的价格约以0.08元/年的速度上涨.3.2.2 函数的和、差、积、商的导数课时目标 1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用求导公式和四则运算法则求函数的导数.1.两个函数的和(或差)的导数,等于这两个函数的导数的__________,即[f (x )±g (x )]′=______________.2.两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上________________________________________,即[f (x )·g (x )]′=________________.特别地[Cf (x )]′=__________(其中C 为常数).3.两个函数的商的导数,等于分子的导数与__________减去________________与分子的积,再除以______________.即_______________________________.一、填空题1.已知f (x )=x 3+3x +ln 3,则f ′(x )=__________.2.曲线y =x e x +1在点(0,1)处的切线方程是____________.3.已知函数f (x )=x 4+ax 2-bx ,且f ′(0)=-13,f ′(-1)=-27,则a +b =________. 4.曲线y =x (x -1)(x -2)…(x -6)在原点处的切线方程为__________.5.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为________.6.已知函数f (x )=f ′(π4)cos x +sin x ,则f (π4)的值为__________.7.曲线C :f (x )=sin x +e x+2在x =0处的切线方程为____________.8.某物体作直线运动,其运动规律是s =t 2+3t(t 的单位是秒,s 的单位是米),则它在第4秒末的瞬时速度应该为________ m/s.二、解答题9.求下列函数的导数.(1)y =10x ;(2)y =x +cos x x -cos x; (3)y =2x cos x -3x log 2 011x ;(4)y =x ·tan x .10.求曲线y =x 2+sin x 在点(π,π2)处的切线方程.能力提升11.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围为__________.12.求抛物线y =x 2上的点到直线x -y -2=0的最短距离.1.理解和掌握求导法则和公式的结构规律是灵活进行求导运算的前提条件.2.对于一些应用问题如切线、速度等,可以结合导数的几何意义,利用公式进行计算.3.2.2 函数的和、差、积、商的导数知识梳理1.和(或差) f ′(x )±g ′(x )2.第一个函数乘第二个函数的导数 f ′(x )·g (x )+f (x )·g ′(x ) C ·f ′(x )3.分母的积 分母的导数 分母的平方 [f (x )g (x )]′=g (x )f ′(x )-f (x )g ′(x )g 2(x )(g (x )≠0) 作业设计1.3x 2+3x ·ln 3解析 (ln 3)′=0,注意避免出现(ln 3)′=13的错误. 2.x -y +1=0解析 y ′=e x +x e x ,当x =0时,导数值为1,故所求的切线方程是y =x +1,即x -y +1=0.3.18解析 ∵f ′(x )=4x 3+2ax -b ,由⎩⎪⎨⎪⎧ f ′(0)=-13f ′(-1)=-27⇒⎩⎪⎨⎪⎧-b =-13,-4-2a -b =-27. ∴⎩⎪⎨⎪⎧a =5,b =13. ∴a +b =5+13=18. 4.y =720x解析 y ′=(x -1)(x -2)…(x -6)+x [(x -1)(x -2)…(x -6)]′,所以f ′(0)=1×2×3×4×5×6+0=720.故切线方程为y =720x .5.12e 2 解析 ∵y ′=(e x )′=e x ,∴在(2,e 2)处的切线斜率为e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2),即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1.∴S △=12×1×|-e 2|=12e 2. 6.1解析 ∵f (x )=f ′⎝⎛⎭⎫π4cos x +sin x ,∴f ′(x )=-f ′⎝⎛⎭⎫π4sin x +cos x .∴f ′⎝⎛⎭⎫π4=-f ′⎝⎛⎭⎫π4×22+22. ∴f ′⎝⎛⎭⎫π4=11+2=2-1.故f ⎝⎛⎭⎫π4=(2-1)×22+22=1. 7.2x -y +3=0解析 由f (x )=sin x +e x +2得f ′(x )=cos x +e x ,从而f ′(0)=2,又f (0)=3,所以切线方程为y =2x +3.8.12516解析 ∵s ′=2t -3t2, ∴当第4秒末,v =8-316=12516(m/s). 9.解 (1)y ′=(10x )′=10x ln 10.(2)y ′=(x +cos x )′(x -cos x )-(x +cos x )(x -cos x )′(x -cos x )2=(1-sin x )(x -cos x )-(x +cos x )(1+sin x )(x -cos x )2=-2(cos x +x sin x )(x -cos x )2. (3)y ′=(2x )′cos x +(cos x )′2x -3[x ′log 2 011 x +(log 2 011x )′x ]=2x ln 2·cos x -sin x ·2x -3[log 2 011 x +⎝⎛⎭⎫1x log 2 011 e x ] =2x ln 2·cos x -2x sin x -3log 2 011 x -3log 2 011 e.(4)y ′=(x tan x )′=⎝⎛⎭⎫x sin x cos x ′=(x sin x )′cos x -x sin x (cos x )′(cos x )2=(sin x +x cos x )cos x +x sin 2x (cos x )2=sin x cos x +x (cos 2x +sin 2x )(cos x )2=12sin 2x +x (cos x )2=sin 2x +2x 2cos 2x . 10.解 f ′(x )=2x +cos x .故曲线在点(π,π2)的切线斜率为2π-1,所以切线为y -π2=(2π-1)(x -π),即(2π-1)x -y -π2+π=0.11.[3π4,π) 解析 y ′=-4e x e 2x +2e x +1=-4e x +2+1ex , ∵e x +1ex ≥2,∴-1≤y ′<0,即-1≤tan α<0,∴α∈⎣⎡⎭⎫3π4,π.12.解 依题意知与直线x -y -2=0平行的抛物线y =x 2的切线的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20).∵y ′=(x 2)′=2x ,∴2x 0=1,∴x 0=12. 切点坐标为⎝⎛⎭⎫12,14.∴所求的最短距离d =⎪⎪⎪⎪12-14-22=728.。

导数学案(完整版)精心

导数学案(完整版)精心

选修〔 1-1〕第三章导数及其应用课题:§3.1 变化率与导数学习目标: 1. 认识函数的均匀变化率、刹时变化率的观点;2.理解导数的观点,理解、掌握导数的几何意义3.会利用定义求函数在某一点周边的均匀变化率及导数;4.会利用定义求函数在某点处的切线方程.学习过程:一、变化率问题[ 开篇思虑 ]:阅读开篇语,认识课程目标1.微积分的创办与自然科学中的哪些问题的办理直接有关?2.导数的研究对象是什么?[ 问题研究一 ]:气球膨胀率吹气球时,跟着气球内空气容量的增添,气球的半径增添得愈来愈慢。

从数学的角度如何描绘这类现象 ? 阅读教材 P72并思虑:〔 1〕问题中波及到的两个变量分别是、,这两个变量间的函数关系是;(2〕“气球的半径增添得愈来愈慢〞的意思是“〞,从数学角度进行描绘就是“适用标准文案当空气容量从 2.5 L增添到 4 L时,气球半径r 增添了,气球的均匀膨胀率为;能够看出,跟着气球体积渐渐变大,它的均匀膨胀率渐渐.〔 4〕思虑:当空气容量从V1增添到 V2时,气球的均匀膨胀率是[问题研究二 ]:高台跳水在高台跳水运动中,运发动相对于水面的高度h(单位:米 )与起跳后的时间t〔单位:秒〕存在函数关系)t2t10h t如何用运发动在某些时间段内的均匀速度大略地描绘其运动状态?(阅读教材 P73并思虑:h假定用运发动在某段时间t1 , t 2内的均匀速度v 描绘其运动状态,那么:〔 1〕v =;〔 2〕算一算:在 0t0.5 这段时间内, v =ot 在 1t 2 这段时间内, v =t1 t2在 0t65这段时间内, v =49[新知 ]:〞,即气球的均匀膨胀率就是.〔 3〕运用上述数学解说计算一些详细的值当空气容量从0 增添到 1 L时,气球半径r增添了,气球的均匀膨胀设 y f (x) , x1是数轴上的一个定点,在数轴x 上另取一点x2, x1与 x2的差记为x,即x =率为;或许 x2 =, x 就表示从x1到x2的变化量或增量;相应地,函数的变化量或增量记为y ,当空气容量从1L 增添到2 L 时,气球半径 r 增添了,气球的均匀膨胀率即 y =;假如它们的比值y ,那么上式就表示为,此比值就称为均匀变化率 .为;x当空气容量从2L 增添到 L 时,气球半径 r 增添了,均匀变化率: _______________ = ______气球的均匀膨胀率为;反省:所谓均匀变化率也就是的增量与的增量的比值 .出色文档适用标准文案[ 试一试 ]:[研究 ]:计算[问题研究二]运发动在0 t 65这段时间里的均匀速度,并思虑以下问题:例:函数2,分别计算 f ( x) 在以下区间上的均匀变化率:49 f ( x) x〔1〕1,〔2〕1,2〔 1〕运发动在这段时间内使静止的吗?〔 3〕1,1x〔 2〕你以为用均匀速度描绘运发动的运动状态有什么问题吗?研究过程:[知识回想 ]:什么是函数y f ( x) 的均匀变化率?如何求均匀变化率?[ 思虑 ] :当x愈来愈小时,函数 f ( x) 在区间1, 1x 上的均匀变化率有如何的变化趋向?[想想 ]:既然用均匀速度不可以精准描绘运发动的运动状态,那该如何求运发动在某一时辰的速度呢?y =回复以下问题:[ 变式 ] :函数 f (x)x2x 的图象上一点 1 , 2 及周边一点 1 x , 2y ,那么1.什么是刹时速度?x2. 当t 趋近于 0 时,均匀速度v有什么样的变化趋向?3. 运发动在某一时辰t0的刹时速度如何表示?[ 学习小结 ]:[认识与理解 ]:求刹时速度1.函数 f ( x) 的均匀变化率是一物体的运动方程是 s 3t 2,那么在 t2 时辰的刹时速度是2.求函数 f ( x) 的均匀变化率的步骤:〔 1〕求函数值的增量;〔 2〕计算均匀变化率.[ 作业 ] :形成练习 P41-42练习 21 函数的均匀变化率[新知 ]:[再思虑 ]:计算[问题研究二]中运发动在0 t 651. 函数y f (x) 的刹时变化率如何表示?这段时间里的均匀速度,思虑以下问题:49(1〕运发动在这段时间内使静止的吗?(2〕你以为用均匀速度描绘运发动的运动状态有什么问题吗?二、导数的观点 2. 什么是函数y f ( x) 在x x0处的导数?如何表示?其实质是什么?出色文档适用标准文案[思虑与研究一]:曲线的切线及切线的斜率如图,当P n(x n, f (x n))( n1,2,3,4)沿着曲线 f (x) 趋近于点P( x0, f (x0))时,割线PP n的变化趋向是什么?[试一试 ]:例 1.〔 1〕用定义求函数y 3x2在x1处的导数.〔 2〕求函数f(x)=x 2x 在x1周边的均匀变化率,并求出在该点处的导数.图当点 P n沿着曲线无穷靠近点P 即x→ 0 时,割线PP n趋近于确立的地点,这个确立地点的直线例 2.阅读教材 P75例 1, 计算第3h时和第5h时, 原油温度的刹时变化率PT 称为曲线在点P 处的., 并说明它们的意义 .[想想 ]:〔 1〕割线PP n的斜率k n与切线 PT 的斜率k有什么关系?〔 2〕切线 PT 的斜率k为多少?[ 学习小结 ]:1.刹时速度、刹时变化率的观点〔 3〕此处切线的定义与从前学过的切线的定义有什么不一样?2.函数y f ( x) 在x x0处的导数及其实质[ 作业 ] :形成练习P43-44练习 22 导数的观点三、导数的几何意义〔阅读教材P74-75〕[新知 1]:导数的几何意义:出色文档1.函数 y f ( x) 在x x0处的导数等于即 f (x0 )lim f ( x0x) f (x0 )xkx 02.函数 y f ( x) 在x x0处的切线方程是.3.求曲线在某点 P 处的切线方程的根本步骤:①求出点的坐标 P( x0 , f ( x0 )) ;② 求出函数在点x x0处的变化率 f (x0 ) lim0f ( x0x) f ( x0 )k ,x x获得曲线在点P( x0 , f ( x0 )) 的切线的斜率;③利用点斜式求切线方程.[新知 2]:导函数:1.什么是函数 y f (x) 的导函数?2. 函数f ( x)在点x0处的导数 f ( x0 ) 、导函数f ( x) 、导数之间的差别与联系?[ 试一试 ]:例 1:〔1〕求曲线y f ( x) x21在点P(1,2)处的切线方程.例 2:在曲线y x 2上过哪一点的切线平行于直线y 4x 5?适用标准文案例 3:〔1〕试描绘函数 f ( x) 在x5, 4, 2,0,1 周边的的变化状况.〔 2〕函数 f (x) 的图象 ,试画出其导函数 f (x) 图象的大概形状.[练一练 ]:〔 1〕求函数 f ( x) 3x 2在点x1处的切线方程.〔 2〕设曲线 f ( x)x2在点 P0处的切线斜率是3,那么点P0的坐标是[学习小结 ]:1.导数的几何意义是什么?2.函数 f (x) 在点x0处的导数f ( x0)、导函数 f (x) 、导数之间的差别与联系?3. 求曲线在某点P 处的切线方程的根本步骤:[ 作业 ]:1. 形成练习 P44-45练习 23 导数的几何意义; 2.学探诊测试十一[课后思虑 ]: 1.本节知识内容有哪些?你学会了什么? 2.你还有哪些疑惑?快快去解决 .课题:§ 导数的计算出色文档学习目标: 1.会利用导数的定义推导函数y c 、 y x 、 y x 2 、 y1 的导数公式;x2.掌握根本初等函数的求导公式及导数的运算法那么,会求简单函数的导数.学习过程:一、几个常用函数的导数[开篇语 ]:我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时辰的刹时速度.那么,对于函数y f ( x) ,如何求它的导数呢?由导数定义自己,给出了求导数的最根本的方法,但因为导数是用极限来定义的,因此求导数老是归纳到求极限, 这在运算上很麻烦, 有时甚至很困难, 为了能够较快求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下边我们先来求几个常用的函数的导数.[思虑与研究 ]:阅读教材 81-82,利用导数的定义,试试自己推导函数y c 、 y x 、y x 2 、P1 y的导数x[练一练 1] :利用导数的定义函数y x 3 的导数适用标准文案〔 1〕y x3〔 2〕y x x〔3 〕y 1x2〔 4〕 y 2 sin x cosx〔 5〕 y1 22x例 2:〔 1〕求 y1 在点 (2, 1) 处的切线方程x 2〔 2〕求 y ln x 在 xe 2 处的切线方程〔 3〕求 y sin x 在点 A(, 1) 处的切线方程 6 2〔 4〕设曲线f ( x)2x 2在点 P 0 处的切线斜率是3,那么点 P 0 的坐标是二、根本初等函数的导数公式及导数运算法那么[记一记 1]:根本初等函数的导数公式( c)〔 5〕在曲线1. _________2. ( x )________〔为有理数〕 ( 1)_________x3. ( ex)_________(a x )_________( a 0,a 1)〔 6〕求过点 4. (ln x) __________(log a x)________( a 0, a 1) 5. (sin x)_________(cos x)_________y x 2 上过哪一点的切线平行于直线y 4x 5?P 2, 8 所作的 yx 3 的切线方程 ___________.[练一练 2]例 1:求以下函数的导数[记一记 2]:导数运算法那么: 设函数 f ( x), g (x) 是可导函数,出色文档1.( f ( x)g( x))_________________.2.( f ( x)g( x))_________________.3.( f ( x) )_________________.g( x)[练一练 3]:练 1. 求以下函数的导数:〔 1〕y1x ;〔 2〕 y log 3x〔 3〕 y 2x5 3 x2 5 x 4 ;〔4〕y练 2. 求以下函数的导数:〔 1〕 y x3log 2 x ;〔 2〕 y x n e x;cf ( x)_____________.2e x;3cos x 4sin x .x31〔 3〕ysin x适用标准文案[提升篇 ]1.〔旭日一模〕函数 f x x 2 a 2 x a ln x,此中a R ,求曲线y f x 在点2, f 2处的切线的斜率为1的值 .〔如改为切线方程〕,求 a2. 〔 2021 北京〕函数f xax2 1 a0 , g x x3bx .假定曲线y f x 与曲线 y g x在它们的交点 1, c 处拥有公共切线,求a,b 的值.练 3.〔 1〕设曲线y x 1在点 (3, 2) 处的切线与直线 axy 1 0 垂直,那么a的值.x1〔 2〕〔2021 年江西〕假定曲线y x 1 (α∈R)在点(1,2)处的切线经过坐标原点,那么α的值 .[学习小结 ]:1.对于简单的函数均可利用求导法那么与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要按照先化简,再求导的根来源那么。

导数的计算导学案

导数的计算导学案

导数的计算导学案导数是微积分中的一个重要概念,它描述了函数在其中一点的变化速率。

导数的计算方法非常重要,下面将介绍导数的计算导学案。

一、导数的定义根据导数的定义,函数f在点x处的导数可以通过极限的方法得到:f'(x) = lim(h->0) (f(x+h) - f(x))/h二、导数的基本计算方法根据导数的定义,我们可以利用一些基本的规则计算导数:1.常数的导数为0若c为常数,则d(c)/dx = 02.幂函数的导数对于幂函数y = x^n(n为正整数),导数为dy/dx = nx^(n-1)例如,y = x^2,则dy/dx = 2x3.指数函数的导数对于指数函数y = a^x(a>0且a≠1),导数为dy/dx = a^x * ln(a)例如,y = e^x,则dy/dx = e^x * ln(e) = e^x4.对数函数的导数对于对数函数y = log_a(x)(a>0且a≠1),导数为dy/dx =(1/ln(a)) * (1/x)特别地,自然对数函数y = ln(x)的导数为dy/dx = 1/x5.三角函数的导数对于三角函数,有以下导数公式:sin(x)的导数为cos(x)cos(x)的导数为-sin(x)tan(x)的导数为sec^2(x)cot(x)的导数为-csc^2(x)sec(x)的导数为sec(x)tan(x)csc(x)的导数为-csc(x)cot(x)6.反三角函数的导数对于反三角函数,有以下导数公式:arcsin(x)的导数为1/√(1-x^2)arccos(x)的导数为-1/√(1-x^2)arctan(x)的导数为1/(1+x^2)7.速度与加速度若y表示物体的位移,t表示时间,则速度v的导数为dy/dt,加速度a的导数为d^2y/dt^2三、导数的基本运算法则导数具有一些基本的运算法则,例如和差法则、积法则和商法则等,它们可以辅助我们计算复合函数的导数。

导数(1)导学案

导数(1)导学案

课题:导数的概念及几何意义复习【学习目标】 (1)理解导数的几何意义;熟记常见基本初等函数的导数公式和掌握两个函数和、差、积、商的求导法则;(2)会求简单函数的导数.会求函数的切线方程【重点难点】会求简单函数的导数.会求函数的切线方程【使用说明及学法指导】结合课本使用导学案,复习本节课的知识点,重要的公式法则和题型所对应的解题方法规律;先独立做并记录好疑难点,在课堂上针对性的学习。

【知识链接】1、 定义:设函数)(y x f =在区间()b a ,上有定义,),,(0b a x ∈当x ∆无限趋近于0时比值 xx f x x f x y ∆-∆+=∆∆)()(00无限趋近于一个常数A ,则称)(x f 在点0x x =处可导,并称该常数A 为函数)(x f 在点0x x =处的导数,记作)(0x f '。

2、 若)(x f 对于区间()b a ,内的任一点都可导,则)(x f 在各点的导数也随着自变量x 的函数,该函数称为)(x f 的导函数,记作)(x f '。

注意)(x f '与)(0x f '是不同的概念:)(0x f '是一个常数,)(x f '是一个函数;)(0x f '是)(x f '在0x x =处的函数值复习1:导数的几何意义是:曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 问题:导数的物理意义是:复习2:常见函数的导数公式: 幂函数:=')(αx (α为常数) 指数函数:=')(x a (a >0,且1≠a ) 特例:=')(x e 对数函数:=')(log x a (a >0,且1≠a ) 特例:=')(x ln 正弦函数:=')(sin x 余弦函数:=')(cos x 复习3[()()]f x g x '±= [()()]f x g x '=()[]()f xg x '=【预习案】1:根据常见函数的导数公式计算下列导数(1)6y x = (2)y =(3)21y x = (4)y = 2求函数323y x x =-+的导数.3(1)32log y x x =+; (2)n xy x e =; (3)31sin x y x-=4 求下列函数的导数:(1)2log y x =; (2)2x y e =;(3)522354y x x x =-+-; (4)3cos 4sin y x x =-. 5.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )A .(1,0)B .(2,8)C .(1,0)和(1,4)--D .(2,8)和(1,4)--6.函数y =ax 2+1的图象与直线y =x 相切,则a =( )A. 18B. 41C. 21 D. 1 7.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足( )A .()f x =()g xB .()f x -()g x 为常数函数C .()f x =()0g x =D .()f x +()g x 为常数函数8、函数()sin ln f x x x =+的导函数()f x '=9、一物体的运动方程是21s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在3t =时的瞬时速度为_____10、曲线y =x 3-23 x 2-3x +1在x =1处的切线的倾斜角为 11、 如图,函数f (x )的图像是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f (f (0))= ;函数f (x )在x =3处的导数f ′(3)= .12、已知曲线x x y ln 3212-=的一条切线的斜率为2,则切点的横坐标为 . 13、曲线x x x f ln )(=在点1=x 处的切线方程为 14、设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a15、曲线x x y +=331在点)34,1(处的切线与坐标轴围成的三角形面积为 16、已知函数)(x f y =的图像在点))1(,1(f 处的切线方程是012=+-y x ,则)1(2)1(f f '+的值是 17、在曲线106323-++=x x x y 的切线中,斜率最小的切线方程为【探究案】例1.下列函数的导数:①2(1)(231)y x x x =++- ②y ③()(cos sin )x f x e x x =⋅+例2. 如果曲线103-+=x x y 的某一切线与直线34+=x y 平行,求切点坐标与切线方程.变题:已知函数f (x )=a ln x x +1+b x,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0. 求a ,b 的值;拓展1已知两曲线ax x y +=3和c bx x y ++=2都经过点P (1,2),且在点P 处有公切线,试求a,b,c 值。

导数的实际应用导学案

导数的实际应用导学案

主备人: 审核: 包科领导: 年级组长: 使用时间:3.2.1实际问题中导数的意义【学习目标】1. 结合生活中求利润最大、用料最省、效率最高等优化问题,对学生进行函数思想和方法的培养.2. 进一步培养发散思维能力和逐步形成运用导数知识分析为题和解决实际问题的能力.3. 提高用导数知识解决实际问题的思想方法和意识. 【学习重点】正确理解题意,确定适当的函数模型,用导数工具处理. 【学习难点】正确理解题意,确定适当的函数模型. 【使用说明与学法指导】1.通过阅读教材,自主学习,思考,交流,讨论和概括,完成本节课的学习目标。

2.用红笔勾勒出疑点,合作学习后寻求解决方案。

3.带*号的为选做题。

【自主探究】1.生活中经常遇到求_____________、_____________、_____________等问题,这些问题通常称为优化问题.2.利用导数解决优化问题的实质是____________________________. 3.解决优化问题的解题步骤是: (1)____________________________; (2)____________________________; (3)____________________________; (4)____________________________.【合作探究】1.某公司的盈利y (元)和时间x (天)的函数关系是)(x f y =,且1)100(-='f ,这个数据说明在100天时 ( ))(A 公司已经亏损. )(B 公司还在盈利只是盈利在逐渐减少.)(C 公司的盈利在增加. )(D 公司盈利在逐渐减少.2.函数2sin )(x x x f -=,则函数在1=x 时的瞬时变化率是( ) 21cos )(-A . 21sin )(-B . 21sin )(--C . 21cos )(+D .3.某人做功和时间的关系是t t W 223+=,则在2=t 时的瞬时功率是_____________.4.设一质点的位置(单位:m )和时间(单位:s )的关系是tt t S 3)(3+=,(1)求当t 从1s 到3s 时,位移S 关于t 的平均变化率,并解释它的实际意义; (2)求)3(S ',并解释它的实际意义. 5.用长为90㎝,宽为48㎝的长方形铁皮做一个无盖的容器,先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成,问该容器的高为多少时,容器的容积最大?最大容积是多少? 【巩固提高】1.设底为正三角形的直棱柱的体积为V ,那么其表面积最小时,底面边长为( )3.V A 32.V B 34.V C 32.V D2.在半径为R 的圆内,作内接等腰三角形,当底边上高为_____________时它的面积最大. ★3.已知二次函数c bx ax x f ++=2)(的导数为)(x f ',0)0(>'f ,对于任意实数x ,有0)(≥x f ,则)0()1(f f '的最小值为 ( ) A .3 B .25 C .2 D .234.一列火车在平直的铁轨上匀速行驶,由于遇到紧急情况,火车紧急刹车至停止,其位移和时间关系是)1ln(5525)(2++-=t tt t S (单位:s m ,),求: (1)从开始紧急刹车至火车完全停止所经过的时间;(2)紧急刹车后火车运行的路程比正常运行的路程少了多少米?★ 5.建造一栋面积为x ㎡的房屋需要成本y 万元,y 是x 的函数:3.01010)(++==x x x f y .(1) 当x 从100变到120时,建筑成本y 关于建筑面积x 的平均变化率是多少? 它代表什么实际意义?(2)求)100(f '并解释它的实际意义.。

高中数学《导数的概念》教案导学案

高中数学《导数的概念》教案导学案

导数的概念教学目标与要求:理解导数的概念并会运用概念求导数。

教学重点:导数的概念以及求导数 教学难点:导数的概念 教学过程: 一、导入新课:上节我们讨论了瞬时速度、切线的斜率和边际成本。

虽然它们的实际意义不同,但从函数角度来看,却是相同的,都是研究函数的增量与自变量的增量的比的极限。

由此我们引出下面导数的概念。

二、新授课:1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数)(x f Y =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比x y ∆∆(也叫函数的平均变化率)有极限即xy ∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/注:1.函数应在点0x 的附近有定义,否则导数不存在。

2.在定义导数的极限式中,x ∆趋近于0可正、可负、但不为0,而y ∆可能为0。

3.xy∆∆是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ∆+∆+)的割线斜率。

4.导数xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化的快慢程度,它的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率。

因此,如果)(x f y =在点0x可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为))(()(00/0x x x f x f y -=-。

5.导数是一个局部概念,它只与函数)(x f y =在0x 及其附近的函数值有关,与x ∆无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.1 变化率与导数(1)学习目标1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景; 2.会求函数在某一点附近的平均变化率;学习过程一、新课导学问题1:气球膨胀率,求平均膨胀率吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象?问题2:高台跳水在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t (单位:秒)存在函数关系h(t)=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?新知:平均变化率:_______________=_______试试:设()y f x =,1x 是数轴上的一个定点,在数轴x 上另取一点2x ,1x 与2x 的差记为x ∆,即x ∆= 或者2x = ,x ∆就表示从1x 到2x 的变化量或增量,相应地,函数的变化量或增量记为y ∆,即y ∆= ;如果它们的比值yx ∆∆,则上式就表示为 ,此比值就称为平均变化率.反思:所谓平均变化率也就是 的增量与 的增量的比值.※ 典型例题例1已知函数2()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,1.1]; (2)[1,2]变式:已知函数2()f x x x =-+的图象上一点(1,2)--及邻近一点(1,2)x y -+∆-+∆,则yx∆∆=小结1.函数()f x 的平均变化率是2.求函数()f x 的平均变化率的步骤:(1)求函数值的增量 (2)计算平均变化率※ 学习探究二问题3:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?新知:1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度. 2.导数的概念从函数y =f (x )在x =x 0处的瞬时变化率是:0000()()lim limx x f x x f x yxx ∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即0000()()()limx f x x f x f x x∆→+∆-'=∆说明:00000 1. ()2. ()3. ()4. f x x x f x x f x ''∆'与的值有关.不同的 ,其导数值一般也不相同.与的具体取值无关。

可以不存在。

瞬时变化率与导数是的两个名称.同一概念※ 典型例题f(x)=3x+5, 2'例2求f ():)()31,2.s s t t t =+= 练习 位移s(t)(单位:m)与时间t(单位的关系为: 求时的瞬时速度v例3 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热. 如果在第xh 时,原油的温度(单位:0c )为2()715(08)f x x x x =-+≤≤. 计算第2h 和第6h时,原油温度的瞬时变化率,并说明它们的意义.小结利用导数的定义求导,步骤为:第一步,求函数的增量00()()y f x x f x ∆=+∆-;第二步:求平均变化率0()f x x y x x+∆∆=∆∆; 第三步:取极限得导数00()lim x yf x x∆→∆'=∆.※ 当堂检测(时量:5分钟 满分:10分)计分:1. 21y x =+在(1,2)内的平均变化率为( ) A .3 B .2 C .1 D .02. 设函数()y f x =,当自变量x 由0x 改变到0x x +∆时,函数的改变量y ∆为( )A .0()f x x +∆B .0()f x x +∆C .0()f x x ∆D .00()()f x x f x +∆- 3. 质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( ) A .6t +∆ B .96t t+∆+∆ C .3t +∆ D .9t +∆4. 223y x x =-+在2x =附近的平均变化率是____5. 一直线运动的物体,从时间t 到t t +∆时,物体的位移为s ∆,那么0lim t s t∆→∆∆为( )A.从时间t 到t t +∆时,物体的平均速度; B.在t 时刻时该物体的瞬时速度; C.当时间为t ∆时物体的速度; D.从时间t 到t t +∆时物体的平均速度6. 2y x =在 x =1处的导数为( ) A .2x B .2 C .2x +∆ D .17. 在0000()()()lim x f x x f x f x x∆→+∆-'=∆中,x ∆不可能( )A .大于0B .小于0C .等于0D .大于0或小于0 8.如果质点A 按规律23s t =运动,则在3t =时的瞬时速度为9. 若0()2f x '=-,则0001[]()2lim k f x k f x k→--等于课后作业1. 国家环保局对长期超标排污,污染严重而未进行治理的单位,规定出一定期限,强令在此期限内完成排污治理. 下图是国家环保局在规定的排污达标日期前,对甲、乙两家企业连续检测的结果(W 表示排污量),哪个企业治理得比较好?为什么?2. 一质量为3kg 的物体作直线运动,设运动距离s(单位:cm)与时间(单位:s )的关系可用函数2()1s t t =+表示,并且物体的动能212U mv =. 求物体开始运动后第5s 时的动能.1. 的变化情况.2.已知函数()f x 的图象,试画出其导函数()f x '图象的大致形状.§3.2.1几个常用函数导数学习目标1.掌握四个公式,理解公式的证明过程;2.学会利用公式,求一些函数的导数;3.理解变化率的概念,解决一些物理上的简单问题. 学习过程一、课前准备(预习教材88~89,找出疑惑之处)复习1:导数的几何意义是:曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为复习2:求函数)(x f y =的导数的一般方法: (1)求函数的改变量y ∆=(2)求平均变化率yx∆=∆(3)取极限,得导数/y =()f x '=xy x ∆∆→∆0lim=二、新课导学 ※ 学习探究探究任务一:函数()y f x c ==的导数. 问题:如何求函数()y f x c ==的导数新知:0y '=表示函数y c =图象上每一点处的切线斜率为 .若y c =表示路程关于时间的函数,则y '= ,可以解释为 即一直处于静止状态.试试: 求函数()y f x x ==的导数反思:1y '=表示函数y x =图象上每一点处的切线斜率为 .若y x =表示路程关于时间的函数,则y '= ,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4y x y x y x ===的图象,并根据导数定义,求它们的导数.(1)从图象上看,它们的导数分别表示什么?(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢? (3)函数(0)y kx k =≠增(减)的快慢与什么有关?※ 典型例题例1 求函数1()y f x x==的导数变式: 求函数2()y f x x ==的导数小结:利用定义求导法是最基本的方法,必须熟记求导的三个步骤:作差,求商,取极限.例2 画出函数1yx=的图象.根据图象,描述它的变化情况,并求出曲线在点(1,1)处的切线方程.变式1:求出曲线在点(1,2)处的切线方程.变式2:求过曲线上点(1,1)且与过这点的切线垂直的直线方程.小结:利用导数求切线方程时,一定要判断所给点是否为切点,它们的求法是不同的.※动手试试练1. 求曲线221y x=-的斜率等于4的切线方程. (理科用)练2.求函数()y f x==三、总结提升※学习小结1. 利用定义求导法是最基本的方法,必须熟记求导的三个步骤:,, .2. 利用导数求切线方程时,一定要判断所给点是否为切点,一定要记住它们的求法是不同的.※知识拓展微积分的诞生具有划时代的意义,是数学史上的分水岭和转折点.关于微积分的地位,恩格斯是这样评价的:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发现那样被看作人类精神.”※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1.()0f x=的导数是()A.0 B.1 C.不存在D.不确定2.已知2()f x x=,则(3)f'=()A.0 B.2x C.6 D.93. 在曲线2y x=上的切线的倾斜角为4π的点为()A.(0,0)B.(2,4)C.11(,)416D.11(,)24 4. 过曲线1yx=上点(1,1)且与过这点的切线平行的直线方程是5. 物体的运动方程为3s t=,则物体在1t=时的速度为,在4t=时的速度为.1. 已知圆面积2S rπ=,根据导数定义求()S r'.2. 氡气是一种由地表自然散发的无味的放射性气体.如果最初有500克氡气,那么t 天后,氡气的剩余量为()5000.834t A t =⨯,问氡气的散发速度是多少?§3.2.2基本初等函数的导数公式及导数的运算法则1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数;2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数.9092 复习1:常见函数的导数公式:0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -=; ()ln (0)xxaa a a '=>;()xxee '=;1()(0,ln log a x a x a '=>且1)a ≠;1(ln )x x '=.复习2:根据常见函数的导数公式计算下列导数(1)6y x =(2)y = (3)21y x =(4)y =二、新课导学 ※ 学习探究探究任务:两个函数的和(或差)积商的导数新知:[()()]()()f x g x f x g x '''±=±[()()]()()()()f x g x f x g x f x g x '''=+g2()()()()()[]()[()]f x f x g x f x g x g x g x ''-'=试试:根据基本初等函数的导数公式和导数运算法则,求函数323y x x =-+的导数.※ 典型例题例1 假设某国家在20年期间的年均通贷膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?变式:如果上式中某种商品的05p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少?例2 日常生活中的饮用水通常是经过净化的. 随着水纯净度的提高,所需净化费用不断增加. 已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<-. 求净化到下列纯净度时,所需净化费用的瞬时变化率: (1)90%; (2)98%.小结:函数在某点处导数的大小表示函数在此点附近变化的快慢.※ 动手试试练1. 求下列函数的导数:(1)2log y x =; (2)2x y e =; (3)522354y x x x =-+-; (4)3cos 4sin y x x =-.练2. 求下列函数的导数:(1)32log y x x =+;(2)n xy x e =;(3)31sin x y x-=三、总结提升 ※ 学习小结1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.※ 知识拓展1.复合函数的导数:设函数()u g x =在点x 处有导数()xu g x ''=,函数y =f (u )在点x 的对应点u 处有导数()u y f u ''=,则复合函数(())y f g x =在点x处也有导数,且x u x u y y '''⋅= 2.复合函数求导的基本步骤是:分解——求导——相乘——回代.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 函数1y x x =+的导数是( )A .211x -B .11x -C .211x +D .11x+2. 函数sin (cos 1)y x x =+的导数是( )A .cos2cos x x -B .cos2sin x x +C .cos2cos x x +D .2cos cos x x +3. cos xy x =的导数是( )A .2sin xx- B .sin x -C .2sin cos x x x x +-D .2cos cos x x x x +-4.函数2()138f x x =-+,且0()4f x '=, 则0x =5.曲线sin xy x=在点(,0)M π处的切线方程为1.求描述气球膨胀状态的函数()r V =.2. 已知函数ln y x x =. (1)求这个函数的导数;(2)求这个函数在点1x =处的切线方程.理: §3.2.2 复合函数求导复合函数的分解,求复合函数的导数.一、课前准备(预习教材P 16~ P 17,找出疑惑之处) 复习1:求)4(23-=x x y 的导数复习2:求函数2(23)y x =+的导数二、新课导学 ※ 学习探究探究任务一:复合函数的求导法则 问题:求(sin 2)x '=?解答:由于(sin )cos x x '=,故(sin 2)cos2x x '= 这个解答正确吗?新知:一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作:(())y f g x =复合函数的求导法则:两个可导函数复合而成的复合函数的导数等于函数对中间变量的导数乘上中间变量对自变量的导数.用公式表示为:x u x y y u '''=g ,其中u 为中间变量.即: y 对x 的导数等于y 对u 的导数与u 对x的导数的乘积.试试:(sin 2)x '=反思:求复合函数的导数,关键在于分析清楚函数的复合关系,选好中间变量。

相关文档
最新文档