高铁无线通信干扰检测及识别技术
基于Wi-Fi无线通信系统在高速铁路中的应用

应天线 之间的对 接提供 了良好的条件。当车厢 处于天线 阵列 中时,多普 勒频移规律便会发生 作用 ,使得无线通信保持顺 畅。因为智能天线 能够根据周 围的环境 自动 改变指 向,这样就使 得车厢里 的无线 网络覆盖 比较均匀 。
1 . 2 W i - F i 桥 接 以及 地 面 天 线 的 部 署
的记 录 是 每 小 时 4 8 6千 米 。在 高 速 铁 路 上 行 驶
保护 ,避免广播帧和组播帧被打 断。这样一来 , 就 使 得 靠 的 比较 近 的 无 线 网 桥 设 备 之 间 就 能 进 行数据 的传输 。举 个例 子,如果列车从左方开 过 来 ,W i . F i 连 接顺 序为 B R1 一 l 1 然 后 是 BRI 一 1 2 。同样 的一个 移动 I P v 4隧道会通 过外 部代 理F A1建立 。当车运 行到 B R1 — 1 3区域 时,车 载 MR可 以侦 听到 F A2及 F A1的移 动 I P v 4报 文 。之后 车载 MR通 过 向 F A2发 送一 个注 册
【 关键 词 】 高速铁 路 w i — F i 无 线 通 信 系统
生 ,并 且 利 用 了思 科 C a t a l y s t 2 9 6 0交 换 机 。 在 另 一 个 交 换 机 里 面 ,端 口会对 里 面 的 配 置 进 行
高速 铁 路区 别于 其他 一般 的铁路 ,就在
下的流程 进 行切 换:第 一步 ,扫 描可用 的无
线 网 桥 设 备 ;第 二 部 ,检 查 S S I D ( S e r v i c e S e t I d e n t i i f e r )和 密 码 并 丢 弃 无 效 的 密 码 匹 配 ;第 三 部 ,在 搜 索 结 果 中连 接 最 优 的无 线 网桥 ;第 五步 , 车载 B R发 送 使 用 子 网 接 入 协 议 ( S NAP )
浅析5G无线网络在高铁场景中的规划与优化

浅析5G无线网络在高铁场景中的规划与优化随着高铁的普及,如何在高速移动的列车上保证无线网络的稳定和快速是无线通信领域一个重要且具有挑战性的问题。
随着5G技术的逐渐成熟,5G无线网络在高铁场景中的规划与优化也成为了研究热点。
本文将从信道建模、频谱利用、网络覆盖和干扰管理等方面分析5G无线网络在高铁场景中的规划与优化。
首先,信道建模是5G无线网络在高铁场景中的重要一环。
信道建模可以分为几何模型和统计模型两类。
几何模型适用于线性射线,对于高铁场景中的曲线射线的建模则较为复杂。
统计模型是建立在实测数据的基础之上的,可以考虑到多径衰落等因素。
其次,频谱利用是5G无线网络在高铁场景中的另一个重要问题。
高铁场景中通信信道的动态性非常强,频谱利用将受到极大的挑战。
为了最大化频谱利用率,可以采用动态频谱分配机制和多用户中继机制。
动态频谱分配机制可以在列车高速移动的过程中及时调整频谱的分配,保证无线通信的稳定性。
多用户中继机制可以有效利用频谱资源,提高整个系统的频谱利用率。
第三,网络覆盖是5G无线网络在高铁场景中需要关注的一个重要问题。
网络覆盖的目标是在高铁行驶过程中,实现无缝的覆盖。
由于高铁的速度较快,移动速度大约在200~300km/h,可以采用虚拟天线阵列或空间多址技术,实现网络的扩展和延伸,从而保证网络的连续性。
同时,还可以采用高密度的小型基站覆盖高铁线路,从而提高整个网络的传输速率和连接质量。
最后,干扰管理也是5G无线网络在高铁场景中需要考虑的重要问题。
高铁场景中无线信号的干扰一般有源干扰和自我干扰两种类型。
为了有效降低干扰,可以采用功率控制技术和空间时分复用技术等。
功率控制技术可以使无线信号在传输过程中功率更加稳定,从而减少干扰。
空间时分复用技术则可以使多个用户共享同一频段,同时保证不会相互干扰。
综上所述,5G无线网络在高铁场景中的规划与优化需要从信道建模、频谱利用、网络覆盖和干扰管理等方面进行综合考虑,以确保无线网络在高速移动的列车上能够保持稳定和快速的连接。
无线通信抗干扰技术研究

无线通信抗干扰技术研究摘要:无线通信抗干扰技术一直是无线通信领域的关键技术之一。
本文主要介绍了当前广泛应用的抗干扰技术,如分集技术、频率跳转技术、码分多址技术和空分复用技术等,分析了各技术的优缺点并对其进行了比较,介绍了当前新兴的抗干扰技术,如虚拟天线技术、自适应阵列技术以及基于帧同步的识别技术等。
最后,阐述了未来抗干扰技术的发展趋势。
关键词:无线通信;抗干扰;分集技术;频率跳转技术;码分多址技术;空分复用技术;虚拟天线技术;自适应阵列技术;帧同步识别技术。
正文:无线通信是当今社会不可或缺的一种通信方式,但是在实际使用过程中,由于各种干扰导致通信质量下降以及通信效率降低,因此通过引入抗干扰技术来解决这些问题就尤为重要。
分集技术是一种常用的抗干扰技术,其原理是采用多个接收天线来接收相同的信号,通过信号处理技术取得较好的信号质量,并且利用多个接收路径之间的空间分离特性来提高系统的抗干扰能力。
频率跳转技术是一种对抗无线通信干扰的有效方法,其核心思想是使用信道空闲的短时间切换频率,从而达到在一定程度上减少接收信号干扰的目的。
码分多址技术则是通过将信息码按照一定规律变换后,在不同的频道上进行传输,实现多个用户同时传输和接收数据的目的,从而最大限度地利用频谱资源并提高系统抗干扰能力。
空分复用技术则是一种虚拟通信方式,其核心思想是将信号分成若干子载波,使不同子载波可以同时传输多个数据流,从而达到提高频谱效率和系统容量的目的,并且通过对空间信道进行分析,在空间上实现对干扰分离的目的。
随着通信技术的不断发展,新兴的抗干扰技术也层出不穷。
虚拟天线技术可以通过信号处理方法将单个天线的信号处理成多个虚拟天线,从而提高信道容量和抗干扰能力;自适应阵列技术则是通过自动调整接收天线的方向,使其接收到的信号干扰最小。
基于帧同步的识别技术可提供更可靠的干扰检测和估计,同时保证了系统的安全性和稳定性。
总之,未来抗干扰技术的发展趋势主要包括:更加智能化、高效化以及专业化。
城市轨道交通无线通信系统抗干扰技术

城市轨道交通无线通信系统抗干扰技术摘要:当前,社会大众出行的交通工具呈现出了多元化发展趋势。
其中,科学先进的通信技术在城市地铁运营活动中发挥着巨大的效能,且对于行车安全具有重要的促进作用。
鉴于此,本文对城市轨道交通无线通信抗干扰技术进行深入、并结合实际情况提出合理的优化建议,以期望通过此次研究推动我国的城市交通事业获得更为长久的发展。
关键词:轨道交通;无线通信;抗干扰;优化建议中图分类号:U239文献标识码:A引言城市发展也带来了巨大的交通压力,轨道交通能够有效缓解这一问题。
在轨道交通中积极应用无线通信技术,对于提升轨道交通的安全性能,稳定性,以及可靠性等诸多方面具有重要价值。
稳定可靠的通信技术可提升城市轨道交通运营安全性,且可提高城市轨道交通领域自动化程度,确保列车工作效率。
1无线通信系统的干扰源1.1复杂的信道环境无线信道与物理环境有着紧密联系。
列车运行的场景复杂多样,如隧道、高架、城市、郊区、山丘等多种地形环境,这些特殊通信场景往往会导致信号的深度衰落。
同时,障碍物,如过往的列车、布设在轨旁的隔音板、挡风板等也会引起信号的反射、衍射和散射,带来额外的路径损耗。
1.2高速的移动高速移动是轨道交通无线通信的另一个典型特征。
特别在高铁中,列车移动速度超过300km/h,甚至达到500km/h,无线信道呈现快速时变非平稳特性。
另外,列车高速移动也会产生较大的多普勒频移。
例如,当列车速度达450km/h,载波频率为2.6GHz时,最大多普勒频移可达1083Hz,很大程度上超出了当前无线通信系统可以处理的范围。
同时列车频繁移动在不同的物理环境,则会导致多径结构的快速变化,从而增加信道估计和多普勒频移估计的难度。
另外,列车的高速移动需要频繁的越区切换,造成掉话,严重的甚至会导致列控信息传输的中断。
1.3严重的干扰我国铁路移动通信系统GSM-R上行和下行分别使用885~889MHz和930~934MHz频段,该频段也是中国移动运营公众移动通信系统运营服务频段,二者按地域共用,可能存在严重的同频干扰。
中国铁路信号系统智能监测技术

中国铁路信号系统智能监测技术
随着科技的进步和高铁的快速发展,铁路信号系统的安全性和稳定性变得越来越重要。
为了实现对铁路信号系统的智能监测,中国铁路部门开始引入一系列先进的技术和设备。
本文将介绍中国铁路信号系统智能监测技术的相关内容。
中国铁路信号系统智能监测技术包括如下几个方面:故障诊断与预警、远程监控与管理、数据分析与处理等。
在故障诊断与预警方面,中国铁路部门采用了一系列先进的技术,例如智能传感器、
无线通信和物联网等。
通过将智能传感器安装在信号系统设备上,可以实时检测各种参数,例如温度、压力和震动等,以帮助监测设备的工作状态。
当设备出现故障或异常情况时,
智能传感器会发出警报信号,并通过无线通信传输给监控中心,以便及时进行处理和维
修。
在远程监控与管理方面,中国铁路部门通过建立完善的监控系统和网络,实现对信号
系统的远程监控和管理。
监控系统可以实时获取信号系统的运行状态和各种参数,例如设
备的工作温度、电压和电流等。
监控系统还可以通过远程存储和传输技术,将数据发送给
监控中心,以便进行分析和处理。
在数据分析与处理方面,中国铁路部门利用大数据和人工智能技术,对信号系统的运
行数据进行分析和处理。
通过对大量的运行数据进行模式识别和故障预测,可以实现对信
号系统的智能监测和预警。
当信号系统出现故障或异常情况时,智能监测系统可以自动发
出警报,并提供相关的故障诊断和处理建议,以帮助工作人员及时处理和修复故障。
射频识别定位技术在高速铁路动态检测中的应用

② 高频 ( H F , 频 率 范 围 3~3 0 MHz ) : 工 作 频 率 为
1 2 . 5 6 M Hz士7 标 签 优 缺 点 对 比
在 R F I D技 术 的术 语 中 , 有 时候 称 无 线 电频 率 的
收 稿 日期 : 2 O l 3 — 0 6 — 2 4 ; 修 回 日期 : 2 0 1 3 — 0 9 ・ 0 l 基 金项 目 : 国家“ 八六三” 计 划项 目( 2 0 1 1 A A 1 1 A 1 0 2 )
R F I D是 一种 通过 无 线 电信 号识 别 特 定 目标 并 读 写 相关数 据 的 自动识 别 技术 。R F I D具 有存 储量 大 、 可 读写、 穿 透力 强 、 识别距离远 、 识别速度快 、 使 用 寿 命 长、 环境 适应 性好 、 无需 识别 系统 与特定 目标 之间 建立
该 定位 方案进行 了试 验验 证 , 结果表 明单 点里程 定位 重复性 平 均达 到 0 . 3 7 n l , 定位精 度 达到 2 i n , 满足
高速 铁 路 基 础 设 施 检 测 定 位 需 求 。 关键 词 : R F I D 电子 标 签 里 程 定 位 中图分类 号 : U 2 1 2 . 2 4 6 ; U 2 3 8 文献标 识码 : A D O I : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 3 - 1 9 9 5 . 2 0 1 3 . 1 0 . 3 5
( 1 . 北京铁路局 北京高铁工务段 , 北京 1 0 0 0 7 0 ; 2 . 中 国铁 道 科 学 研 究 院 基 础设 施 检 测 研 究 所 , 北京 1 0 0 0 8 1 )
(已修订)现代铁路信号中的通信技术
现代铁路信号中的通信技术第一章1.说明现代铁路信号系统的组成?(2)车地移动通信技术●目前车地移动通信技术主要有:●基于应答器的点式地对车单向传输方式(铁路、城轨);●基于轨道电路的连续式地对车单向传输方式(铁路、城轨);●基于GSM-R的连续式地-车双向传输方式(高铁);●基于Wi-Fi的连续式地-车双向传输方式(城轨CBTC);●基于38G毫米波的连续式地-车双向传输方式(高速磁浮)。
(3)车载设备通信技术●目前车载设备采用的通信技术主要有异步串行通信、现场总线、列车通信网络等三种。
(4)安全通信技术●铁路信号系统的主要目标就是是保证列车运行安全,因此铁路信号系统中的所有设备都属于安全相关设备。
(一)双绞线●双绞线是由一对相互绝缘的金属导线绞合而成。
双绞线广泛用于市话中继线、局域网和控制系统通信网中。
(二)光导纤维(光纤)●光纤在进行通信时,首先在发送端经转换系统,将电信号转换成光信号,然后经光纤送至接收端,再经转换系统,将光信号转成电信号,完成整个通信过程。
(三)无线信道● 无线信道通过电磁波在空气中传播,比较常用的有超短波和微波通信、卫星通信等,超短波信道误码率一般小于10-4,微波信道和卫星通信误码率一般小于10-6。
(必考:填空)2.说明数据通信系统的组成?● 数据通信系统是通过数据电路将分布在远地的数据终端设备与计算机系统连接起来,实现数据传输、交换、存储和处理的系统。
每秒比特(位),以bit/s 或bps 表示。
(二)误码率● 误码率是衡量通信系统线路质量的一个重要参数。
● 其定义为:二进制符号在传输系统中被传错的概率,近似等于被传错的二进制符号数与所传二进制符号总数的比值,即:传输的总比特数接收的错误比特数误码率 e P(三)信道容量● 信道容量指信道能传输信息的最大能力,用单位时间内最大可传送的比特数表示。
● 模拟信道是一种连续信道,其信道容量可以根据香农(Shannon )公式计算。
浅析铁路新一代无线通信技术LTE-R的应用及发展
浅析铁路新一代无线通信技术LTE-R的应用及发展刘玥琛摘要:不断发展的无线通信技术在铁路领域的应用,将不断优化铁路运能,对促进中国经济全面可持续发展具有深远意义。
现有的GSM-R技术在抗干扰性、传输速率、容量和频谱限制、发展前景等方面均具有的局限性,本文对下一代国际先进且符合铁路运营规律的专用通信LTE-R 技术进行了研究,并对其性能、核心技术进行了详细分析。
综述了LTE-R技术目前的研究实践以及未来中国铁路经济的发展方向。
关键词:无线通信GSM-R LTE-R 局限MIMO OFDM 演进1 引言作为目前我国铁路移动通信的主要应用技术,GSM-R技术以3GPP标准制式为基础,凭借其良好的组呼、强插,位置寻址及功能寻址等特性,能够迅速准确的诊断、传输数据信息,进而承载了大量的数据业务和语音通信业务,在我国得到了良好的发展和完善。
但是,随着全球经济一体化趋势的渐进和中国经济的强势崛起,高速铁路的发展也越来越迅速。
为了满足乘客对高质量、高带宽通信业务的需求,国际铁路联盟提出了将现有窄带铁路列控系统(GSM-R)向未来基于LTE的宽带铁路通信系统(LTE-R)平滑演进的方案。
[1]2 GSM-R的局限性分析虽然GSM-R技术在我国得到了快速的发展和应用,但是作为第二代移动通信技术,GSM-R系统的电路域数据业务仅为2 400~9600bit/s,分组域数据业务的速率也仅能达到一百多kbit/s,它的频谱利用率和承载的数据速率也较低。
这使得现有基于GSM-R的平台对承载视频监控、视频会议、铁路旅客移动信息服务等宽带业务的难度非常大。
[2]图1 GSM—R网络结构2.1 存在干扰问题由于GSM-R网络与公众电信网络共用900 MHz(E-GSM)频段,因此GSM-R网络容易受到网外电磁干扰进而影响服务质量,尤其对列控业务存在非常明显的安全隐患。
2.2 传输速率受限虽然目前GSM-R网络中的CSD和GPRS业务能够提供列控和非安全数据业务的承载服务,但作为窄宽通信技术,其数据传输速率有限。
铁路运输中无线通信技术的应用
铁路运输中无线通信技术的应用提纲:一、无线通信技术在铁路运输中的应用背景和意义二、铁路无线通信技术的发展历程及其特点三、无线通信技术在铁路运输中的应用现状及趋势四、无线通信技术在铁路运输安全保障中的作用分析五、铁路无线通信技术发展所带来的一系列经济和社会效益一、无线通信技术在铁路运输中的应用背景和意义铁路是交通领域重要的部分,其前置条件需要电信行业高质量网络方式。
通信技术在交通领域工作的早期,用于远程监控,GSM-R技术的普及现在落实到了控制列车运行。
发展无线通信技术,安全可靠的保障铁路运输的顺利进行,是提高生产力,保障国家经济运行及社会安全的重要措施。
无线通信技术的应用意义体现在以下几个方面。
1. 提高运输效率:无线通信技术的应用可以让相关工作人员随时得到列车运行状态或相关设备的实时数据,保障铁路的时效性和准确性,从而提高铁路的运输效率。
2. 保障安全性:无线通信技术使得人们可以在列车行驶过程中实时掌控列车的位置、速度、状态等相关信息,及时预警隐患,降低发生事故的概率,保障铁路运输的安全。
3. 促进智能化应用:无线通信技术可以大大增加智能设备的数量和与铁路运输系统的联动效果,这有助于促进铁路行业的智能化应用,从而提升铁路行业的发展水平。
4. 便于维护和利用:无线通信技术不仅使用简便,而且信息可多次传输,采用新技术的优点是可以便于操作和利用,同时也方便复用。
二、铁路无线通信技术的发展历程及其特点铁路无线通信技术是随着铁路发展不断壮大的。
现在目前的这种技术主要有三种,分别是GSM-R、LTE-R和Wavetell等,其发展历程及特点如下:1. GSM-R技术GSM-R技术(GSM-Railway)是欧洲ISO标准的GSM技术,同样应用于其他地区的铁路。
该技术主要特点在于与GSM系统技术配套使用,可以对于列车的信号及信息进行处理,支持客运和货运等各种运能。
2. LTE-R技术LTE-R技术是基于TD-LTE技术的新一代铁路通信系统,可以实现高速通信,覆盖范围广且可靠性强,不仅可以支持列车信号的传输,还能满足乘车人的网络需求。
浅谈高铁GSM-R网的无线干扰的查找
浅谈高铁GSM-R网的无线干扰的查找摘要 GSM-R是应用于铁路的专用无线移动通信系统。
既然是无线通信系统就不可避免的遇到干扰的问题。
干扰对GSM-R网的影响极大,会造成传输质量下降,影响列控业务、语音业务的传递,严重时危机行车安全。
GSM-R网络采用的无线频段为下行930MHZ至934MHZ,上行885MHZ至889MHZ。
GSM-R干扰是指外部不明无线电干扰源造成的同频、临频、宽频带的干扰,以及GSM-R网内部由于频点规划不合理或覆盖变化造成的内部干扰。
关键词 GSM-R 高铁干扰上行质量切换同频临频GSM-R是应用于铁路的专用无线移动通信系统。
既然是无线通信系统就不可避免的遇到干扰的问题。
干扰对GSM-R网的影响极大,会造成传输质量下降,影响列控业务、语音业务的传递,严重时危机行车安全。
GSM-R网络采用的无线频段为下行930MHZ至934MHZ,上行885MHZ至889MHZ。
GSM-R干扰是指外部不明无线电干扰源造成的同频、临频、宽频带的干扰,以及GSM-R网内部由于频点规划不合理或覆盖变化造成的内部干扰。
下面我就结合高铁维护案例,谈谈我们一些干扰查找的方法。
一、宽频段的干扰查找宽频干扰源频段较宽,即使在不停止基站工作的情况下也可以被发现,它的特点往往是整个频段的信号受到干扰。
因此查找该类干扰我们可以在不停止基站工作的情况下进行,只需利用频谱分析仪和一副定向天线即可在受干扰的铁路附近展开查找。
我们以许昌东附近的干扰查找为例:首先,通过ABIS接口监测的测量报告发现许昌东的GSM-R网络通信下行质量下降。
初步怀疑该处出现了干扰。
于是我们立即组织了在许昌东的站台附近利用测试手机和频谱分析仪进行了扫频。
第二步,用定向天线判断干扰源的位置:将定向天线分别对准南侧和北侧,发现干扰强度有明显的变化。
干扰源方向为许昌东站南侧。
第三步,根据定向天线测出的不同方向信号强度不同,逐步接近干扰源。
第四步,当发现所在测试位置的干扰源最强时,已经十分接近干扰源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高铁无线通信干扰检测及识别技术
摘要:在现阶段我国高铁系统发展中,无线通信方面的相关技术手段越来越先进,数字移动通信系统GSM-R网络能够提供较为稳定的服务,相对比较成熟,在高铁系统的很多场景中发挥着重要作用。
但是在具体高铁无线通信过程中,依然存在着一些不容忽视的干扰因素,很容易导致移动无线通信质量受损,准确度或者时效性难以得到保障。
基于此,在高铁无线通信系统维护和管理中,注重做好干扰检测以及识别至关重要,有助于进一步优化高铁无线通信系统运行效果。
关键词:高铁无线通信;干扰;检测;识别技术
1导言
随着我国高速铁路数字移动通信系统(GSM-R)网络运用日益成熟,高铁枢纽、并线、交叉线等区域场景日益增多,公众电信网络覆盖不断增强,无线干扰在高铁无线通信运维中已逐步成为主要被关注问题。
据2017年全国高速铁路GSM-R网络服务质量动态检测结果统计,超过60%的服务质量问题与网络无线干扰有关,且这一比例在2018年有所增长。
目前解决无线干扰问题已成为铁路无线通信维护部门的重点工作之一。
2无线干扰类型及影响
2.1无线网中存在的干扰类型
无线干扰是移动通信领域中永恒的话题,随着无线电频谱这种战略资源被越来越广泛的开发和利用,各频段间的相互干扰显得愈发不可避免。
无线干扰是指在无线通信过程中发生的、无用的无线电信号引起的、导致有用信号接收质量下降或者损害的状态及事实。
2.1.1杂散干扰类型
人类接收到的信号是通过信号发射机来传输的,在其发射的过程中其发射的信号一般都是功率较大的信号,大功率信号也存在弊端。
大功率信号的弊端就是其在发射过程中会产生其他的杂散的信号,而这种信号是会被接收者接收的,一旦被某设备接收了那么设备的通信质量就会被降低。
2.1.2互调干扰类型
互调干扰,顾名思义就是在接收信号的过程中会受到其他信号的干扰。
互调干扰出现的情况是在两个或者多个干扰信号同时被接收到,这这几种干扰信号的作用下,接收的信号和内容质量会下降甚至很差。
2.1.3阻塞干扰类型
无线通信中的信号是通过放大器来传输的,干扰的信号也是通过放大器来传输的。
在实际工作中放大器的工作是靠放大倍数来指挥执行的,放大倍数的设定是根据放大微弱信号需要的整机增益来设置的,但是干扰信号在用放大器进行传输时,放大器的设定值是超过了范围的,从而放大器对实际的信号的传达放大倍数降低,降低甚至无法正常接收到信号。
2.2无线干扰的影响
影响移动用户间的通话,使语音通话质量下降,严重时会造成通信中断;影响车地间的数据传输业务,给系统带来误码、丢包,使数据传输质量下降,严重时会造成数据传输中断;影响通信系统的可靠性,使正常的移动通信业务流程连接建立失败、切换失败、连接丢失或掉话等故障,严重时会造成通信系统阻塞或业务中断。
3铁路无线通信干扰检测
针对高铁无线通信干扰因素进行检测分析可以采用传统频谱干扰检测系统,
该系统的构成一般涉及天线、测量接收设备、频谱分析仪以及定位单位,然后借
助于数据处理分析,实现对频谱的详细分析,以求了解是否存在明显的干扰因素。
在传统频谱干扰检测系统的运行中,为了取得理想的检测结果,往往还需要针对
无线信号进行必要的变频、滤波以及放大等转换操作,以便促使相应频率以及电
平测量更为准确,有效实现对于高铁无线通信干扰信息的获取。
在针对高铁
GSM-R无线通信系统进行干扰检测时,往往需要考虑到上、下行频段的全面扫描,同时确保周期合理,能够控制在100ms以内。
在传统频谱干扰检测系统的应用中,可以实现对于干扰信息的直观呈现,促使频谱特征得到详细分析,能够保障相关
信号得到准确捕捉和保存。
3.2实时频谱干扰检测
实时频谱干扰检测系统,同样也可以在高铁无线通信干扰检测分析中发挥积
极作用,尤其是在面临复杂电磁环境时,传统频谱干扰检测方式很难形成较为准
确全面的应用效果,利用实时频谱干扰检测方式能够针对所有数据信息进行实时
测量,并且结合自动化数据分析和统计,实现对干扰因素的参数分析。
在实时频
谱干扰检测应用中,其速度往往比较快,在存在频谱重叠的无线通信系统干扰因
素分析中更具实效性;另外,实时频谱干扰检测技术的应用还能够较好借助于数
字荧光频谱展示技术进行干扰因素的直观呈现,信号捕捉和应用效果都较为理想。
3.3扫频干扰检测
扫频干扰检测在当前高铁无线通信干扰检测中同样也得到了有效应用,其主
要借助于扫频仪实现对频带内相关信号的精细化分析处理,在处理速度以及精确
度方面同样也能够表现出明显优势。
在扫频干扰检测系统的应用中,其整个过程
是被动进行的,因此也就规避了以往干扰检测分析时可能对无线通信网络带来的
影响。
对于扫频干扰检测技术的应用而言,还能够保障自身不受周围因素以及其
它参数的影响,不需要在SIM卡的支持下运行。
当然,为了更好地提高扫频干扰
检测准确度,同样也需要重点围绕着天线、扫频仪以及定位单元、数据处理分析
等要点进行严格把关,最终保障整个系统运行更为高效可靠,能够实现对GSM-R
网络上、下行频段的全面检测分析。
4高铁无线通信干扰识别技术
4.1联动分析技术
因为当前高铁无线通信系统的复杂性,涉及的干扰因素众多,因此也就必然
需要重点围绕相应干扰检测系统进行不断优化,使其具备更强的联动功能,尤其
是对于涉及的大量数据信息,更是需要采取联动分析手段,提高检测效率。
在联
动分析技术的应用中,对干扰信号的识别不仅仅需要考虑到干扰信息检测的所有
数据,往往还需要重点关注干扰检测和服务质量检测结果的联动分析,以便更为
全面准确了解无线通信系统的运行效果,避免单独分析干扰信号产生的偏差问题。
4.2阻塞干扰自动识别技术
高铁无线通信干扰因素的识别还可以借助于阻塞干扰自动识别技术,该技术
的应用能够充分实现自动化识别技术的运用,针对接收机出现的大信号阻塞现象
进行自动化识别,进而及时发现可能出现的服务质量受损问题。
为了优化阻塞干
扰自动识别技术的应用效果,针对强信号触发电平进行准确设置至关重要,应该
结合距当前小区频点的频率间隔大小予以优化,如此才能够保障后续识别程序具
备自动化特点,准确度也能够得到较好保障。
在高铁无线通信干扰因素识别分析中,频谱模型识别方法的应用同样也至关重要,其主要借助于获取的频谱特征进行频谱模型的有效构建,同样借助于自动化识别技术促使相应频谱模型具备实时更新的特点,如此也就可以更为直观明确的分析是否存在异常问题。
对于频谱模型识别技术的应用而言,往往还可以借助于灵活修改方式促使相应识别工作更为准确可靠,能够有效结合不同情况进行差异化设计,最终促使频谱模型的分析应用比较合理。
在频谱模型识别中,对于频率触发模板功能同样也需要予以积极关注,力求实现对于干扰识别的自动分析。
5结束语
总之,随着高铁通信网络建设范围的不断扩大,无线干扰带来的问题会更加多样化。
应不断创新检测监测技术手段,使动态在线干扰检测成为铁路无线干扰检测监测体系的重要组成部分。
通过加强无线干扰检测以了解干扰特性并判断干扰类型,根据不同无线干扰类型的特点采取有针对性的解决方案,用技术创新保证无线网络环境的清洁,保障铁路通信的畅通。
参考文献:
[1]韩双锋,王森,谢天,等.高铁通信高谱效MIMO技术研究[J].信息通信技术,2019,13(4):25-31.
[2]韩鹏.高铁动车弓网信号对无线通信系统的干扰研究[J].铁路通信信号工程技术,2019,16(6):42-46.
[3]蒋昊,肖建军,候建军,等.基于幅度概率分布的高速铁路无线通信电磁抗扰度性能评价[J].铁道学报,2019,41(4):96-101.
[4]陈海畴.高铁环境下无线通信的特点及覆盖策略[J].信息通信,2018(4):220-221.
[5]黄如希.一种增强高铁无线通信性能的方法研究[J].科技风,2018(8):19-20.。