3.3.2简单的线性规划问题(2)

合集下载

人教版高中数学必修5第三章不等式 3.3.2 简单的线性规划问题

人教版高中数学必修5第三章不等式 3.3.2 简单的线性规划问题

钢板张数最少?

A规格 B规格 C规格 张数
析: 第一种钢板
2
1
1
x
列 第二种钢板
1
2
3
y
表 成品块数 2x y x 2y x 3y
解:设需截第一种钢板x张,第二种钢板y张,共需截
这两种钢板共z张,则
2x y 15,

x x

2y 3y

18, 27,
x 0,
分析:对应无数个点,即直线与边界线重合时. 作出可行域,结合图形,看直线 l : y ax z
与哪条边界线重合时,可取得最大值.
解:当直线 l : y ax z 与边界
线重合时,有无数个点,
使函数值取得最大值,
此时有 kl kAC .
3
3
k AC


5
, kl

a


ห้องสมุดไป่ตู้. 5
问题的最优解.
(1)在上述问题中,如果每生产一件甲产品
获利3万元,每生产一件乙产品获利2万元,
又当如何安排生产才能获得最大利润?
(2)由上述过程,你能得出最优解与可行域之间的关 系吗?
设生产甲产品x件乙产品y件时,工厂获得的利润为
z,则z=3x+2y.
把z 3x 2 y变形为y 3 x z ,这是斜率为 3 ,
利用平移的方法找出与可行域有公共点 且纵截距最大或最小的直线;
(3)求:通过解方程组求出最优解; (4)答:作出答案. 最优解一般在可行域的顶点处取得.
x 4 y 3, 例2 已知x, y满足 3x 5 y 25,设z ax y(a 0),

课件8:3.3.2 简单的线性规划问题

课件8:3.3.2 简单的线性规划问题

解:设投资人分别用 x 万元、y 万元投资甲、乙两个项目,
x+y≤10, 由题意知x0≥.30x,+0.1y≤1.8,
y≥0.
目标函数 z=x+0.5y.
上述不等式组表示的平面区域如图所示,阴影部分(含边界)即
可行域.
作直线 l0:x+0.5y=0,并作平行于直线 l0 的一组直线 x+0.5y =z,z∈R,与可行域相交,其中有一条直线经过可行域上的 M 点且与直线 x+0.5y=0 的距离最大,这里 M 点是直线 x+y= 10 和 0.3x+0.1y=1.8 的交点. 解方程组x0+.3xy+=01.01,y=1.8, 得xy==46,,
解:设此工厂应生产甲、乙两种产品 x kg、y kg,利润 z 万元,
9x+4y≤360, 4x+5y≤200, 则依题意可得约束条件:3x+10y≤300, x≥0, y≥0.
利润目标函数为 z=7x+12y.
作出不等式组所表示的平面区域,即可行域(如下图).
作直线l:7x+12y=0,把直线l向右上方平移至l1位置时,直 线l经过可行域上的点M时,此时z=7x+12y取最大值.
【答案】6
9 5
题型三 线性规划的实际应用 例3:某投资人打算投资甲、乙两个项目,根据预测,甲、乙 项目可能的最大盈利率分别为100%和50%,可能的最大亏损 率分别为30%和10%,投资人计划投资金额不超过10万元,要 求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两 个项目各投资多少万元,才能使可能的盈利最大?
解方程组x7+x+2y1=0y3=,17, 得 M(1,1). 故当 x=1,y=1 时,zmin=8.
2x+y≥4, 变式训练 1:设 x,y 满足x-y≥-1, 则 z=x+y( )

线性规划2(用)

线性规划2(用)
由图可以看出,当直线经过可行域上的点M时, 截距2z最大,即z最大。 容易求得M点的坐标为 (2,2),则Zmax=3
y
故生产甲种、乙种肥料各 2车皮,能够产生最大利润, 最大利润为3万元。
M x
o
例题分析
例2 要将两种大小不同规格的钢板截成A、B、C三种规格, 每张钢板可同时截得三种规格的小钢板的块数如下表所示 :
3
(x,y)叫做可行解。 由所有可行解组成 可行解 的集合叫做可行域。
o
4
8
使目标函数取得最大值或最小值的可行解叫 做这个问题的最优解。
x
例1、一个化肥厂生产甲、乙两种混合肥料,生产1车 皮(火车的货用车厢称为车皮)甲种肥料的主要原料是 磷酸盐4t、硝酸盐18t;生产1车皮乙种肥料需要的主 要原料是磷酸盐1t、硝酸盐15t。现库存磷酸盐10t、 硝酸盐66t,在此基础上生产这两种混合肥料。列出满 足生产条件的数学关系式,并画出相应的平面区域。 并计算生产甲、乙两种肥料各多少车皮,能够产生最 大的利润? 解:设x、y分别为计划生产甲、乙两种混合 肥料的车皮数,于是满足以下条件: y
1.若区域“顶点”处恰好为整点,那么它就是最优解;
(在包括边界的情况下) 2.若区域“顶点”不是整点或不包括边界时,应先求出 该点坐标,并计算目标函数值Z,然后在可行域内适当 放缩目标函数值,使它为整数,且与Z最接近,在这条 对应的直线中,取可行域内整点,如果没有整点,继续 放缩,直至取到整点为止。 3.在可行域内找整数解,一般采用平移找解法,即打网 格法、找整点、平移直线、找出整数最优解
解线性规划应用问题的一般步骤:
1)理清题意,列出表格: 2)设好变元并列出不等式组和目标函数 3)由二元一次不等式表示的平面区域作出可行域; 4)在可行域内求目标函数的最优解 5)还原成实际问题 (准确作图,准确计算)

人教版高中数学必修5第三章不等式《3.3.2 简单的线性规划问题》教学PPT

人教版高中数学必修5第三章不等式《3.3.2 简单的线性规划问题》教学PPT
在线性约束条件下,求目标函数最小值.
思考5:作可行域,使目标函数取最小
值的最优解是什么?目标函数的最小值
为多少? 28x+21y=0
7x+14y=6
y
A最最优小解值1(671.,
4 7
),
7x 7 x

7y 5 14 y 6
14x 7 y 6
x 0, y 0
x=4
思考3:图中阴影区域内任意一点的坐
标都代表一种生产安排吗?
y
x 2y 8
0 x 4 0 y 3 x N , y N O
y=3 x
x+2y=8 x=4
阴影区域内的整点(坐标为整数的点) 代表所有可能的日生产安排.
思考4:若生产一件甲产品获利2万元, 生产一件乙产品获利3万元,设生产甲、 乙两种产品的总利润为z元,那么z与x、 y的关系是什么?
3.3.2 简单的线性规划问题
第一课时
问题提出
1.“直线定界,特殊点定域”是画二元 一次不等式表示的平面区域的操作要点, 怎样画二元一次不等式组表示的平面区 域?
2.在现实生产、生活中,经常会遇到资 源利用、人力调配、生产安排等问题, 如何利用数学知识、方法解决这些问题, 是我们需要研究的课题.
探究(一):线性规划的实例分析 t
5730
【背景材料】某工厂用A、B两种配件 生产甲、乙两种产品,每生产一件甲 产品使用4个A配件耗时1h;每生产一 件乙产品使用4个B配件耗时2h.该厂每 天最多可从配件厂获得16个A配件和12 个B配件,每天工作时间按8h计算.
思考1:设每天分别生产甲、乙两种产 品x、y件,则该厂所有可能的日生产 安排应满足的基本条件是什么?
2x y 15

3.3.2简单的线性规划问题

3.3.2简单的线性规划问题

解决问题 (1)用不等式组表示问题中的限制条件: 用不等式组表示问题中的限制条件: 设甲、乙两种产 品分别生产x 品分别生产x、y 件,由已知条件 可得二元一次不 等式组:
x &≥0 y≥0
(2)画出不等式组所表示的平面区域: 画出不等式组所表示的平面区域:
解:设需要截第一种钢板x张,第二种 设需要截第一种钢板x 钢板y 钢板y张,则目标函数为z=x+y 则目标函数为z=x+y
2x+y≧ 15 ≧ x+2y ≧ 18 x+3y ≧ 27 x ≥0,x∈N ∈ y ≥0,y∈N ∈
18 16 14 12 10 8 6 4 2
将目标函数化为: 将目标函数化为: y=-x+z,显然 越少, 显然z y=-x+z,显然z越少, 钢板数和越少。 钢板数和越少。
【教学重点】 教学重点】
利用图解法求得线性规划问题的最优解; 利用图解法求得线性规划问题的最优解;
【教学难点】 教学难点】
把实际问题转化成线性规划问题,并给出解答, 把实际问题转化成线性规划问题,并给出解答,解决难点的 关键是根据实际问题中的已知条件,找出约束条件和目标函数, 关键是根据实际问题中的已知条件,找出约束条件和目标函数, 利用图解法求得最优解。 利用图解法求得最优解。
y
M
o
3/7
5/7
6/7 x
M点是两条直线的交点,解方程组 点是两条直线的交点, 点是两条直线的交点
7 x + 7 y = 5 14 x + 7 y = 6
所以z 所以 min=28x+21y=16 + =
x 点的坐标为: 得M点的坐标为: 点的坐标为 y

3.3.2 简单的线性规划问题 课件

3.3.2 简单的线性规划问题 课件
3.3.2
简单的线性规划问题
线性规划问题的有关概念: 1.线性约束条件:不等式组是一组对变量x、y的约束条件, 这组约束条件都是关于x、y的 一次不等式 .
2.目标函数:欲达到最大值或最小值所涉及的变量x、y的解
析式,
线性目标函数是x、y的
一次
解析式.
条 件
3.线性规划问题:求线性目标函数在
线性约束
由约束条件画出可行域(如图6所示 ),为矩形 ABCD(包
括边界).点C的坐标为(3,1),z最大时,即平移y=-ax时使直线在
y轴上的截距最大, ∴-a<kCD,即-a<-1,∴a>1.
[答案]
a>1
[评析 ]
这是一道线性规划的逆向思维问题.解答此类问题
必须要明确线性目标函数的最值一般在可行域的顶点或边界取得, 运用数形结合的思想方法求解.
[解] 设隔出大房间 x 间,小房间 y 间,获得收 益为 z 元,则
18x+15y≤180, 1000x+600y≤8000, x≥0,y≥0,且x,y∈N, 6x+5y≤60,① 即5x+3y≤40,② x≥0,y≥0,且x,y∈N.
目标函数为 z=200x+150y, 画出可行域如右图 8 所示.
解析:如图3所示.
作出可行域,作直
线 l0: x+ y= 0,平移 l0, 当 l0 过点 A(2,0) 时, z 有最 小值2,无最大值. 答案:B
x-y+5≥0, [例 2] 设 x,y 满足条件x+y≥0, x≤3.
(1)求 u=x2+y2 的最大值与最小值; y (2)求 v= 的最大值与最小值. x-5
(1)求目标函数 z=2x+3y 的最小值与最大值; (2)求目标函数 z=3x-y 的最小值与最大值;

3.3.2简单线性规划(1_2)--上课用

3.3.2简单线性规划(1_2)--上课用
2、画出Z=2x+y对应的 方程0=2x+y的图像
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,

一元二次不等式所表示的平面区域及求最值问题

一元二次不等式所表示的平面区域及求最值问题

3.3.2(二)
x+2y-5>0, 2.设实数 x,y 满足不等式组2x+y-7>0,
x≥0,y≥0
且 x,y 为整
数.则 3x+4y 的最小值是
(B )
A.14
B.16
C.17
D.19
本 讲
解析 作出可行域,如图中阴影部分所示,




点 A(3,1)不在可行域内,利用网格易得点(4,1)符合条件,故 3x+4y 的最小值是 3×4+4×1=16.
x∈Z,y∈Z
时,求 z=5x+
4y 的最大值及最优解.
本 讲 栏 目 开
解 若不考虑 x∈Z,y∈Z,则当直线经过点 A95,2130时, z=1815,∵x∈Z,y∈Z,∴z∈Z.

令 z=18,则 5x+4y=18.
∵4y 为偶数,18 为偶数,∴5x 为偶数,∴x 为偶数. 结合可行域可知 x=2,从而 y=2. 经检验(2,2)在可行域内.
练一练·当堂检测、目标达成落实处
3.3.2(二)
3.在“家电下乡”活动中,某厂要将 100 台洗衣机运往邻近
的乡镇.现有 4 辆甲型货车和 8 辆乙型货车可供使用.每
辆甲型货车运输费用 400 元,可装洗衣机 20 台;每辆乙
本 讲
型货车运输费用 300 元,可装洗衣机 10 台.若每辆车至
栏 目
故当 x=20,y=24 时,Smax=7×20+12×24=428(万元)
答案 20 24
研一研·问题探究、课堂更高效
3.3.2(二)
例 2 要将两种大小不同的钢板截成 A、B、C 三种规格,每张 钢板可同时截得三种规格的小钢板的块数如下表所示:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

zmax = 2,
y2 (2)求z = 的取值范围. x 1
zmin = 5 . 5
O
A
2
x
kBN 1, k AN 2.
z ≥ 1 ,或 z ≤ 2
题型三 线性规划的实际应用问题
例 某公司租赁甲、乙两种设备生产A,B两类产
品,甲种设备每天能生产A类产品5件和B类产 品10件,乙种设备每天能生产A类产品6件和B 类产品20件.已知设备甲每天的租赁费为200 元,设备乙每天的租赁费为300元,现该公司 至少要生产A类产品50件,B类产品140件, 所需租赁费最少为多少元.
y-b y ②x表示点(x,y)与原点(0,0)连线的斜率, 表示点(x,y)与点(a,b)连线 x-a 的斜率.
y)与点(a,b)的距离;
x 2 y 2 ≥ 0, 练习:已知x、y满足条件 x ≥ 0, y ≥ 0. 1
y B
N M
(1)求 ( x 1)2 ( y 1)2 的最值;
• 由题目可获取如下信息:甲、乙两种设 备生产A,B两类产品的情况如表所示: 产品 A类产品 B类产品 租赁费 (件)(≥50) (件)(≥140) (元 )
设备 5 10 200 甲设备 6 20 300 • 乙设备 根据题意列出约束条件,建立目标函数 求解.
[解题过程] 设甲种设备需要生产 x 天,乙种设备需要生产 y 天,该 公司所需租赁费为 z 元,则 z=200x+300y,
2 2 PQ2 = (0 - 1) + (2 - 1) =2, max
PQ2 min=(
|1-1+1| 2 1 2 2 ) =2 , 1 +-1
1 3 ∴zmax=2+1=3,zmin=2+1=2.
点评
当目标函数是非线性的函数时,常利用目标函数的几何意义 来解题,
常见代数式的几何意义: ① x2+y2表示点(x,y)与原点(0,0)的距离, x-a2+y-b2表示点(x,

交点 A(4,5)时, 目标函数 z=200x+300y 取到最小值为 2 300 元,故所需租
(1)审题:仔细阅读材料,抓住关键,准确理解题意,明确有
哪些限制条件,借助表格或图形理清变量之间的关系.
(2)设元:设问题中起关键作用(或关联较多)的量为未知量x,y, 并列出相应的不等式组和目标函数. (3)作图:准确作出可行域,平移找点(最优解). (4)求解:代入目标函数求解(最大值或最小值). (5)检验:根据结果,检验反馈.
题型二 求非线性目标函数的最值
x-y+1≤0, 例 4 实数 x,y 满足x≥0, y≤2.
y (1) 若 z=x,求 z 的最大值和最小值,并求 z 的取值范围;
(2)若z=x2+y2,求z的最大值与最小值,并求z的取值范围.
引申探究
y-1 1.若 z= ,求 z 的取值范围. x-1
y-1 z= 可以看作过点 P(1,1)及(x,y)两点的直线的斜率. x-1
∴z的取值范围是(-∞,0].
2. 若 z = x2 + y2 - 2x - 2y + 3. 求 z 的最大值、 最小值 z=x2+.y2-2x-2y+3 =(x-1)2+(y-1)2+1,
而(x-1)2+(y-1)2 表示点 P(1,1)与 Q(x,y)的距离的平方 PQ2,
5x+6y≥50 10x+20y≥140 则满足的关系为 x≥0,y≥0 x,y∈N
6 x+ y≥10 5 x+2y≥14 ,即 x≥0,y≥0 x,y∈N

作出不等式组表示的平面区域如图所示(整点),
6 x+5y=10 当 z=200x+300y 对应的直线过两直线 x+2y=14
相关文档
最新文档